This paper is published as part of a Dalton Transactions themed issue entitled:

Polyoxometalates

Guest Editors: De-Liang Long and Leroy Cronin

Published in issue 33, 2012 of Dalton Transactions

Image reproduced with permission of Tomoji Ozeki

Articles published in this issue include:

Polyoxometalates as efficient catalysts for transformations of cellulose into platform chemicals Weiping Deng, Qinghong Zhang and Ye Wang Dalton Trans., 2012, DOI: 10.1039/C2DT30637A

Surfactant-encapsulated polyoxometalate building blocks: controlled assembly and their catalytic properties Amjad Nisar and Xun Wang Dalton Trans., 2012, DOI: 10.1039/C2DT30470H

<u>A dodecanuclear Zn cluster sandwiched by polyoxometalate ligands</u> Guibo Zhu, Yurii V. Geletii, Chongchao Zhao, Djamaladdin G. Musaev, Jie Song and Craig L. Hill *Dalton Trans.*, 2012, DOI: 10.1039/C2DT30733B

Visit the Dalton Transactions website for more cutting-edge inorganic research www.rsc.org/dalton

Dalton Transactions

Cite this: Dalton Trans., 2012, 41, 9876

www.rsc.org/dalton

COMMUNICATION

A fluorophosphate-based inverse Keggin structure[†]

John Fielden,^{*a,b*} Kyle Quasdorf,^{*a*} Leroy Cronin^{*c*} and Paul Kögerler*^{*a,b*}

Received 1st March 2012, Accepted 17th July 2012 DOI: 10.1039/c2dt30501a

An unusual PFO_3^{2-} -templated "inverse Keggin" polyanion, $[Mo_{12}O_{46}(PF)_4]^{4-}$, has been isolated from the degradation reaction of an $\{Mo_{132}\}$ -type Keplerate to $[PMo_{12}O_{40}]^{3-}$ by $[Cu(MeCN)_4](PF_6)$ in acetonitrile. ³¹P-NMR studies suggest a structure-directing role for $[Cu(MeCN)_4]^+$ in the formation of the highly unusual all-inorganic inverse Keggin structure.

Polyoxometalates (POMs) are a large family of metal oxide clusters based on V, Mo and W in high oxidation states.¹ Their wide range of sizes/shapes, and possibilities for derivatization,^{2,3} mean that POMs offer useful properties including magnetism,^{3b,4} catalysis^{1,5} and semiconductivity.⁶ Synthesis is usually achieved by condensation of metalate anions in acidic aqueous conditions; however exchange of inorganic cations for large organic cations such as tetra-*n*-butylammonium (*n*Bu₄N⁺) allows their solubilization in organic media.^{3,7} Organic-soluble polyoxomolybdate salts, *e.g.* (*n*Bu₄N)₄[α -Mo₈O₂₆] ({Mo₈}), can be reacted with other metal complexes to produce derivatized POMs, typically with nuclearities in the range {Mo₄} to {Mo₆}.⁸

Recently, we have developed an approach for the synthesis of POM clusters which uses high concentrations of bulky organic cations to direct the formation of novel polyoxoanions in solution, and trap ("shrink-wrap") these otherwise transient species.^{9–11} For example, the reaction of $[Mo_6O_{19}]^{2-}$ with Ag(1) salts produces the β -octamolybdate-based supramolecular synthon $[Ag-Mo_8O_{26}-Ag]^{2-}$, which can be trapped as $[Ag_2Mo_8O_{26}(dmso)_4]^{2-}$ or allowed to form network structures.¹⁰ The related β -octamolybdate $[Mo_8O_{26}Cu_2(CH_3CN)_4]^{4-}$ self-assembles through the reaction of $(nBu_4N)_2[Mo_2O_7]$ with [Cu-(MeCN)_4](PF_6),¹¹ indicating that the $[Cu(MeCN)_4]^+$ cation can trap new POM anions, provide Cu(1) for coordination to POMs, and induce the condensation of small molybdates into larger species.

Consequently, we probed the reaction of $[Cu(MeCN)_4](PF_6)$ with larger polyoxomolybdates such as Keplerates of the $\{Mo_{132}\}$ type in non-aqueous media. Surprisingly, in acetonitrile solutions, $\{Mo_{132}\}$ hydrolyses PF_6^- to PO_4^{3-} (*via* $PF_2O_2^-$ and PFO_3^{2-}) to form the well-known phosphomolybdate

 $[\alpha$ -PMo₁₂O₄₀]³⁻ (**3a**) and the inverse Keggin-type fluorophosphomolybdate $[Mo_{12}O_{46}(PF)_4]^{4-}$ (**2a**). Inverse Keggin clusters are so called because four heteroatoms are located on the *outside* of the cluster, in place of one at the center, resulting in a tetrahedral cluster in which the four M₃O₁₃ triads are turned insideout. Apart from a single tetraarsenate-based species,^{12*a*} all known examples are based on organoarsonates or organophosphonates,^{12*b*-*d*} where the organic group prevents the heteroatom from coordinating at the center of the cluster. The cluster anion **2a** thus represents the second known all-inorganic inverse Keggin species, and its metastability is evident from rearrangement reactions to **3a**.

Reaction of the nBu_4N^+ salt of a {Mo₁₃₂} Keplerate species (1, see ESI[†]), which is soluble in acetonitrile, with a large excess of [Cu(MeCN)₄](PF₆) at room temperature results in a mixture of $(nBu_4N)_2[Mo_6O_{19}]$ and unreacted {Mo₁₃₂}. Reflux induces the complete break-up of {Mo₁₃₂} and simultaneous step-wise hydrolysis of PF₆⁻ to PO₄³⁻, leading to the isolation of $(nBu_4N)_3[\alpha$ -PMo₁₂O₄₀] (3) in up to 50% yield. Interestingly, a small quantity of dark-green crystals of the fluorophosphate-based inverse Keggin compound H₃[Cu(MeCN)₄][Mo₁₂O₄₆-(PF)₄]·4CH₃CN·32H₂O (2)¹³ was serendipitously obtained as a by-product of this reaction.

Compound 2 crystallizes in the space group *Cmcm*. The $[Mo_{12}O_{46}(PF)_4]^{4-}$ cluster anion (Fig. 1) has idealized T_d symmetry and is templated by four PFO₃²⁻ anions which describe a tetrahedron, with each P atom between 2.712 and 2.729 Å from the center of the cluster. Four groups of three edge-sharing MoO₆ octahedra are linked by the PFO₃ moieties, and by cornersharing interactions with each other. As a result, the fluorophosphate units occupy the center of planar Mo₆O₂₁PF faces with *cis*-dioxo-terminated Mo centers. Bond valence sum calculations¹⁴ support the assignment of the $[Mo^{VI}_{12}O_{46}(P^VF)_4]^{4-}$

Fig. 1 Structure of the inverse Keggin fluorophosphomolybdate $[Mo_{12}O_{46}(PF)_4]^{4-}$ (2a). P: yellow; F: green; Mo: blue; O: red.

^aAmes Laboratory, Iowa State University, Ames, IA 50011, USA ^bInstitute of Inorganic Chemistry, RWTH Aachen University, 52074 Aachen, Germany. E-mail: paul.koegerler@ac.rwth-aachen.de ^cWestCHEM, University of Glasgow, Glasgow, G12 8QQ, UK

[†]Electronic supplementary information (ESI) available: Experimental and crystallographic details. CCDC 869892. For ESI and crystallographic data in CIF or other electronic format see DOI: 10.1039/c2dt30501a

anion as a fully oxidized species; reduced inverse Keggin species are unstable.¹² Mo–O bond lengths (Table S2, ESI†) are consistent with the observed terminal, μ -, and μ_3 -oxo coordination modes. P–O and P–F bond lengths are comparable to those observed in existing PFO₃ structures,¹⁵ with the P–F bond significantly longer than the three P–O distances and the O–P–F angles tighter than the O–P–O angles. The inclusion of PFO₃ groups is also evident from IR spectra with bands at 1213, 1145, 1017 and 940 cm⁻¹ associated with PO₃ stretching, and two bands at 840 and 682 cm⁻¹ which can be assigned to P–F stretching modes.¹⁵c

In the crystal lattice of **2**, $[Mo_{12}O_{46}(PF)_4]^{4-}$ anions, $[Cu-(MeCN)_4]^+$ cations and disordered acetonitrile pack in layers coplanar to the crystallographic *bc* plane (Fig. 2). Within the layers, the $[Cu(MeCN)_4]^+$ cations and POM anions pack closely, with short contacts between the cation methyl groups and terminal O and F positions (C···X distances of *ca.* 3.301 and 3.398 Å, respectively) suggesting the presence of non-classical hydrogen bonds. There are large voids between the layers, with calculations¹⁶ indicating around 36% solvent accessible void space. This is occupied by disordered solvent which would not refine successfully, and was removed using the PLATON SQUEEZE routine.¹⁶ Although the elusive nature of **2** has prevented full characterization, IR spectra (see ESI†) suggest that this void space is filled by water.

Fig. 2 Crystal packing in **2** viewed along the *c* axis, showing layers of **2a** cluster anions and $[Cu(CH_3CN)_4]^+$ cations. Left: polyhedral (anion)/ ball-and-stick (cation) representation. Right: space-filling representation revealing the substantial void space in the structure of **2**. Color scheme as for Fig. 1, with H: white.

Despite the difficulty in repeatably isolating solid 2, ³¹P-NMR investigations provide strong evidence for the formation of $[Mo_{12}O_{46}(PF)_4]^{4-}$ (2a) in solutions at high yields, and suggest that this is contingent upon the presence of $[Cu(MeCN)_4]^+$. $(nBu_4N)_2[Mo_2O_7]$, $\{Mo_8\}$ or 1 were reacted with H₂PFO₃ in dry MeCN at room temperature, with or without $[Cu(MeCN)_4](PF_6)$, and with the addition of nBu_4NF (F⁻ is required to prevent breaking of the P–F bond). ³¹P-NMR spectra were acquired after 24 hours, and signals indicating the presence of four different fluorophosphomolybdate species were observed – depending on the molybdate starting material, and on the addition of [Cu-(MeCN)_4](PF_6) (Fig. 3 and Table 1). These signals are all strongly split (${}^1J_{PF} = 860-905$ Hz) sharp doublets covering a chemical shift range of *ca.* -2 to -12 ppm.

Previous ³¹P-NMR studies on phenylphosphomolybdates (with stoichiometries {Mo₅P₂}, {Mo₆P} and {Mo₇P}) indicate a trend for δ to shift upfield with increasing aggregate size, as larger and more negatively charged anions are better able to shield the ³¹P nucleus.¹⁷ Using this trend, the products with the most downfield signals (-2.1 ppm and -4.1 ppm, Fig. 3 B1 to B3), resulting from the reaction without [Cu(MeCN)₄]⁺, are

Fig. 3 ³¹P NMR spectra of reactions of H_2PFO_3 and molybdates in the presence of nBu_4NF . A: H_2PFO_3 (showing substantial amounts of H_3PO_4). B: without [Cu(CH₃CN)₄](PF₆); B1 = {Mo₂}, B2 = {Mo₈}, B3 = {Mo₁₃₂}. C: with [Cu(CH₃CN)₄](PF₆); C1 = {Mo₂}, C2 = {Mo₈}, C3 = {Mo₁₃₂}.

Table 1 ³	¹ P NMR shifts of known	phenylphosphomolybdates i	n water, and assignment	t for fluorophosphomolybdates	in acetonitrile
----------------------	------------------------------------	---------------------------	-------------------------	-------------------------------	-----------------

Phenylphosphomolybdates ¹⁷		Fluorophosphomolybdates			
δ/ppm	Assignment	$\delta/\text{ppm}(^1J_{\text{PF}}/\text{Hz})$	Starting materials ^a	Assignment ^b	
12.1	C ₆ H ₅ PO ₂ ²⁻	-8.5(900)	H ₂ PFO ₂	$[H_x PFO_2]^{x-2}$	
14.0	$C_6H_5PO_3H^-$	-2.1 (860)	$\{Mo_2\}$	$[H_{x}(PF)_{2}Mo_{5}O_{21}]^{x-4}$	
17.7	C ₆ H ₅ PO ₃ H ₂	-4.1 (880)	$\{Mo_8\}$ or $\{Mo_{132}\}$	$[H_{r}(PF)Mo_{7}O_{26}]^{x-6}$	
22.0	$[(C_6H_5P)_2M_{05}O_{20}(OH)]^{3-}$	-6.0 (905)	${Mo_2} + [Cu(CH_3CN)_4](PF_6)$	$[H_{r=1}^{2}(PF)Mo_{7}O_{26}]^{x-7}$	
21.3	$[(C_6H_5P)_2MO_5O_{21}]^{4-}$	-11.8 (895)	${Mo_8}/{Mo_{132}} + [Cu(CH_3CN)_4](PF_6)$	$[H_{r}(PF)_{4}Mo_{12}O_{46}]^{x-4}$	
20.2	$[(C_6H_5P)Mo_6O_{21}(H_2O)_6]^{2-1}$				
19.2	$[(C_6H_5P)Mo_7O_{25}(H_2O)]^{4-}$				
17.1	$[(C_6H_5P)Mo_7O_{25}(OH)]^{5-}$				

^{*a*} All molybdate reactions contain 1 eq Mo atoms and 1.03 eq each of H_2PFO_3 and nBu_4NF ; where stated 1.03 eq $[Cu(CH_3CN)_4](PF_6)$ was also added. ^{*b*} Tentative assignment of cluster nuclearity based on chemical shift patterns in phenylphosphomolybdates and (where possible) integrals relative to a PF_6^- reference; undetermined protonation states. assigned as {Mo₅P₂} and {Mo₇P} aggregates. The 2 ppm difference in δ between these signals is similar to that observed between {Mo₅P₂} and {Mo₇P} phenylphosphomolybdates, and {Mo₇P} clusters seem very likely to form in the {Mo₈} based system (Fig. 3 B2) as they require displacement of only one Mo from [Mo₈O₂₆]⁴⁻. The -2.1 ppm signal is assigned to {Mo₅P₂}, as formation of the hexahydrated {Mo₆P} anion seems unlikely in non-aqueous conditions. Considerable speciation of PFO₃²⁻ also appears to occur, due to the presence of other peaks resulting from PO₄³⁻ and PF₂O₂⁻ based aggregates.

In all cases, the addition of (diamagnetic) [Cu(MeCN)₄](PF₆) results in an upfield shift in the observed PFO₃ signals, suggesting the formation of larger clusters. For the {Mo₂} based system, the signal at -6 ppm is likely to come from an {Mo₇P} aggregate, as [Cu(MeCN)₄]⁺ induces condensation of {Mo₂} to the related {Mo₈} in these conditions.¹¹ For {Mo₈} and {Mo₁₃₂}, only one signal is observed, with a more dramatic upfield shift to -11.8 ppm (${}^{1}J_{\rm PF} = 895$ Hz, Fig. 3 C2 and C3). This is assigned to the inverse Keggin cluster anion **2a** on the basis of the following lines of evidence:

(*i*) The 5.8 ppm *upfield* shift from the range of the other fluorophosphomolybdates should indicate the formation of a larger PFO₃-based structure. This shift is much larger than any other, suggesting a substantially different structural type.

(ii) Solid 2 was isolated from a similar reaction mixture.

(*iii*) The 3.3 ppm upfield shift in the ³¹P resonance *vs.* H_2PFO_3 is comparable to the *ca.* 4 ppm upfield shift in the similar sized $[PMo_{12}O_{40}]^{3-}$ relative to H_3PO_4 .¹⁸

(*iv*) Comparison of the integral for this product with that of the known quantity of PF_6^- in the system indicates that as **2a** (Mo–P ratio 3 : 1) it would account for *ca*. 60% of the Mo in the system. Therefore, clusters such as {Mo₆P} and {Mo₇P} with much higher Mo–P ratios are highly unlikely.

Therefore, it appears that the formation of **2a** can occur in high yields in solution, and is dependent on the influence of the $[Cu(MeCN)_4]^+$ cation. However, the only crystalline product recovered from these NMR reactions was $(nBu_4N)_3[PMo_{12}O_{40}]$ (**3**). ³¹P-NMR of recovered bulk solid material showed no PFO₃ signals, instead showing a singlet at $\delta \approx -4.6$ ppm, consistent with $[PMo_{12}O_{40}]^{3-}$. This indicates that during the crystallization process hydrolysis and rearrangement occurs to produce **3**. Therefore, it seems that cluster anion **2a** is an intermediate that, while able to form in high yields in solution in the presence of a sufficient F⁻ concentration, does not crystallize reproducibly as it tends to readily rearrange to form normal Keggin products.

Conclusions

We have isolated a novel fluorophosphate polyoxomolybdate anion, $[Mo_{12}O_{46}(PF)_4]^{4-}$, in the solid state, and seen strong evidence for its formation in solution. The observed "inverse Keggin" is a rare example of a fully inorganic structure of its kind, and we postulate it as one intermediate enroute to the formation of $[PMo_{12}O_{40}]^{3-}$, perhaps providing an insight into the mechanisms of POM formation. As $[Mo_{12}O_{46}(PF)_4]^{4-}$ appears only to form in the presence of $[Cu(CH_3CN)_4]^+$, this result is in line with our previous observation that the $[Cu(CH_3CN)_4]^+$ and that bulky, flexible cations can trap or template unusual POM species.

Acknowledgements

We thank Claire Besson, Arkady Ellern and De-Liang Long for helpful discussions. Work at the Ames Laboratory (initial synthesis and structural characterization) was supported by the Department of Energy-Basic Energy Sciences under Contract No. DE-AC02-07CH11358.

Notes and references

- D.-L. Long, E. Burkholder and L. Cronin, *Chem. Soc. Rev.*, 2007, 36, 105.
- 2 (a) H. Liu, C. J. Gómez-García, J. Peng, J. Sha, Y. Li and Y. Yan, *Dalton Trans.*, 2008, 6211; (b) M. D. Ritorto, T. M. Anderson, W. A. Neiwert and C. L. Hill, *Inorg. Chem.*, 2004, **43**, 44.
- 3 (a) A. Proust, R. Thouvenout and P. Gouzerh, *Chem. Commun.*, 2008, 1837; (b) P. Mialane, A. Dolbecq and F. Sécheresse, *Chem. Commun.*, 2006, 3477.
- 4 A. Müller, E. Krickemeyer, S. K. Das, P. Kögerler, S. Sarkar, H. Bögge, M. Schmidtmann and S. Sarkar, *Angew. Chem., Int. Ed.*, 2000, **39**, 1612.
- 5 C. L. Hill, Angew. Chem., Int. Ed., 2004, 43, 402.
- 6 E. Coronado, C. Giménez-Saiz and C. J. Gómez-García, *Coord. Chem. Rev.*, 2005, 249, 1776.
- 7 (a) W. G. Klemperer, *Inorg. Synth.*, 1990, **27**, 74; (b) J. Fuchs, S. Mahjour and R. Palm, *Z. Naturforsch. B*, 1976, **31**, 544; (c) J. Fuchs and I. Brudgam, *Z. Naturforsch. B*, 1977, **32**, 403.
- S. Takara, S. Ogo, Y. Watanabe, K. Nishikawa, I. Kinoshita and K. Isobe, Angew. Chem., Int. Ed., 1999, **38**, 3051; (b) T. M. Che, V. W. Day, L. C. Francesconi, M. F. Fredrich, W. G. Klemperer and W. Shum, Inorg. Chem., 1985, **24**, 4055; (c) R. Villanneau, R. Delmont, A. Proust and P. Gouzerh, Chem.–Eur. J., 2000, **6**, 1184; (d) A. Proust, R. Thouvenot, S.-G. Roh, J.-K. Yoo and P. Gouzerh, Inorg. Chem., 1995, **34**, 4106; (e) B. Hasenknopf, R. Delmont, P. Herson and P. Gouzerh, Eur. J. Inorg. Chem., 2002, 1081; (f) H. Kang and J. Zubieta, J. Chem. Soc., Chem. Commun., 1988, 1192.
- 9 (a) D.-L. Long, P. Kögerler, L. J. Farrugia and L. Cronin, Angew. Chem., Int. Ed., 2003, 42, 4180; (b) D.-L. Long, P. Kögerler, A. D. C. Parenty, J. Fielden and L. Cronin, Angew. Chem., Int. Ed., 2006, 45, 4798.
- 10 (a) H. Abbas, A. L. Pickering, D.-L. Long, P. Kögerler and L. Cronin, *Chem.-Eur. J.*, 2005, **11**, 1071; (b) H. Abbas, C. Streb, A. L. Pickering, A. R. Neil, D.-L. Long and L. Cronin, *Cryst. Growth Des.*, 2008, **8**, 635.
- 11 J. Fielden, D.-L. Long, L. Cronin and P. Kögerler, *Polyhedron*, 2009, 28, 2803.
- 12 (a) T. Nishikawa and Y. Sasaki, Chem. Lett., 1975, 1185;
 (b) K. M. Barkigia, L. M. Rajković-Blazer, M. T. Pope and C. O. Quicksall, Inorg. Chem., 1981, 20, 3318; (c) B. J. S. Johnson, R. C. Schroden, C. Zhu and A. Stein, Inorg. Chem., 2001, 40, 5972;
 (d) T. Ueda, T. Yonemura, M. Shiro, M. Fukudome and M. Hojo, Inorg. Chem. Commun., 2007, 10, 1301.
- 13 The formula H₃[Cu(CH₃CN)₄][Mo₁₂O₄₆(PF)₄]·4CH₃CN·32H₂O used for 2 is based on crystallography and IR spectroscopic measurements only. Sufficient material could not be isolated for elemental analysis or TGA. The quantity of crystal water is based on a PLATON SQUEEZE estimate of the electron density in the substantial void spaces (see ESI⁺ for further details).
- 14 BVS calculations were performed using VaList, release 2008, A. S. Wills, program available from www.ccp14.ac.uk.
- 15 (a) T. Kuroda-Sowa, M. Munakata, H. Matsuda, S. Akiyama and M. Maekawa, J. Chem. Soc., Dalton Trans., 1995, 2201; (b) P. S. Halasyamani, M. J. Drewitt and D. O'Hare, Chem. Commun., 1997, 867; (c) M. Zeibig, B. Wallis, F. Möwius and M. Meisel, Z. Anorg. Allg. Chem., 1991, 600, 231.
- 16 A. L. Spek, J. Appl. Crystallogr., 2003, 36, 7.
- 17 A. Yagasaki, I. Andersson and L. Pettersson, *Inorg. Chem.*, 1987, 26, 3926.
- 18 M. Pourayoubi and A. R. Mahjoub, J. Iran. Chem. Soc., 2008, 5, 430.