
Trends in Chemistry
Opinion
Universal Chemical Synthesis and Discovery
with ‘The Chemputer’
Piotr S. Gromski,1 Jarosław M. Granda,1 and Leroy Cronin1,*
Highlights
Recent advances in chemical pro-

gramming enable adoption and

universal automation of chemical

discovery and synthesis, combined

with artificial intelligence, to effi-

ciently perform laboratory tasks,

including the closed-loop data

exploration for new reactivity.

Robots can perform chemical re-
There is a growing drive in the chemistry community to exploit rapidly growing robotic technol-

ogies along with artificial intelligence-based approaches. Applying this to chemistry requires a

holistic approach to chemical synthesis design and execution. Here, we outline a universal

approach to this problem beginning with an abstract representation of the practice of chemical

synthesis that then informs the programming and automation required for its practical realiza-

tion. Using this foundation to construct closed-loop robotic chemical search engines, we can

generate new discoveries that may be verified, optimized, and repeated entirely automatically.

These robots can perform chemical reactions and analyses much faster than can be done manu-

ally. As such, this leads to a road map whereby molecules can be discovered, optimized, and

made on demand from a digital code.
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actions and analysis much faster

than can be done manually, utiliz-

ing trial and error, as well as feed-

back to make autonomous

decisions.

Chemists can actively seek out to

explore chemical space, aiming for

discovery of novel or new mole-

cules and reactions using closed-

loop robotic chemical search

engines.
Automation in Chemical Synthesis

Methodologies for the automation of chemical synthesis, optimization, and discovery have not gener-

ally been designed for the realities of laboratory-based research, tending instead to focus on

engineering solutions to practical problems. We argue that the potential of rapidly developing tech-

nologies (e.g., machine learning and robotics) aremore fully realized by operating seamlessly with the

way that synthetic chemists currently work (Figure 1) [1]. This is because the organic chemist often

works by thinking backwards as much as they do forwards when planning a synthetic procedure.

To reproduce this fundamental mode of operation, a new universal approach to the automated

exploration of chemical space is needed that combines an abstraction of chemical synthesis with

robotic hardware and closed-loop programming [2,3]. However, this leads chemists to constantly

test the reactions with different synthetic parameters and conditions. The alternative to this problem,

as shown in this opinion article, is the development of an approach to universal chemistry using a

programming language with automation in combination with machine learning and artificial intelli-

gence (AI).

Chemists already benefit from algorithms in the field of chemometrics and, therefore, automation is

one step forward that might help chemists to navigate and search chemical space more quickly,

efficiently, and importantly, without bias. Chemometrics is a field that employs a broad range of al-

gorithms to solve chemistry-related problems and has been well established over the past 50 years

[4]. Figure 2 presents a standard chemometrics workflow for processing data. The process begins

with data that may be of various formats that depend upon the experiment type and/or posed ques-

tion. The next step is data preprocessing, which covers a variety of procedures depending on the type

of data analyzed (e.g., peak detection, input of missing data, and/or normalization). This process is

followed by statistical modeling, which is divided into supervised and unsupervised approaches.

Probably one of the most well-known unsupervised approaches is principal component analysis

(see Glossary), which allows summarizing large data sets into several components that capture

most of the information. Support vector machine, along with partial least-square discriminant anal-

ysis, are probably themost well-known supervised approaches that allow samples to be classified into

distinctive groups based on relevant information. If the produced outcomes are relevant, the next

steps incorporate validation to ensure high quality conclusions are formed. Finally, each of the ana-

lyses ends with data interpretation. Further details on chemometrics and algorithms that enable

exploration of chemical space are found elsewhere [4–7].

In the following paragraphs, we show how chemometrics can be synergistically combined with

automation. As we will demonstrate through several examples, the process of automation allows
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Figure 1. Approaches to Automate Organic Synthesis: Specialized Synthesizer, Parallel Synthesizer, Flow Chemistry, and ‘the Chemputer’.

The Venn diagram shows the concept of ‘the Chemputer’ joining together synthesis abstraction, chemical programming, and hardware control. Symbols

indicate relative positions in the automation space within the Venn diagram.
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for: (i) increased productivity through design of complex experiments that are entirely automated; (ii)

increased reliability by reducing human error and increased confidence in the outcomes (i.e., exper-

iments are directly linked with software/algorithms that can produce graphical representation of the

results directly); (iii) improved safety when experiments must be performed in a closed environment

(e.g., fume hood, glove box, or sealed reactor) equipped with software to indicate when there is a risk

or incident; (iv) increased efficiency of processes performed due to increased productivity, reduced

waste, and improved outcome quality; and finally (v) valuable walk-away time where the chemist

may focus on research [7,8].

Robotics for Automation and Optimization in Chemistry

The ability to make small molecules autonomously and automatically will be fundamental to many ap-

plications, including searching for new drugs and materials. So far, automation of small molecule syn-

thesis has relied on a single reaction class limiting its overall universality (e.g., in iterative N-methyl-

iminodiacetic (MIDA) boronate synthesis [9] or enzyme-assisted carbohydrate synthesis [10]).

Additionally, automated synthesis requires (in many cases) optimization of reaction yields; following

optimization, the best conditions can be fed to the synthesis robot to increase the overall yield. There

are many approaches to automated yield optimization, some of which are described below. As opti-

mization of reaction conditions requires live feedback from the robotic system, many different detec-

tors have been introduced to monitor progress of the reactions, including benchtop nuclear mag-

netic resonance spectroscopy [2], infrared spectroscopy [11], mass spectrometry [12], Raman

spectroscopy [13], UV-Vis spectroscopy [14], and high-performance liquid chromatography [15]. Har-

vested data are then fed to optimization algorithms to explore the often multidimensional parameter

space. For example, Bédard and colleagues showed an automated-flow system for the optimization

of many different types of chemical reactions, including Buchwald-Hartwig amination, Suzuki-Miyaura

cross couplings, nucleophilic aromatic substitution (SNAr), Horner-Wadsworth-Emmons olefination,

and photoredox catalysis. The platform could be easily reconfigured to the desired task in a plug-

and-play fashion, by attaching different modules (e.g., a photo light-emitting diode or cooled

reactor) to the platform core [16].

Robotic approaches also promise to speed up chemical space exploration. To this point, high-

throughput experimentation (HTE) appears particularly promising because it can perform thousands

of nanomole-scale reactions per day. These HTE approaches could deliver the vast amount of infor-

mation necessary to train machine learning and AI models, yielding chemical ‘big data’. Perera and
Trends in Chemistry, January 2020, Vol. 2, No. 1 5



Glossary
Curiosity algorithm: developed
to replicate curiosity-driven
learning in humans that can accu-
rately analyze an unknown and
complex chemical system. The
knowledge for the search is de-
signed in such a way that the al-
gorithm autonomously chooses
the experiments that maximize
the number of new and repro-
ducible observations.
Partial least-square discriminant
analysis: a supervised approach
used for a separation between
two or more different groups of
samples. The process is achieved
through maximization of covari-
ance between the independent
variables X (matrix readings) and
corresponding dependent vari-
ables Y (sample names/classes).
Phoenics: a probabilistic global
optimization algorithm that helps
to identify a set of conditions of an
experimental or computational
procedure, which satisfy desired
targets.
Principal component analysis:
unsupervised dimensionality
reduction techniques that trans-
forms data into a space that allows
retention as much of relevant in-
formation as possible.
Random forest: a supervised
approach that belongs to a group
of classification trees; the method
is based on a nonlinear approach
that allows generation of many
decision trees, which organize by
using randomly selected input
from the original data set.
Support vector machine: a ma-
chine learning method that can be
applied for both classification and
regression tasks. The approach
maps data into high-dimensional
space in order to identify any dif-
ferences between processed
groups.

(Figure legend at the bottom of the next page)

6 Trends in Chemistry, January 2020, Vol. 2, No. 1

Trends in Chemistry



Trends in Chemistry
colleagues demonstrated a flow platform for nanomole screening of Suzuki-Miyaura reactions allow-

ing for screening of greater than 1500 reactions per 24 h [17]. Despite the high-throughput capability,

the search of chemical space is not guided by a specific objective. Therefore, many different machine

learning algorithms have been developed to explore chemical space.

Machine Learning towards Chemical Space Exploration

Machine learning approaches are fundamental to scientific investigation inmany disciplines. In chem-

istry, many of these methods are well-covered within chemometrics. These methods, linked with

chemistry and automation, are rapidly changing the face of chemical research and discovery. Here,

we explore how chemometrics and robotics/automation are helping to progress discovery through

exploring chemical space and beyond.

Scientists have begun to embrace the power of machine learning coupled with statistically driven

design in their research to predict the performance of synthetic reactions. For example, the yield

of a Pd-catalyzed Buchwald-Hartwig reaction was predicted using random forest in the multidimen-

sional chemical space obtained via HTE [18]. Furthermore, Nielsen and colleagues applied random

forest to map the yield landscape of intricate deoxyfluorination with sulfonyl fluoride allowing

improved prediction of high-yielding conditions for untested substrates [19]. More recently, Phoenics

was developed, which combines a concept from Bayesian optimization with ideas from Bayesian

kernel density estimation to solve optimization problems and afford efficient exploitation of the

search space [20]. Meanwhile, our emphasis is on automation of discovery, which is controlled by ro-

bots/computers rather than by humans. Discovery through automation offers far better efficiency and

accuracy, as recently shown by Duros and colleagues, where the authors compared human- and

robot-based discovery of gigantic polyoxometalates. Specifically, it was shown that algorithm-based

search covered approximately nine times more crystallization space than a random search and

approximately six times more than human-based discovery. Perhaps even more importantly is that

the rate of successful crystallization also increased by �5% [21]. In addition, the algorithm explored

a wider range of space that would need to be performed either by human or purely random search.

Recently, the same researchers observed that collaboration between smart robotics and humans may

be evenmore efficient than either alone [22]. Grizou and colleagues described a chemical robotic dis-

covery assistant equipped with a curiosity algorithm that can efficiently explore a complex chemical

system in search of complex emergent phenomena exhibited by proto-cell droplets [23]. This brings

the development of automation, optimization, and discovery very close, a topic widely described in

the work by Aspuru-Guzik and Henson, where the authors highlight the fact that self-driven labora-

tories/robots lead the way forward to fast-track discovery by boosting automated experimentation

platforms with machine learning to explore chemical space [7,24].

The automated synthesis could make also use of retrosynthetic analysis for planning the synthesis

routes to the target molecules. There are many approaches to automated retrosynthesis, and the

most recent one by Segler and colleagues seems to be particularly promising [25]. It used Monte

Carlo tree search and symbolic AI to discover retrosynthetic routes. The neural networks were trained

on all reactions published in organic chemistry. The system allowed cracking for nearly twice as many

molecules, 30 times faster than the traditional computer-aided search method, which is based on ex-

tracted rules and hand-designed heuristics. In general, this approach allowed for faster andmore effi-

cient retrosynthetic analysis than any other well-known method. Figure 3 shows a workflow for joining
Figure 2. Graphical Representation of a Standard Chemometrics Workflow.

The process begins with chemometrics raw data that could be represented by different inputs depending on the

experiment. In the first step, data are preprocessed into well-organized data matrices, followed by statistical

modeling that can be solved either by application of unsupervised (e.g., principal component analysis) or

supervised (e.g., separation into distinguished groups achieved through discriminant function analysis) models.

These processes are usually followed by a validation process (e.g., cross-validation and bootstrapping) that

allows assessing validity or accuracy of the process. This is followed by interpretation/decision making that may

lead either to experiment modification or final recommendation/decision. Abbreviations: GC, Gas

chromatography; LC, liquid chromatography; MS, mass spectrometry.
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Figure 3. Towards a Universal Chemical Synthesizer: Automated Retrosynthesis, Synthesis, and

Optimization.

Reproduced, with permission, from [1]. Abbreviations: NMR, Nuclear magnetic resonance; IR, infrared; MS, mass

spectrometry.
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automated retrosynthesis with a synthesis robot and reaction optimization. The retrosynthetic mod-

ule will generate a valid synthesis of the target that can then be transferred into synthesis code that

can be executed in a robotic platform. The optimization module can optimize the whole sequence,

getting the feedback from the robot.

Chemistry and Discovery via Programmable Modular System: ‘The
Chemputer’

We recently showed a modular platform for automating batch organic synthesis, which embodies our

abstraction in ‘the Chemputer’ (Figure 4) [1]. Our abstraction of organic synthesis (Figure 4A) contains

the key four stages of synthetic protocols: reaction, workup, isolation, and purification, that can be

linked to the physical operations of an automated robotic platform. Software control over hardware

allowed combination of individual unit operations into multistep organic synthesis. A Chempiler was

created to program the platform (Figure 4B); the Chempiler creates low-level instructions for the
8 Trends in Chemistry, January 2020, Vol. 2, No. 1



Figure 4. ‘Chemputer’ Operational Codes.

(A) Iterative representation of organic synthesis treating starting materials as inputs and product as output. (B) Architecture of ‘the Chemputer’. (C)

Abstraction of organic synthesis (reproduced, with permission, from [1]). Abbreviations: ALU, arithmetic logic unit; ASM, assembly language; I/O, input/

output.

Trends in Chemistry
hardware taking graph representation of the platform and abstraction representing organic synthesis

(Figure 4C). In this way, it is possible to script and run published syntheses without reconfiguration of

the platform, providing that necessary modules are present in the system. The synthesis of three small

drug molecules was successfully scripted and performed automatically with yields comparable to

manual [1].

Finally, by combining robotic systems with AI, it is possible to build autonomous systems working in

closed loop, making decisions based on prior experiments. We recently demonstrated a flow system

for navigating a network of organic reactions utilizing an infrared spectrometer as the sensor for data

feedback. The system was able to select themost reactive starting materials autonomously on the ba-

sis of change in the infrared spectra between starting materials and products [11]. Building on that

work, we built a robotic platform for autonomous searching of chemical space with three benchtop

analytical instruments (infrared spectroscopy, nuclear magnetic resonance spectrometry, and mass

spectrometry) for on-line analysis. The search of chemical space is summarized in Figure 5.

The platform operated in a closed loop with a machine learning algorithm; the machine learning al-

gorithm suggested the most promising reactions that were then conducted and analyzed automat-

ically within the platform. The results of each experiment were automatically interpreted and the
Trends in Chemistry, January 2020, Vol. 2, No. 1 9



Figure 5. A Closed-Loop Framework for Exploring the Space of Experiments with Machine Learning.

The system explores the space of experiments with feedback from the sensors and then this is mapped onto the chemical space from the analytics that can

update the search space (reproduced, with permission, from [8,26]).
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data were then used to update the machine learning model. The use of machine learning allowed for

autonomous exploration of reaction space allowing for discovery of four new chemical transforma-

tions [26]. In another example, Moosavi and colleagues developed a framework for using failed

and successful experiments to improve synthesis strategies [27]. This has been achieved through

application of automation and machine learning to capture chemical intuition in the synthesis of

metal-organic frameworks.

The exploration of chemical space by autonomous robots requires them to assess the novelty of the

obtained results [8]. To achieve this, we proposed a framework for assessing novelty and newness of

the experimental results (Figure 6). First, the experiment must be repeatable to be valid and exclude

experimental and measurement noise. Following confirmation of result repeatability, the next step is

to check if this result has a precedent. This can be achieved simply by querying a given database con-

taining knowledge of a given subject. If the search confirms that similar observation has been re-

ported, the experiment can be classified as not new, not contributing added information to our

knowledge. However, if the result has not been observed previously, we need to consider if it could

be predicted using all the current knowledge. The predictability implies that this result is not novel

but new to some extent. Unpredictability implies that result obtained is novel, for example, a reaction

mechanism that cannot be predicted can be classified as novel, opening a new branch of research. In

the future, this framework will enable automatic assessment of the experimental results by autono-

mous robots [8].
Concluding Remarks

With the ability to incorporate enhanced hardware and AI/machine learning to carry out many

everyday jobs, smart automation now enables the discovery of new molecules and improvements

to existing chemical synthesis [1]. In addition, AI/machine learning coupled with ‘big data’-
10 Trends in Chemistry, January 2020, Vol. 2, No. 1



Figure 6. Novelty, Newness, and Validity Diagram.

The process starts with classifying an outcome; if repeatable, further steps are considered (observed previously),

else invalid. This repeats until new or novel is defined (reproduced, with permission, from [8]).

Outstanding Questions

How can we enable synthetic chem-

ists to operate chemputers without

having to know how to code?

How much of current chemistry

can be done with the Q12019

chemputer?

Can we drive adoption of the chem-

puter via development of a new

way to write synthesis protocols?
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generating systems will, and already can in some cases, directly provide outputs for many purposes in

the various fields of chemistry. This is because the fundamental nature of AI/machine learning permits

the model to be updated and continuously refreshed as new data is produced, leading to more dis-

coveries that cover a larger area of chemical space and eliminating negative confounding factors. In

our view, the enthusiasm of the field should now be focusing on the potential of developments for

chemical discovery with emphasis on automation coupled with machine learning (see Outstanding

Questions), harnessing the powerful capabilities of these approaches shown throughout this opinion

article. Here, we have shown how automation and machine learning can improve efficiency and accu-

racy and therefore are a universal combination for synthesis, optimization, and discovery in the chem-

istry laboratory.
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