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Controlling an organic synthesis robot with 
machine learning to search for new reactivity
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The discovery of chemical reactions is an inherently unpredictable 
and time-consuming process1. An attractive alternative is to predict 
reactivity, although relevant approaches, such as computer-aided 
reaction design, are still in their infancy2. Reaction prediction based 
on high-level quantum chemical methods is complex3, even for 
simple molecules. Although machine learning is powerful for data 
analysis4,5, its applications in chemistry are still being developed6. 
Inspired by strategies based on chemists’ intuition7, we propose that 
a reaction system controlled by a machine learning algorithm may 
be able to explore the space of chemical reactions quickly, especially 
if trained by an expert8. Here we present an organic synthesis robot 
that can perform chemical reactions and analysis faster than they 
can be performed manually, as well as predict the reactivity of 
possible reagent combinations after conducting a small number of 
experiments, thus effectively navigating chemical reaction space. 
By using machine learning for decision making, enabled by binary 
encoding of the chemical inputs, the reactions can be assessed in real 
time using nuclear magnetic resonance and infrared spectroscopy. 
The machine learning system was able to predict the reactivity of 
about 1,000 reaction combinations with accuracy greater than 80 
per cent after considering the outcomes of slightly over 10 per cent of 
the dataset. This approach was also used to calculate the reactivity of 
published datasets. Further, by using real-time data from our robot, 
these predictions were followed up manually by a chemist, leading 
to the discovery of four reactions.

Recent progress in automated chemistry9,10, online analytics11 and 
real-time optimization12 suggests that it is possible to construct a 
robot that can autonomously explore chemical reactivity. With this in 
mind, we have designed, built and programmed a bespoke chemical- 
handling robot comprising in-line spectroscopy, real-time data  
analysis and feedback mechanisms (Fig. 1a, b). The robot is configured 
to execute six experiments in parallel, allowing up to 36 experiments  
to be performed per day. To evaluate the outcome of a reaction, the 
robot is equipped with real-time sensors—a flow benchtop nuclear 
magnetic resonance (NMR) system13, a mass spectrometer and an 
attenuated total-reflection infrared spectroscopy system14—to record 
the spectra of the reaction mixtures. Then, it uses an algorithm to 
automatically classify the reaction mixtures as reactive or non-reactive, 
which is reported in binary form as zero or one, using a supported 
vector machine15 (SVM) with a linear kernel (Fig. 1c) model. This 
algorithm compares the spectrum of the starting materials with that 
recorded by the robotic platform using NMR and infrared spectros-
copy, registering differences as reactivity hits (see Fig. 1e for an exam-
ple of a non-reactive mixture and Fig. 1f for a reactive mixture). By 
training the model on 72 reactive and non-reactive mixtures manu-
ally classified by an expert chemist, the model could classify the reac-
tivity of reaction mixtures with an accuracy of 86%, as determined 
by leave-one-out cross-validation. The machine learning algorithm 
used to explore the chemical space needs an automatically generated 
representation of the reactions16. Because the representation of the 
data is crucial for machine learning17, we created a reaction descriptor 
with a width corresponding to the number of starting materials in the 

pool of reagents and with bits representing reagents that were present 
in a given reaction mixture to one, similarly to one-hot encoding. 
Figure 1d shows example vector representations for the model sub-
strate pool consisting aniline, benzaldehyde, acetyl chloride, phenyl-
hydrazine and furan.

This approach to representing chemical space renders it structure- 
independent and allows the robotic platform to operate without prior 
knowledge about reactivity and chemical structure (Fig. 2). Initially, 
the chemical space was sampled by performing reactions with ran-
dom combinations of starting materials, evaluating their reactivity as 
reactive or non-reactive using the SVM model (to determine expected 
values of reactivity, Y) and encoding them in vector form (to obtain a 
training set, X). The process of random selection is important because 
the system avoids making prior assumptions about the possible reac-
tivity of the reagents, ensuring that the initial run results are unknown. 
Even if the reaction mixture decomposes or is non-reactive, this infor-
mation is still useful for the navigation of the chemical space, allowing 
real-time assessment of the reactivity of the starting materials. After 
the reaction database has been built, a linear discriminant analysis 
(LDA)18 model is trained on the data obtained to construct a model 
of the chemical space. The remaining reactions are then rated by pre-
dicting the probability of reactivity using the LDA model. This allows 
for autonomous decision making, and the reaction with the highest 
score is performed and analysed by the robotic system, thus avoiding 
many non-reactive combinations and speeding up the search. The loop 
is closed by updating the reaction database with the result of the last 
experiment from the platform and then by retraining the LDA model 
of the chemical space. The cycle is repeated until the required number 
of reactions is performed or until the whole space—defined by a pool of 
18 reactive, structurally diverse molecules containing functional groups 
1–18 (Extended Data Fig. 1)—is spanned. The chemical space consti-
tuted of two- and three-component reactions formed from the pool of 
starting materials, giving 969 possible experiments. When LDA was 
performed, the algorithm was able to clearly differentiate between reac-
tive and non-reactive combinations of the starting materials (Fig. 3a). 
This means that the LDA can be useful for predicting new reactivity. 
By taking this approach, we showed that the robot can learn how reac-
tive the starting materials are and efficiently navigate chemical space. 
For example, the reaction mixture composed from 2-aminothiazole 
(9), phenylacetyl chloride (15) and DBU (13) would be classified as 
highly reactive, a mixture of malononitrile (3), methylacetoacetate (18) 
and DBU (13) as moderately reactive and a mixture of nitromethane 
(4), benzofuroxan (7) and toluenesulfonylmethyl isocyanide (17) as 
non-reactive. These assignments agree with basic chemical intuition, 
demonstrating the predictive power of the model (see Supplementary 
Information for the reactivity of all reactions according to the LDA 
projection).

To further test the learning ability of our robotic system, we per-
formed simulations to calculate the number of reactive versus non- 
reactive combinations of the starting materials chosen by the algorithm  
during the exploration of the chemical space (Fig. 3b). In the initial 
stage, the space was randomly sampled, resulting in an equal number 
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of reactive and non-reactive combinations being chosen by the algo-
rithm. After reaching the desired number of reactions, decisions 
were made using LDA, leading to a rapid increase in the number of 

reactive combinations being chosen by the algorithm. In the end, the 
algorithm identified the empty part of chemical space; that is, the 
last experiments that were chosen were non-reactive (Fig. 3b). The  
accuracy of predicting the reactivity is shown in Fig. 3c, which shows 
that as chemical space is progressively searched, the accuracy of the  
prediction of the reactivity increases along with the confidence  
intervals. This demonstrates that the robot can ‘self-learn’ using 
artificial intelligence by exploiting this reactivity-first approach. 
Additionally, the accuracy of the LDA classifier in predicting the reac-
tivity of the reaction mixtures was determined as 86% ± 3% using 
five-fold cross-validation.

To further explore the predictive power of our approach, we also 
investigated the Suzuki–Miyaura reaction space (see Fig. 4a) described 
recently19 by searching for reactions with the highest yield with our 
machine learning approach. To achieve this, we built a neural network 
(for details and implementation, see Supplementary Information) and 
used one-hot encoding to encode literature data for machine learn-
ing. We then used the neural network to explore the hypothesis that 
machine learning can be used for the prediction of yields. The dataset 
was partitioned into a training set (3,456 reactions), a validation set 
(576 reactions) and a test set (1,728 reactions) to train and validate the 
neural network. When the neural network was tested, it performed 
well, giving yields with a root-mean-square error of 11% for 1,728 
reactions (see Fig. 4b for the correlation between real and predicted 
yield). Having established that our approach can predict the yields of 
Suzuki–Miyaura reactions, we performed a simulation to explore this 
chemical space, as described above for our robot. Initially, the algo-
rithm randomly chose 10% of the reaction space (576 reactions) and 
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Fig. 1 | Automatic reaction detection with machine learning.  
a, Schematic of the chemical robot. The circles are pumps and the coloured 
dots are the positions of the valves. APCI, atmospheric pressure chemical 
ionization; MS, mass spectrometer; ATR-IR, attenuated total reflectance 
infrared spectrometer. b, Photograph of the chemical robot, showing 
the pumps, reactors and real-time analytics, including the NMR, MS 

and infrared (IR) spectroscopy systems. c, SVM workflow for reaction 
detection using infrared and NMR spectroscopy, utilizing changes in the 
spectra. d, Reaction space representation using vectors. e, Example of a 
1H NMR (43 MHz, MeCN) spectrum for a non-reactive reaction mixture. 
a.u., arbitrary units. f, Example of a reaction mixture 1H NMR (43 MHz, 
MeCN) spectrum for which a chemical reaction has been detected.
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Fig. 3 | Simulations exploring the chemical space and predictive power 
of the model. a, Left, LDA projection of all the reactions performed, 
demonstrating the predictive power of LDA in classifying the reactivity. 
Red symbols, reactive combinations; blue symbols, non-reactive 
combinations. Right, examples of reactions in different regions of chemical 
space projected by LDA on the basis of collective chemical knowledge 
acquired by the robot. Top, very reactive; middle, moderately reactive; 

bottom, non-reactive. b, Simulation showing the number of reactive and 
non-reactive mixtures chosen by the algorithm during the exploration 
of chemical space. c, Aggregated results from 100 simulations showing the 
average accuracy of the LDA in predicting the reactivity versus the fraction 
of chemical space explored; the confidence intervals are defined by the 
maximum and minium values.

Fig. 4 | Exploring the Suzuki–Miyaura reaction using machine 
learning. a, The reaction space of the Suzuki–Miyaura reaction. Shown 
are the identity of reactants, ligand, base and solvent, and the vector 
representation of the reaction for machine learning. b, Validation of 
the predictive power of the model for a test set of 30% of the reactions 
(1,728 reactions). RMSE, root-mean-square error. c, Simulation of the 

machine-learning-controlled exploration of this reaction space. The 
yellow bar shows the initial random choice of 10% of reaction space (576 
reactions). The green bars show the next batches of 100 reactions chosen 
by the machine learning algorithm. The error bars represent the standard 
deviation within individual batches for Suzuki–Miyaura coupling.
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then the neural network was trained on these data. The unexplored 
parts of the reaction space were then rated by the machine learning 
model, the next batch of candidates with the best scores was selected, 
and the true yield was evaluated. The initial random guess had a mean 
yield of 39% and standard deviation (s.d.) of 27%, shown as a yellow 
bar in Fig. 4c. The green bars show subsequent batches of 100 reac-
tions chosen by the machine learning algorithm. For example, the first 
batch of 100 reactions had a mean yield of 85% and s.d. of 14%. The 
subsequent batches contained progressively fewer reactive starting 
materials, ultimately reaching non-reactive parts of the reaction space. 
This approach is valuable because it shows that by realizing only 10% 
of the total number of reactions, we can predict the outcomes of the 

remaining 90% without needing to carry out the experiments. Recently, 
the application of machine learning to yield prediction and the naviga-
tion of reaction space has been demonstrated for a Buchwald–Hartwig 
amination20 and deoxyfluorination with sulfonyl fluorides21, leading 
to similar conclusions.

We used the reactive combinations discovered by the system to 
manually carry out reactions. For example, by analysing the spectra 
recorded by the robot, we identified several transformations (Fig. 5). 
For instance, analysis of the 1H NMR spectrum for the reaction of 
methyl propiolate (16) with benzofuroxan (7) and DBU (13) suggests 
an interesting transformation with new peaks visible in the chemical 
shift range δ = 4.0–5.0 p.p.m. and 7.9–8.5 p.p.m. (Fig. 5b). Isolation and 
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NMR analysis of the reaction product showed that it contained protons 
originating from all starting materials suggesting that the compound 
resulted from a multicomponent reaction. Analysis of the 1H–13C 
heteronuclear single-quantum and multiple-bond correlation spectra 
determined the structure of product 19 (see Extended Data Fig. 2a for 
a proposed mechanism).

We explored the utility of this reaction by synthesizing a small 
library of related molecules. By using substituted alkynes, we were able 
to prepare six structurally diverse compounds in one step (Extended 
Data Fig. 2b). Reaction of DMAD (1), nitrosobenzene (14) and 
DMAP (12) led to a multicomponent reaction with formation of 2,5- 
dihydrofurane derivative 20 at a diastereometric ratio of 2.4:1 (trans:cis)  
(Fig. 5c, d). Figure 5e shows the formation of chlorocyanonitrone 21—
an unreported class of nitrones—which was isolated as the product 
of the reaction between trichloroacetonitrile (5) and nitrosobenzene 
(14) in the presence of DBU (13) (structure of 21 confirmed by X-ray 
analysis). Finally, we also found reactivity between ketenes and DBU 
(Fig. 5f), indicated by the peaks at high molecular weight recorded by 
the platform for this reaction (mass-to-charge ratio, m/z = 506.9 and 
m/z = 657); see Fig. 5f. Under basic conditions, phenylacetyl chloride 
(15) is deprotonated by DBU, giving phenyl ketene, which reacts with 
DBU to give the polycyclic azepine derivative 22 (Fig. 5f). The sug-
gested mechanisms for these transformations are presented in Extended 
Data Fig. 2c, d.

To assess how unique these reactions are, we employed the Tanimoto 
similarity index, which compares starting materials and products22. We 
considered over 40 million reactions, filtered by first excluding non- 
organic reactions, then requiring the same number of reagents and 
products as our discoveries, and finally by requiring that the reactions 
have all the necessary structural information. This filtering left more 
than about 3.5 million reactions to compare. For each reaction, we 
calculated the similarity between each reagent and the product and 
calculated the mean from the obtained values. For reactions in which 
the reagents undergo a slight modification to reach the product, this 
reaction similarity index would be close to 1. Conversely, if the reagents  
change substantially so that the product is very different, then the result  
would be close to 0. All four of the reactions discovered here 
(see Supplementary Information) have a lower similarity index than 
the mean. In fact, all are in the top 10 percentile, with reaction 2 (which 
gives product 20) in the top 0.8 percentile (Fig. 5g), and they are consi-
derably more distinct from the reactions chosen at random. The histo-
gram in Fig. 5h shows that there is only one peak in the distribution and 
that the mean value of the Tanimoto similarity index is 0.29.

This study represents an important step towards developing intel-
ligent automated approaches to chemical discovery using artificial- 
intelligence-driven chemical robots trained by human experts from 
the bottom up, in contrast to top-down fragment-based approaches23.
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MEthodS
General experimental remarks. Reagents were from Sigma Aldrich and were 
used as received. Acetonitrile employed as a solvent in the platform was HPLC 
grade (VWR International). Mass spectra were recorded on a time-of-flight mass 
spectrometer (MicroTOF-Q MS) equipped with an electrospray source sup-
plied by Bruker Daltonics Ltd. All data were collected in positive ion mode. The 
spectro meter was calibrated with a standard tune mix to give a precision of about 
1.5 p.p.m. in the region m/z = 100–3,000. NMR data were recorded using a Bruker 
Avance III 600 MHz or a Bruker Avance 400 MHz NMR system. The spectra 
were recorded at 298 K using residual-solvent proton peaks for scale reference (for 
example, 1H: δ (CDCl3) = 7.26; 13C: δ (CDCl3) = 77.16). The chemical shifts are 
reported in p.p.m. using the δ scale and all coupling constants (J) are given in Hz. 
The following abbreviations are used to characterize spin multiplicities: s, singlet; 
d, doublet; t, triplet; q, quadruplet; m, multiplet; dd, double doublet; dt, double 
triplet; dq, double quadruplet; and ddt, double doublets of triplets. Spectra obtained 
using distortionless enhancement by polarization transfer, correlation spectros-
copy, heteronuclear single-quantum and multiple-bond correlation spectroscopy 
and rotating frame Overhauser-effect spectroscopy were used for structure deter-
mination and structural assignments. New reaction candidates were analysed 
using thin-layer chromatography (TLC) and visualized using TLC plates with a 
fluorescent indicator.
Syringe pumps and tubing. Control over the fluids was achieved using 27 pumps 
(model C3000, Tricontinent) equipped with 5 ml syringes (TriContinent) and a 
four-way solenoid valve according to the requirements of the experiments. The 
pumps were connected using a RS232 port and a daisy chain, allowing the con-
nection of up to 16 pumps on a single RS232 bus. Commands to the pumps were 
sent using the pumps’ proprietary control language, implemented in a Python 
module, allowing control over the pumps and error-reporting functionality (for 
example, pumps malfunctioning). PTFE plastic tubing with an outer diameter of 
1/8 inch (3.175 mm) was cut to the specified length and connected using standard 
HPLC low-pressure PTFE connectors and PEEK manifolds (supplied by Kinesis).
Online attenuated total-reflectance infrared spectroscopy. All spectra were 
recorded using a Thermo ScientificNicoletiS5 Fourier transform infrared spec-
troscopy system equipped with a ZnSe Golden Gate attenuated total reflectance 
infrared flow cell. The resolution was set at 4 cm−1 and each sample’s spectrum was 
recorded using 36 scans. The spectrometer was controlled by OMNIC software 
using Python and the ActiveX software framework. Before measurement of the 
spectra, the solvent (MeCN) was recorded as background.
Online NMR spectroscopy. The NMR spectra were recorded using a Spinsolve 
benchtop NMR system from Magritek with a compact permanent magnet 
(43 MHz) based on the Hallbach design, working on a lock-free basis (not requir-
ing deuterated solvents). Shimming was performed using a D2O/H2O mixture (9:1 
v:v) to minimize the half-width of the solvent peak. To measure reaction mixtures, 
the spectrometer was equipped with a home-built flow cell with a standard 5 mm 
width to maximize sensitivity. The spectra were measured in a stopped flow by 
pumping reaction mixtures into the flow cell. The spectrometer was controlled by 
Spinsolve software by sending XML messages over a network connection.
Benchtop mass spectroscopy. The spectra were recorded with an Advion 
Expression mass spectrometer using the atmospheric pressure chemical ionization 
technique. The detailed acquisition parameters can be found in Supplementary 
Information. The mass spectrometer was controlled using Python wrapper soft-
ware and Advion API, allowing complete control over the instrument and acqui-
sition parameters. Dilution of the reaction mixtures, which was necessary for 
recording their spectra, was realized using two syringe pumps by diluting reaction 
mixtures 3,125 times using solvent (MeCN) before the measurements.
Flow setup implementation. The platform was assembled as in Fig. 1a, using the 
27 syringe pumps, the benchtop infrared spectroscopy system, the NMR and the 
mass spectrometer. Round bottom flasks (25 ml) were employed as the mixer and 
reactors. 18 pumps were responsible for dispensing the chemicals to the mixer, six 
pumps were used to transfer the reaction mixture from the mixer to the proper 
reactor, one pump was employed to pump the solvent (MeCN), and two pumps 

were used to realize the dilution step that was necessary to measure mass spectra. 
The starting materials were prepared as 1.0 M solutions. Automatic data collection 
and processing and platform control were achieved using the Python programming 
language. Before the execution of the reaction, the robot was cleaned three times 
by flushing the mixer, reactor flasks and analytics. The reaction was performed by 
adding proper reagents to the mixer (total volume 5.0 ml) in a 1:1 ratio, transferring 
the reaction mixture to the reactor and saving the reaction parameters (the identity 
and volumes of the starting materials). After two hours, the reaction mixture was 
transferred to the measurement loop, where the NMR and infrared spectra were 
recorded. The mass spectrum was recorded after dilution of the reaction mixture. 
After the reaction mixture has been measured, the mixer, reactor and analytics 
were cleaned by flushing with solvent twice. Parallel execution of six reactions 
was implemented by shifting the execution of each reaction in time so that each 
experiment had access to the liquid-handling robot and analytics without colliding 
with the other experiments. Spectra (NMR and infrared) were also recorded for 
each chemical in the pool of starting materials (Extended Data Fig. 1) that was used 
for the calculation of the theoretical spectrum of the reaction mixture.
Autonomous navigation of chemical space by the robot. The algorithm for the 
exploration of chemical space starts by measuring 90 random experiments in the 
platform, and then each experiment in this set is processed to assess its reactivity 
and generate its vector representation. The 1H NMR spectrum of the reaction 
mixture is automatically processed using fast Fourier transform, phasing and ref-
erencing of the solvent peak. The intensity of the solvent peak is normalized to 1.0 
(the solvent peak is used as an internal standard, allowing easy addition of the spec-
tra). The infrared spectra are used without any preprocessing. Next, the theoretical 
spectra of the reaction mixture (the sum of the starting materials) are constructed 
for NMR and infrared spectroscopy. The spectra are normalized by removing the 
mean and scaled to unit variance. The reactivity of the reaction mixture is assessed 
by feeding the NMR reaction mixture and NMR theoretical spectrum to the SVM 
classifier (trained previously; see Supplementary Information). The outcome of 
the classifier is Y = 0 (non-reactive) or Y = 1 (reactive). Similarly, the reactivity 
is assessed by the SVM classifier using the infrared spectra. An experiment is 
classified as reactive if any of the above classifiers categorizes it as reactive. The 
vector representation is generated using the identity of the starting materials. The 
vector representation (X) and reactivity (Y) are added to the reaction database.

The machine learning algorithms are realized using the sci-kit learn package 
in Python24. After the initial database of the reactions is built, the LDA classifier 
is trained on the vector representation of the reactions (X) and their reactivity 
(Y). All the possible unperformed reactions are then rated by assigning them the 
probability of being reactive, as calculated from the LDA model. After the reactions 
with the highest score are realized by the liquid-handling robot, they are pro-
cessed as described above, updating the reaction database. Then, the LDA model 
is retrained on the updated database and the robot iteratively explores the chemical 
space until the desired number of experiments is performed. Simulations of the 
exploration of the chemical space with this algorithm were performed using the 
data collected by the robot.
Syntheses of molecules discovered by the platform. The solutions of the start-
ing materials (1.0 M solutions in MeCN) were added to the round bottom flask 
(25 ml) in a 1:1 ratio (total volume 5.0 ml) and stirred in room temperature for 
2 h. Subsequently, silica gel (4.0 g) was added and the solvent was evaporated. 
The products of the reaction were isolated using column chromatography. The 
syntheses of all compounds were adjusted according to the need for each reaction. 
For the detailed procedure followed for each compound and characterization, see 
Supplementary Information.
Data and code availability. The data used for simulations of the exploration of 
chemical space are available in Supplementary Information. The code and data can 
be found online at https://github.com/croningp/reaction_learning. The data used 
for Suzuki–Miyaura coupling are available in ref. 19.
 
 24. Pedregosa, F. et al. Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 

12, 2825–2830 (2011).
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