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Abstract
Herein, we present an approach for the rapid, straightforward and economical preparation of a tailored reactor device using three-

dimensional (3D) printing, which can be directly linked to a high-resolution electrospray ionisation mass spectrometer (ESI-MS)

for real-time, in-line observations. To highlight the potential of the setup, supramolecular coordination chemistry was carried out in

the device, with the product of the reactions being recorded continuously and in parallel by ESI-MS. Utilising in-house-

programmed computer control, the reactant flow rates and order were carefully controlled and varied, with the changes in the pump

inlets being mirrored by the recorded ESI-MS spectra.

285

Introduction
Flow chemistry is a growing field that can increase productivity

and control, ensure reproducibility and reduce manual handling

[1]. There is currently a huge interest in directly interfacing

milli- and microfluidic reactor devices with analytical tech-

niques, for high-throughput analysis with efficient structure

elucidation and identification of compounds [2]. This type of

interfacing offers a convenient method to monitor, in real-time,

a dynamic process under flow “without unnecessary interrup-

tions and sample manipulations” [3].

Two types of monitoring techniques for this type of chemistry,

where no manual transfer of sample is required, are in-line and

on-line, where in-line analysis refers to continuous analyses of

the product stream, whilst on-line analysis refers to analyses of

selected aliquots in a parallel stream [1]. Examples of tech-

niques used for in-line, or on chip, analyses are UV–vis [4-6],

IR [4,7-9], fluorescence [10], Raman [11] and NMR [12] spec-

troscopy. For on-line analysis, LC-MS or HPLC have typically

been used, where fractions/batches of the sample-flow are

directed into the analytical technique of choice [13,14]. Results

from both types of techniques can be used to check if a reaction

has gone to completion and if there are impurities or unwanted

side-products. This data can also subsequently be used to

change the reaction conditions to increase the yield and purity.

http://www.beilstein-journals.org/bjnano/about/openAccess.htm
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Electrospray ionisation mass spectrometry (ESI-MS) is an

excellent analytical tool for flow chemistry due to its high sensi-

tivity, allowing for low sample concentrations and production

of structural information that you may not get from other tech-

niques. There are several reports in which ESI-MS has been

coupled to microfluidic devices as an in-line analytical tech-

nique [15-17]. In these instances all the flow was fed directly to

the MS to ensure high enough flow and concentration for effi-

cient detection, but whereby the sample cannot be regenerated

due to the nature of MS. Examples also include fluidic devices

coupled to on-line ESI-MS, for example to observe and analyse

microdroplets from a microreactor [18]. More recently, Ley et

al. reported a continuous flow reaction, which was monitored

by on-line ESI-MS [1], in which a six-way valve was used to

send aliquots directly to the MS for analysis. Although there are

numerous reports on the use of MS as both an in-line and an

on-line analytical technique, there are still limitations to over-

come, with the main one being the inability to follow reactions

in real time, under continuous flow, by in-line MS, whilst also

collecting the product/outcome.

Traditionally, when interfacing flow devices with ESI-MS

analysis complicated and expensive microscale fluidic devices

have been required. Herein, we present an approach interfacing

ESI-MS with a 3D-printed milliscale device, or tailored “reac-

tionware” [4]. The use of 3D printing bypasses sophisticated

manufacturing centres and promises to revolutionise every

aspect of the way that materials are turned into functional

devices, from design through to operation [19-24], with 3D

printing producing bespoke, low-cost appliances that previ-

ously would have required dedicated facilities. 3D printing is a

cheap chemical discovery tool, whereby the setup can cost thou-

sands of pounds instead of tens of thousands (see Supporting

Information File 1 for details), and which combines the discip-

lines of synthetic chemistry and chemical engineering in a

reconfigurable and highly accessible format. The use of freely

available CAD software, such as Autodesk123D®, and the rapid

fabrication that comes with 3D printing, allows for the design

and production of specific devices tailored to the intended

chemical reaction. The high surface-area-to-volume ratio,

precise control of volume, and manipulation of reaction envir-

onment results in strict control of the final device and the

subsequent reactions carried out.

We have previously demonstrated the versatility and configur-

ability of reusable and bespoke reactionware, in which a

3D-printed “reactionware” matrix, with the reagents printed

directly into the device, was used to initiate chemical reactions

[6]. We have also presented how 3D printing can be used to

make intricate micro- and milliscale reactionware for organic,

inorganic and materials syntheses, offering significant freedom

to design bespoke reactors in terms of residence time, mixing

points, inlets and outlets, et cetera [4]. Herein, we show that we

can carry out complex supramolecular chemistry in milliscale

reactionware, in which cis,trans-1,3,5-tris(pyridine-2-ylmethyl-

ene)cyclohexane-1,3,5-triamine (ttop) forms complexes with a

number of metals, such as copper(II) and nickel(II), with the Cu

complex ion previously observed by ESI-MS (see Scheme 1)

[25]. The ttop and metal-salt solutions are introduced to the

device through pumps, via the device inlets, and by changing

the pump speed (hence altering the flow rate and reaction condi-

tions inside the device), using an in-house-programmed

computer controller, the resulting complexation reaction can be

observed with in-line ESI-MS. Because the product stream is

split after the device, a section of the stream flows directly into

the ESI-MS, continuously and in real time, whilst the other

section of the stream is collected. To our knowledge, this is the

first example of a configurable, real-time, continuous parallel-

flow technique using ESI-MS as an analytical tool with a

3D-printed device as the reaction vessel.

Experimental
3D printing
Our device was designed using a freely distributed CAD soft-

ware package (Autodesk123D®). The device design was

exported as an STL file (see Supporting Information File 2),

which was then interpreted by the Bits from Bytes Axon 2 soft-

ware, which produces a 3D printer instruction file (BFB file),

which was subsequently transferred to the 3DTouchTM 3D

printer. The printing was conducted in a layer-by-layer fashion,

and the device used was printed in polypropylene (PP) by using

a 3DTouchTM printer, which deposits layers of thermopoly-

mers through heated extruder nozzles to build the designed

reactionware. PP is an attractive material for the fabrication of

micro- and milliscale reactionware as it is an affordable, robust,

flexible and relatively chemically inert polymer. The device

designed and used for the work presented herein is shown in

Figure 1 and consists of three inlets and one outlet. The overall

dimension of the device is 46.5 × 80 mm, with an internal path

diameter of 1.5 mm. The total internal volume of the device is

roughly 0.65 mL, and the reaction volume is about 0.57 mL.

The inlets and outlets are designed to match the size of standard

available screw fittings, which allows for easy connection to

syringe pumps. The screw fittings are made of polyether ether

ketone (PEEK), which is a harder plastic than PP, allowing for

boring into the PP plastic inlet and outlets to give a tight seal to

the device. These fittings can be removed and replaced as many

times as necessary, and the whole device can be used

repeatedly, for a variety of chemical reactions. LabView®

(Laboratory virtual instrumentation engineering workbench, a

system design platform and development environment for a
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Scheme 1: Reaction scheme for the formation of the ttop and metal-salt coordination complex (1 is [Cu(C24H24N6)(NO3)]+; 2 is [Ni(C24H24N6)(NO3)]+;
3 is [Cu2(C24H24N6)(NO3)2]2+).

Figure 1: On the left is a schematic presentation of the STL file, whilst
on the right is the device with screw fittings and connected with
1/16 inch (1.6 mm) tubing. Methylene blue and rhodamine B are being
pumped through the device, which allows the inner-tube path to be
rendered visible. A section consisting of only methylene blue can be
seen at the front, followed by a stronger purple band, which is obtained
from the successful mixing of rhodamine B and methylene blue.

visual programming language from National Instruments) was

used to write scripts controlling the speed and sequence of the

pumps.

To control the flow into the device and the overall residence

time, syringe pumps were connected to the device through the

standard plastic screw fittings and 1/16 inch (1.6 mm) tubing.

The outlet was connected to a T-piece to allow for a dilution

step to make the sample concentration suitable for ESI-MS

analysis, and a PEEK microsplitter valve, which split the flow

so that a section was directed to the collection point, whilst the

remaining flow was directed to the in-line ESI-MS. An over-

view of the setup is presented in Figure 2.

Chemistry
The ttop ligand was synthesised according to a reported litera-

ture procedure [25]. Solutions of ttop, Cu(NO3)2·6H2O and

Ni(NO3)2·6H2O were all made up to 1 × 10−4 M in MeOH and

were pumped into the devices via syringe pumps. The device

setup was initially checked by running only ttop and MeOH,

where ttop was run at a flow rate of 62.5 µL·min−1. The reac-

tions between ttop and Cu(NO3)2 ·6H2O at different

stoichiometries and alternating of the coordination of

Cu(NO3)2·6H2O and Ni(NO3)2·6H2O to ttop, were then investi-

gated. For the first set of experiments Cu(NO3)2·6H2O was

pumped in through inlet A, ttop via inlet B, and MeOH via inlet

C and D (see Figure 2 and Table 1).

The supramolecular product obtained when ttop was reacted

with alternating Cu(NO3)2·6H2O and Ni(NO3)2·6H2O solu-

tions was also investigated. The device setup was the same as

for the first experiment, with the only difference being that
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Figure 2: Top: A schematic overview of the device setup. The three inlets were each connected to a syringe pump, which were connected to stock
solutions of the required starting materials or MeOH. The outlet is directly connected to a T-piece, where it mixes with a stream of MeOH for dilution.
This is followed by the splitting step, where a PEEK microsplitter valve is used to split the stream so that only a suitable flow-rate reaches the ESI-MS.
The parallel stream allows for collection of the reaction product. Bottom: Photograph of the device setup and connection to the mass spectrometer
(where a = Tricontinent C-3000 syringe pumps; b = screw fittings; c = 3D printed device; d = T-piece; e = PEEK microsplitter valve).

Table 1: An overview of the solutions and flow rates used for the reac-
tions of ttop and Cu at different stoichiometry.

Pump Solution
(1 × 10−4 M MeOH)

Flow rate (µL·min−1)
1:2 1:3 1:5 1:15

A Cu(NO3)2·6H2O 62.5 93.75 93.75 93.75
B ttop 31.25 31.25 18.75 6.25
C MeOH 12.5 12.5 12.5 12.5
D MeOH 62.5 62.5 62.5 62.5

Ni(NO3)2·6H2O was pumped in via inlet C, with pump A and C

alternating (i.e., when pump A was active, pump C was idle,

and vice versa) (see Table 2 for flow rates).

Results and Discussion
The ttop ligand (L, C24H24N6) used in this investigation was

produced by the reaction of cis,trans-1,3,5-triaminocyclo-

hexane (trans-tach) with pyridine-2-carboxaldehyde (see

Table 2: An overview of the solutions and flow rates used for the reac-
tion of ttop with Cu(NO3)2·6H2O and Ni(NO3)2·6H2O solutions.

Pump Solution (1 × 10−4M MeOH) Flow rate (µL·min−1)

A Cu(NO3)2·6H2O 62.5
B ttop 31.25
C Ni(NO3)2·6H2O 62.5
D MeOH 312.5

Scheme 1). The ring-flip capability of the cyclohexane back-

bone allows two conformations, bis-equatorial mono-axial and

bis-axial mono-equatorial. In the presence of a metal salt, the

energetically favoured ring-flipped “closed” bis-axial mono-

equatorial conformer is retained and can be observed in the

presented complexes 1 and 2: [Cu(C24H24N6)(NO3)]+ (1) and

[Ni(C24H24N6)(NO3)]+ (2). An axial tetradentate site (created

from the N atoms of the axial pyridines and the associated

imines) and an equatorial bidentate site (created from the two N
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atoms of the trans ttop arm) are formed in the favoured con-

formation, with the tetradentate site always being filled first due

to it being the most energetically favoured site for metal ion

coordination.

As mentioned previously, ttop (1 × 10−4 M) was first intro-

duced through the device (with methanol in the three remaining

active pumps) at a flow rate of 62.5 µL·min−1 with the

product stream then split after a dilution step to allow

continuous parallel collection and analysis. When the product

arrived at the mass spectrometer a mass spectrum with isotope

envelopes at m/z 397.2 and 419.2 for the species [C24H25N6]+

(L + H) and [C24H25N6Na]+ (L + Na), respectively, was

observed (Figure 3a). Cu(NO3)2·6H2O (1 × 10−4 M) was

then introduced to syringe pump A and complexed with ttop at

flow rates of 31.25 µL·min−1 and 62.5 µL·min−1 for ttop

and Cu(NO3)2·6H2O, respectively (1 equiv ttop:2 equiv

Cu(NO3)2·6H2O). This complexation reaction lead to the for-

mation and observation of the species [Cu(C24H24N6)(NO3)]+

(2) ,  m /z  521.1 (Figure 3b).  When the flow rate of

Cu(NO3)2·6H2O was increased from 62.5 µL·min−1 to

93.75 µL·min−1 (1 equiv ttop:3 equiv Cu(NO3)2·6H2O) the

Cu(NO3)2·6H2O flow rate was increased by such an amount

that the 1:2 stoichiometric species [Cu2(C24H24N6)(NO3)2]2+

(3) at m/z 323.0 could be seen to grow, but with the abundance

still being lower than that of the [Cu(C24H24N6)(NO3)]+ (2)

species (Figure 3c). The ttop flow rate was then decreased

to 18.75 µL·min−1 (1 equiv ttop:5 equiv Cu(NO3)2·6H2O)

to give a reaction mixture in which there was a higher

abundance of [Cu2(C24H24N6)(NO3)2]2+ (3) compared to

[Cu(C24H24N6)(NO3)]+ (2) (Figure 3d). The rate was then

decreased further to a rate at which the ttop pump ran at

6.25 µL·min−1 (1 equiv ttop:15 equiv Cu(NO3)2·6H2O) to

produce predominantly the [Cu2(C24H24N6)(NO3)2]2+ (3)

species (Figure 3e, a low intensity residual peak of the mono-

copper complex is also observed here).

Figure 3: ESI-MS isotope patterns of ttop + Na (square), m/z 419.2,
[Cu(C24H24N6)(NO3)]+ (1, pentagon), m/z 521.1, and
[Cu2(C24H24N6)(NO3)2]2+ (3, star), m/z 323.0, showing how an
increase in flow rate from the pump containing Cu(NO3)2·6H2O
changes the stoichiometry of the complex from 1 ttop:1 Cu(NO3)2 to
1 ttop:2 Cu(NO3)2 (where a = MS of ttop; b = 1 ttop: 2 Cu(NO3)2·6H2O;
c = 1 ttop: 3 Cu(NO3)2·6H2O; d = 1 ttop:5 Cu(NO3)2·6H2O; e = 1
ttop:15 Cu(NO3)2·6(H2O)) (for the full spectra see Supporting Informa-
tion File 1).

In-house LabView scripts were then utilised to vary the metal-

salt coordination. Here scripts were developed to allow the

careful control of oscillating reaction mixtures (cycles) where

pumps A and C were alternated to allow complexation of

Ni(NO3)2·6H2O and Cu(NO3)2·6H2O, respectively. The

experiment was set  up as shown in Figure 2 with

Cu(NO3)2·6H2O (1 × 10−4 M) in pump A, ttop (1 × 10−4 M) in

pump B and Ni(NO3)2·6H2O (1 × 10−4 M) in pump C. Pump D

contained MeOH for an additional diluting stage to decrease the

mixture concentration before introduction to the mass spectro-

meter.

The oscillation was carried out by firstly filling pumps B and C

at the same rate, with an outlet flow rate at pump C (containing

Ni(NO3)2·6H2O) of 62.5 µL·min−1 and pump B (containing

ttop) at a flow rate of 31.25 µL·min−1. The reaction solutions

were then mixed together in the device to form the complex

[Ni(C24H24N6)(NO3)]+ (2), m/z 516.1. The residence time of

the device (the time that the reactants were allowed to react

within the device) was then calculated from when the species of

interest was formed; approximately 5 min. (Please note that the

first two cycles were omitted due to the device channels being

partially unfilled and so gave an unstable and unrealistic signal

at the mass spectrometer, and the data was continuously

recorded over seven cycles). The next cycle was initiated after

32 min, where the activated pumps were switched from

Ni(NO3)2·6H2O and ttop to Cu(NO3)2·6H2O and ttop, to form

the species Cu(C24H24N6)(NO3)]+ (1), m/z 521.1, which can be

observed in the mass spectrometry data approximately 5 min

after initiation. Analysis of the continuous parallel ESI-MS data

collected showed both the species [Ni(C24H24N6)(NO3)]+ (2),

m/z 516.1, and [Cu(C24H24N6)(NO3)]+ (1), m/z 521.1, present

in the reaction mixture for a further 10 min until only the

[Cu(C24H24N6)(NO3)]+ (1), m/z 521.1, species was present and

the system was at equilibrium. This oscillation pattern was then

repeated for a further three cycles (see Figure 4). From the MS

data and Figure 4 it can be seen that after approximately 10 min

into each cycle the reaction reached a steady state, and so from

the stream at this time a sample of the complex can be collected

for further analysis and/or reactions. Due to the pumps having

to refill, a drop-off in intensity was observed in the mass spec-

trum after 16 min in each cycle. This drop-off was then fol-

lowed by an increase in intensity of the complex in question

(dotted lines in Figure 4), then a rapid decrease in intensity

accompanied by the formation and increase in intensity of the

next complex. This intensity instability (dotted lines in

Figure 4) will need to be further researched to provide an

answer as to why the intensity fluctuates as it does. Further

work using a peristaltic type system, where refilling would be

continuous, would remove the intensity instability caused by the

pumps restarting.



Beilstein J. Nanotechnol. 2013, 4, 285–291.

290

Figure 4: Normalised intensity plotted against time showing the
change in intensity of [Ni(C24H24N6)(NO3)]+ (2), m/z 516.1, (black) and
[Cu(C24H24N6)(NO3)]+ (1), m/z 521.1, (red) over five pump cycles.
(The dotted lines correspond to the instability in the intensity of the
species due to the pumps refilling, and thus, the system is not at
equilibrium).

For the relative intensity of the [Ni(C24H24N6)(NO3)]+ (2),

m/z 516.1 and [Cu(C24H24N6)(NO3)]+ (1), m/z 521.1 species

see Supporting Information File 1.

Conclusion
By carrying out a number of complementary supramolecular

chemical reactions in bespoke 3D-printed reactionware we have

shown their high potential and configurability. The tailored

milliscale reactionware, with the appropriate number of inlets,

outlets and reactor length, was successfully utilised as a fluidic

device. The design of the device allowed standard screw fittings

to be employed for connecting the device to the desired pumps

and other fittings, in this instance a T-piece for dilution and a

PEEK microsplitter valve device for splitting the product

stream. This design, utilising the addition of screw fittings,

allows for better connections, seals, and easier reuse of the

devices, compared to previously published procedures [4].

We have presented, for the first time, an example of a configur-

able, real-time, continuous parallel-flow technique using ESI-

MS as an analytical tool and a 3D printed device as the reaction

vessel. The stream splitting allows direct interfacing of the

outlet stream with in-line ESI-MS, with flow rates fast enough

for ESI-MS and sample collection.

Supramolecular chemistry was carried out to emphasise the

versatility of the reactionware setup. Changing the flow rate of

the reactants allows the successful change in product stoi-

chiometry from 1:1 to 2:1, as confirmed by in-line ESI-MS. The

same reactionware setup can be used to switch between two ttop

complexes, where the Cu and Ni salts were alternately pumped

through the device, with ttop remaining constant. Real-time,

continuous ESI-MS was successfully used to observe the reac-

tion and the oscillation between the two salt complexes with a

simultaneous collection of the product.

In the near future we aim to further expand and improve the

reactionware, for example, by including heat exchangers. For

the in-line ESI-MS setup we intend to further utilise the split

product stream by including other in-line techniques, such as

UV–vis and IR spectroscopy. To further develop the 3D

printing technology we are currently investigating the use of

various new print materials, for example active functional ma-

terials, to highlight the versatility and configurability of 3D

printing and 3D-printed reactionware. We are also designing

new geometries that will provide reaction conditions currently

difficult to achieve with traditional glassware/millifluidic tech-

niques.

Supporting Information
Supporting Information File 1
Additional experimental data.
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Supporting Information File 2
Device design as a compressed STL file (editable, e.g., with

Autodesk123D®).

[http://www.beilstein-journals.org/bjnano/content/

supplementary/2190-4286-4-31-S2.zip]
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