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Abstract

The search for novel forms of computing that show advantages as alternatives to the dominant
von-Neuman model-based computing is important as it will enable different classes of problems
to be solved. By using droplets and room-temperature processes, molecular computing is a
promising research direction with potential biocompatibility and cost advantages. In this work, we
present a new approach for computation using a network of chemical reactions taking place within
an array of spatially localized droplets whose contents represent bits of information. Combinatorial
optimization problems are mapped to an Ising Hamiltonian and encoded in the form of intra- and
inter- droplet interactions. The problem is solved by initiating the chemical reactions within the
droplets and allowing the system to reach a steady-state; in effect, we are annealing the effective
spin system to its ground state. We propose two implementations of the idea, which we ordered
in terms of increasing complexity. First, we introduce a hybrid classical-molecular computer where
droplet properties are measured and fed into a classical computer. Based on the given
optimization problem, the classical computer then directs further reactions via optical or
electrochemical inputs. A simulated model of the hybrid classical-molecular computer is used to
solve boolean satisfiability and a lattice protein model. Second, we propose architectures for
purely molecular computers that rely on pre-programmed nearest-neighbour inter-droplet
communication via energy or mass transfer.

Significance statement

Molecular computers—a promising alternative to semiconductor-based computers—not only
compute but also re-organize matter, potentially admitting novel manufacturing approaches. The
vast space of chemical reactions makes molecules a low-cost, energy-efficient, tunable and
scalable computational vehicle. In molecular computers, memory and processing units combine
into inherently parallelized single devices. We present a molecular computer for combinatorial
optimization in a microdroplet array that employs an Ising Hamiltonian to map problems
heuristically to droplet-droplet interactions. The droplets represent binary digits and problems are
encoded in intra- and inter-droplet reactions. We propose two implementations: a hybrid classical-
molecular computer that enforces inter-droplet constraints in a classical computer and a purely
molecular computer where the problem is entirely pre-programmed in the droplet reactions.



1. Introduction

For science and technology to continue progressing at the current pace, we need our
computational processing capabilities to keep growing. Conventional transistor-based computers
follow the von Neumann architecture, where information is stored in memory units and processed
in a central processing unit. Different logic gates, each acting on a single bit or multiple bits of
information represented as a 0 or 1, are activated sequentially to perform an operation. However,
as transistors are approaching tens of nanometers, i.e., the size of large molecules (1), high heat
dissipation, and slow transfer rates between processors and memory are bringing about the
breakdown of Moore’s Law.

The search for alternatives to classical computers includes quantum computing, in which quantum
mechanical phenomena allow information to exist as a superposition of states, not just individual
binary bits (2, 3). For classical systems, computing with molecules is an attractive avenue given
the vast chemical space and the relatively low energy dissipated in chemical reactions compared
to transistors (4—6). Proposals for computers that exploit chemical processes have taken one or
both of two broad approaches: 1) using chemistry and biochemistry to emulate circuit components
or cellular automata, and 2) employing a large number of molecules to explore a combinatorial
space in parallel. Examples for the first include reaction-diffusion systems (7), Belousov-
Zhabotinsky oscillatory reaction (8), memristive polymers (9), and transcription regulation for
cellular signaling (10, 11), and other chemical and biochemical analogues of logic gates (12, 13).
In the second category of parallelized computing, we find microfluidic devices (14), nanofabricated
networks (15-17), and adaptive amoebal networks (18). DNA computers have explored both
approaches, from early work that involved sifting through combinations of nucleic acid sequences
to recently using DNA self-assembly to carry out an algorithm process (19-21). However, each
method presents challenges in programmability, scaling, and maintaining accuracy in large
calculations.

Here we propose a new strategy for solving optimization problems using droplets spatially
localized in a lattice and linked by a network of chemical reactions. Each droplet represents a
binary variable that can communicate with its neighbouring droplets. We encode a problem in the
intra- and inter-droplet interactions. As the droplets’ contents evolve following the
thermodynamics of the system, it reaches a steady-state where the ensemble of droplet states
corresponds to a solution of the given problem. As we shall explain in Section 2.1, our proposed
droplet-based computer relies on an alternative approach inspired by the pioneering work of
Kirkpatrick et al.’s, which employs simulated annealing to solve combinatorial optimization
problems (22). It is a heuristic method that intrinsically combines both memory and processing
units in one device.

We ultimately envision a molecular computer that operates solely using chemical processes and
without the aid of classical computers. This implementation, which we term the “purely molecular
computer”, uses pre-programmable chemical couplings, corresponding to a given problem, that
determines neighbouring droplets’ interactions. As a stepping stone to achieving complete
autonomy, we have first conceived a “hybrid classical-molecular computer”, where a classical
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computer is used to enforce conditions that are then carried out by the droplet system. Both
incarnations of the droplet-array computer would be inherently parallelized, easily scalable,
efficient, specific purpose computing devices.

We shall present in Section 2.2 the requirements for reactions to be suitable for our molecular
computer. Section 3 is devoted to a description and simulation of the hybrid classical-molecular
computer and Section 4, the purely molecular computer. In Section 5, we will explore ways to
implement our device physically. Lastly, in Section 6, we will discuss the advantages of this
approach and examine the scalability of the system.

2. Concept

2.1 Optimization by simulated annealing

The basic principle of the droplet-array computer rests in the analogy between combinatorial
optimization and statistical physics (22). Similarly to the ensemble behaviour of physical systems
such as magnetic spins, an optimization problem is a complex system of interacting variables.
Such interactions are captured in a cost function or Hamiltonian, where the constraints and
requirements of the problem correspond to interaction energies between variables. At a given
temperature, the equilibrium distribution of the configuration (ups and downs) of the spins follows
a Boltzmann distribution, which favours the ground state of the Hamiltonian or the optimal (set of)
solution(s) to the objective function. As the temperature lowers, the statistical weight (probability)
of the ground state grows, which inspires the idea of simulated annealing to emulate the effect of
such annealing process due to cooling for finding or approximating the ground state of the
Hamiltonian.

A canonical model for magnetic spins in crystalline materials is the Ising or lattice spin Hamiltonian

N N
Hising = —Mz hs; —]z sisj, si € {=1,1}

i=1 i<j
whose terms describe a tradeoff between the cost of flipping a spin s; in an external magnetic
field h and the interaction energy between neighbouring spins, J, and where p is the magnetic
moment. Even though this model has only two parameters h and J, as we will discuss below in
detall, it can already give rise to problems that are intractable in the worst cases. For encoding
general combinatorial optimization problems, however, we allow for more tunability between pairs
of coupled spins as well as the local fields on each spin, giving rise to the more general Ising

Hamiltonian:
N

N
Hgenerar = Z a;s; + Bijsis;
i=1 i<j
in which the a and g coefficients are given by the problem.

In other words, the computational problem is encoded in the coefficients «;, representing the local
field for individual variables, and ;;, representing the couplings between pairs of variables. For
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the given values for the vector @ and matrix g, the optimal configuration of s; represents a solution
that minimizes the Hamiltonian.

In order to implement the Ising model, we need a way to control the local field and couplings (one-
body and two-body terms). In this work, we propose that chemical reactions can be used to
achieve these features.

The model can be generalized for higher-order terms (k-local).

N N N

H = h(o) + Z hi(l)Si + Z hij(Z)SiSj + Z hijk(3)si S]' Sk + .-

i i<j i<j<k

We shall proceed with this notation, where the h(®) is the tensor of rank k representing the

coupling between k variables.

Quantum annealing devices were argued to be superior to classical annealing due to the
availability of quantum effects such as superposition and tunneling (23, 24). This inspired several
quantum and classical devices, including the D-Wave quantum annealer (25-27), the coherent
Ising machine (28, 29), the recently-introduced Fuijitsu-led application-specific CMOS-based
digital annealer (30), and even more recently, the Toshiba simulated bifurcation algorithm (31). In
Table 1, we give an overview of these optimization annealing machines and their characteristics.

Table 1. A survey of optimization annealing machines and their capabilities

Algorithm Hardware Number of bits (_:o_nnec- Typlcal_tlme Date Optimization Ref
tivity to solution Problem
Classical
Fujitsu Digital Digital annealing Application-specific 1024 variables  Full 1-10%s April 2019  Spin glass (30)
Annealer CMOS
Toshiba Simulated Simulated bifurcation FPGAs and GPUs 2000 variables  Full 5x10%s April 2019 MAX-CUT  (31)
Bifurcation (NP-hard)
Quantum
Coherent Ising Adiabatic quantum Optical parametric 2000 spins Full 5% 1073 - Oct2016 MAX-CUT  (28,29)
Machine computation, quantum oscillators; laser 5%x102s
annealing pulses
D-WAVE 2000Q Quantum annealing Superconducting 2000 qubits 6 10%-10%*s Jan2017  Numerous (26)
Chimera qubits applications
D-WAVE “next Quantum annealing Superconducting 5000 qubits 15 n/a April 2019 Numerous 27
gen” Pegasus qubits applications
Chemical
Hybrid classical- Simulated annealing, Droplet array + 12 droplets Full ~6 x 10%s;to 2019 k-SAT, lattice This
molecular computer  stochastic gradient classical computer > 10,000 be reduced protein work
descent droplets with smaller
droplets
Purely molecular Chemical annealing Droplet array 10’s droplets 4-6 n/a 2-local k-SAT,
computer - 10,000 2-local lattice
droplets protein, TSP
Long-term Chemical annealing Droplet array ~1.5 million 4-6 n/a
molecular computer droplets (38)
Inkjet printer Chemical annealing Microscopic nozzle ~30 million 4-6 n/a
(600 dpi) droplets
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Adiabatic quantum computing and quantum annealing provide us with a method of solving for the
Ising ground state, by evolving a system from the ground state of an accessible problem to that
of a more difficult problem (23, 24, 32). Although a molecular computer remains a classical device,
unable to avail itself of quantum tunneling across barriers in the potential energy surface relating
to the problem Hamiltonian, the rationale can still be extended to simulated annealing.

In adiabatic quantum optimization, a system is initially in the ground state of a Hamiltonian H,. To
solve for the ground state of a problem Hamiltonian H,,, the Hamiltonian H is adiabatically changed

over time following a function a(t): H(t) = [1 — a(t)] Hy + a(t) H,

For simulated annealing, H, represents kinetic or thermal energy and H, the potential energy,
corresponding to the problem we would like to solve. Just like annealing metals, as the
temperature of a system decreases, the spins or variables reach an optimal configuration.

For any classical optimization algorithm that can be mapped to the classical Ising system, the
time to solution (TTS) to find the ground state asymptotically grows at most exponentially in n,
i.e., 0(c™), as it is needed to explore all possible outcomes, and finding an approximate solution
grows as polynomially in n, i.e., 0(n"), where y is a problem-dependent constant (32). By the
Church-Turing thesis (4), the molecular computer should not have any exponential speed-up over
any classical computing devices.

Simulated annealing was found to be well-suited to tackle NP and NP-hard combinatorial
optimization problems (33). These are problems whose computational complexity increases
exponentially with the number of variables, and for which no efficient (polynomial-time) algorithm
is presently known. Nevertheless, since solving the Ising model was shown to be NP-hard, a good
heuristic Ising model solver will be beneficial for solving real-world problems that are often NP-
complete problems’, such as the traveling salesperson problem, graph colouring, and boolean
satisfiability (35). Barahona showed that solving the states of the Ising model (36) on a 2D lattice
with arbitrary interactions is NP-complete. Since every instance of a problem in NP can be
efficiently encoded as an instance of an NP-complete problem, Barahona’s work implies that all
problems in the NP complexity class can be mapped to instances of 2D Ising model (33), and
thus can potentially be solved efficiently with a heuristic Ising solver. The work of Barahona and
others (37), summarized in Table 2, also includes the complexity of solving different Ising models.

Table 2. The complexity of the Ising ground state problem in one-, two-, and three-dimensions.

Dimension and graph Restrictions on coupling Solving for the Ising ground state
1D none P
hi=0 P
2 D (planar graph)
h; #0 NP-hard
Non-planar graph Jij €{-1,0,1} NP-hard

" NP-complete problems belong to both NP and NP-hard classes. They are defined as decision problems
where a polynomial-time reduction exists from every other problem in NP (34).


https://paperpile.com/c/zoiFHg/Sqqi+YySb+11Ow
https://paperpile.com/c/zoiFHg/11Ow
https://paperpile.com/c/zoiFHg/C0GC
https://paperpile.com/c/zoiFHg/JxeG
https://paperpile.com/c/zoiFHg/iToo
https://paperpile.com/c/zoiFHg/39gQ
https://paperpile.com/c/zoiFHg/JxeG
https://paperpile.com/c/zoiFHg/vOj6
https://paperpile.com/c/zoiFHg/6763

2.2 Description and Requirements

As described earlier, the proposed molecular computer consists of an array of droplets arranged
in a lattice, which is shown in Figure 1. To apply the concept of adiabatic quantum optimization
described above to the molecular computer, we begin with the random initialization of the droplet
states. We can apply the problem Hamiltonian in the computer by programming the local field
terms h; and couplings J;;. The droplet-array molecular computer enforces these parameters so
that as the system anneals, it reaches the ground state of the problem, which can be read out
and interpreted. Since it is not a quantum computer, the system will not tunnel between local
minima in the potential energy surface that is associated with the problem Hamiltonian. Instead,
we will require multiple initializations to attain the global minimum, thus solving a given problem.

Figure 1. Schematic of the droplet-array-based molecular computer. a) A hybrid classical-
molecular computer in which measurements of droplet states are sent to a computer that
calculates the gradient on each droplet and directs the changes to be implemented in situ. b) A
purely molecular computer where the droplets interact via nearest neighbour couplings, either
‘positive’ or ‘negative’. The couplings are programmed into the device in the initiation stage. c)
The scaling of the number of droplets for different optimization problems: lattice protein folding
(quadratic/2-local and quartic/4-local forms), traveling salesperson, boolean satisfiability (3-SAT
reduced to 2-local and k-SAT k-local). d) The number of variables in these problems that a given
droplet-array size can handle.



To achieve molecular computing by annealing as described above, the chemistry taking place in
the droplet array must fulfill several requirements. First, the system should exhibit physical
properties that can be manipulated, read, and mapped as two states, so that each droplet can
correspond to a binary variable. Second, changes of the states must be reversible and
controllable by the state of their neighbouring droplets. Third, in order to implement interactions
between the states that correspond to coupling terms of the Ising model, there must be
connections between the droplets that allow for programmable positive and negative coupling
interactions.

We propose two approaches to implementing such a system: first, a hybrid classical-molecular
computer in which an array of droplets is connected to a classical computer; and second, a purely
molecular computer. In Table 1 we compare the two approaches and give the roadmap to scale
to millions of droplets, as is currently achievable with inkjet printers at 600 dpi resolution (38).

In the hybrid classical-molecular computer, measurements of each droplet’s state will be passed
to a classical computer software that computes the interaction based on a given problem
Hamiltonian and outputs instructions for the droplet-array to implement the calculated coupling,
using, e.g. electrodes or optical excitations (see Section 5). In the case of the purely molecular
computer, the coupling between nearest-neighbour droplets is pre-programmed in physical or
chemical interaction between the droplets that take the form of mass or energy exchange (see
Section 4).

The reversibility of the chemical reaction is essential to maintaining the symmetry of the problem.
For instance, two droplets that are positively coupled to each other have a coefficient/ > 0. The
contribution to the Hamiltonian —/s;s, is minimized when the two droplets are in the same state,
either both 0 or both 1, which means both reactions 0 — 1 and 1—0 must be achievable. (This
symmetry is broken as interactions with other droplets are taken into account, leading to possible
frustration as they all compete with each other.)

We must emphasize that the molecular computer does not have a priori knowledge of the solution
to the problem. It merely imposes the problem Hamiltonian on the droplets via a local field and
droplet couplings. As the chemical system evolves under these conditions, it will attempt to
minimize its thermodynamic free energy, which is the physical impetus to explore distinct solution
states associated with the problem Hamiltonian, imposed by the couplings. Depending on the
given problem, it may have degenerate ground states corresponding to multiple optimal
configurations.

We expect that the kinetics of the problem, as well as imperfections in the settings of the molecular
computer, will result in trapping in local minima for particular experiments, requiring the repetition
of the computation to sample from the low-energy states of the problem. The alternative
approaches mentioned earlier, namely simulated annealing, quantum annealing, and the Toshiba
simulated bifurcation algorithm, share this challenge (30, 31).
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3. Modeling and application of the hybrid classical-molecular
computer

Tuning the intra- and inter-droplet chemical reaction to satisfy the requirements described above
is not a trivial task. To test chemical systems for the droplet-based computer, we propose first
developing a hybrid classical-molecular computer. A hybrid device also has the benefits of non-
local interactions, full connectivity between all droplets, and higher-order couplings that involve k
droplets (k-local interaction).

Our proposed implementation of a hybrid classical-molecular computer uses an array of
microdroplets containing various chemical compounds. Manipulation of droplets can be achieved
with electrostatic fields and electrochemical transformations induced by electrodes or optical
stimuli induced by light-sources. The change in the states of droplets should be detectable by
optical means, which allows for a convenient readout of the states. For the sake of simplicity in
this concept paper, we use an abstract nomenclature of states 0 and 1. We shall assume that the
droplets fluctuate within this range of states as a result of external stimuli controlled by a classical
computer. We will discuss possible experimental schemes to build such a system in Section 4.
One can think of the value associated with each droplet as the droplet’'s progress along an
arbitrary reaction coordinate.

To explore the capabilities and potential application areas of the hybrid classical-molecular
computer, we implemented an in-silico model of it. The model is composed of two parts, a set of
readable and writable states that represents the droplet-array in the molecular computer and a
computer algorithm that, given a model Hamiltonian, calculates and applies stepwise changes to
these states. The model will be described below in Section 3.1.

We applied the in-silico model of the hybrid classical-molecular computer to two applications that
we discuss in Sections 3.2 and 3.3. The first application is Boolean satisfiability (in particular 3-
SAT), which was proven to be NP-complete (39). The second application is a simplified protein
model comprising of six types of amino acids on a 2D square lattice. To solve these problems
using the molecular computer, we map them to Ising Hamiltonians, initialize the droplets in
random states and encode the coupling elements of the Ising Hamiltonian in the couplings
between the droplets. Annealing of the system leads to a local optimum, from which a solution
can be read out and checked on validity. Repetition of this procedure allows us to determine if a
Boolean satisfiability problem has a solution that fulfills all conditions or that identifies low-energy
conformations of the protein. A more exhaustive list of mappings from NP-complete problems to
the Ising Hamiltonian is presented in Ref. (36).

3.1 Simulation by stochastic gradient descent

We modeled the annealing process of the hybrid classical-molecular computer using a stochastic
gradient descent simulation. As shown in the methods section, it is possible to convert Boolean
satisfiability problems, as well as the lattice protein folding model, to an Ising model that can be
represented in the form of tensors KO, K, ... K™ The first term, h(?) | is an offset to the global


https://paperpile.com/c/zoiFHg/Kvpb
https://paperpile.com/c/zoiFHg/39gQ

energy that does not influence the states of the system, h(1) is a vector of bias terms to the states
of each droplet, h?) is a matrix of two-droplet coupling terms, h(®) is a tensor containing three-
droplet coupling terms, and so on. The 3-SAT problem can be converted to an Ising model with
up to three-body interaction terms, while the lattice-protein model contains up to four-body
interactions. As discussed earlier, the hybrid classical-molecular computer can handle
interactions of any order (requiring n droplets for n-body terms), while the purely molecular
computer will be limited to nearest-neighbour two-droplet interactions due to the limited
connectivity between the droplets. It is, however, possible to convert higher-order interactions
such as three- and four-droplet to two-body interactions by introducing ancillary states in the
system (40). While our model of the hybrid classical-molecular computer can process any order
of many-body interactions, we used the two-body representation of the lattice-protein model that
includes ancillary states.

To simulate the annealing process of the droplet-array, we use an iterative procedure. In each
step, the state of the system is read, all gradients acting on the states in terms of bias potentials
(h™) and many-body interactions (h(®to h(™) are calculated and changes to states are applied
with a finite step size. We run the procedure in two modes, ensemble annealing mode and
trajectory mode. In the ensemble annealing mode, we run many short annealing simulations from
random initial states and analyse the statistics of the final states or search for the global optimum.
In contrast, in trajectory mode, we run one instance of the molecular computer over a large
number of steps but add a certain level of noise on the gradients to overcome barriers between
local optima. Potentially, to overcome kinetic trapping, the hybrid classical-molecular computer
could benefit from accelerated sampling methods developed for droplet dynamics simulations,
e.g., basin-hopping, metadynamics and umbrella sampling.

3.2 Application 1: Boolean satisfiability

In order to solve Boolean satisfiability problems such as the 3-SAT problem with our
computational model of the hybrid classical-molecular computer, it is necessary to convert it from
its conjunctive normal form (CNF) to an Ising model (see Appendix). In the case of 3-SAT
problems, the Ising model will contain up to three-body coupling terms, which requires
connectivity that goes beyond that of a purely molecular computer. We tested the satisfiability of
random 3-SAT problems with N variables and M unique clauses of k = 3 literals and compared
the results to solutions obtained using the Davis-Putnam-Logemann-Loveland (DPLL) algorithm
(41) (see Figure 2a). The results are shown in Figure 2b, where we observe a transition from a
high probability of a problem being satisfiable when clause density, i.e., the ratio of M/N, is small
to a low probability at large M/N ratios. The results obtained with the simulation are in good
agreement with the results obtained using the (exact) DPLL algorithm.

10
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Figure 2. a) lllustration of two methods to solve the 3-SAT problem. b) Probability of satisfiability
as a function of clause density (ratio of clauses and variables) for a random 3-SAT problem,
showing agreement between the simulated hybrid classical-molecular computer (HCMC, solid
lines) and the solutions of the Davis-Putnam-Logemann-Loveland (DPLL) algorithm. Each point
is the average of up to 10000 3-SAT problems.

3.3 Application 2: Lattice protein model

As a second application, we tested the simulated hybrid classical-molecular computer on the two-
dimensional lattice protein model presented in Refs (42, 43). The proteins in this model consist of
a sequence of amino acids that can fold onto a two-dimensional square lattice. The protein
conformation is represented as a sequence of turns, where each turn is encoded by two bits (00:
down, 01: right, 10: left, 11: up, see Figure 3a and 3b for a description and an example of a
folding).

The energy of each conformation contains two terms: clashes of two amino acids are penalized
with positive terms of size 1 whereas attracting interactions between specific amino acids (i and
j» 1t —jl > 1) are rewarded with negative energy terms ¢;; in case amino acids i and j are direct,
non-diagonal neighbours (native contact). We can construct an Ising Hamiltonian with up to four-
body interactions that encodes both types of interactions. This requires ancillary bits that activate
and deactivate depending on the state of the bits that encode the physical conformation of the

11
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protein. The overlap parameter 1 can be chosen in a way that the energy spectrum of the protein
model and thus of the Ising Hamiltonian has negative or zero energies for all conformations
without clash and positive energies for all other conformers. The global ground state of the
Hamiltonian yields the protein conformation in which the highest possible number of native bonds
are formed. Non-clashing conformers with fewer or less strong native bonds are local optima with
energies smaller than zero, whereas non-clashing conformers without any native bond formed
have zero energy (“unfolded”).

Figure 3. Lattice protein model simulated on the molecular computer. a) encoding of each link in
the amino acid chain as two bits, b) an example 5-link chain with the corresponding sequence of
bits, c) results of a simulation for a 6-link chain, where each curve corresponds to an instance of
random initialization followed by annealing to a local minimum, with the corresponding folded
configuration. The ground state configuration, with an energy of -6, is shown in the lower right
corner.

As described in Section 3.1, the simulated hybrid classical-molecular computer is capable of
solving Ising models with four-body interactions, whereas any purely molecular computer will only
have local connections that can encode up to two-body interactions. There, the four-body Ising
model of the protein was converted to a two-body Ising model, which requires the introduction of
further bits (“reduction bits”). This procedure is described in Ref. (42). The results of annealing
simulations of the lattice protein model are shown in Figure 3c. Selected trajectories that ended
at low energy conformations show the energy as a function of the step number. Formation of
native contacts, as well as annealing of the ancillary bits, reduce the total energy of the system.

12
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The final states shown in Figure 3c are local optima of the Hamiltonian. The barriers between
these local optima are considerably higher than the energy differences between the local optima
(further details are provided in the Sl), which makes it impossible for a (stochastic) gradient
descent algorithm to overcome the barrier between local and global optima. To find the global
optimum and, thus, the ground state of the protein, it is necessary to run many instances of the
molecular computer. No speed-up can be expected compared to an algorithm that searches
through all 2X states of the protein, with K being the number of bits that encode the physical
conformation of the protein (K = 7 in our example).

4. Future: purely molecular computer

Ultimately, we envisage a purely molecular version of the droplet-array computer that anneals to
a ground state configuration solely by the physical and chemical interactions between droplets.
In the absence of an external classical computer to enforce droplet-droplet couplings, the problem
must be pre-programmed into the contents of the droplets and the interactions of neighbouring
droplets. These programmable couplings can take place via mass exchange (diffusion, biological
membranes) or energy exchange (excitons, Férster resonance energy transfer (FRET) (44)).

Such a system benefits from the complete parallelization of the problem. For a QUBO problem, a
hybrid computer still requires that, at each step of the optimization, a classical computer calculates
n? terms representing the pairwise energies of the n variables, and even more for problems with
higher-order terms. A purely molecular computer would implement these couplings n  times
faster since all pairwise interactions occur simultaneously, in 0(n) time.

Rather than using a classical computer to perform stochastic gradient descent, as we did in the
hybrid version of the device, the system is driven, kinetically and thermodynamically, to its ground
state. The key is to select the appropriate reactions and chemicals. A few proposed mechanisms
are detailed in Section 5.

While the hybrid computer does not make use of the spatial arrangement of the droplets, in the
purely molecular version, each droplet is connected only to those droplets with which it can
physically interact. A problem must therefore be mapped to this graph using minor-embedding
techniques to address the sparse connectivity (45, 46).

Additionally, this device can only implement two-body terms, which means auxiliary ancilla
droplets are needed for reducing k-local problems (PUBO) to a quadratic expression (QUBO).
Such algorithms are commonly used to map problems to various quantum devices such as the
D-WAVE quantum annealer and the Rigetti quantum computer (40, 47).

N N
H=c +zhi5i +Z]ij5i5j
i

i<j
In the following section, we discuss practical considerations for building a physical device.
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5. Implementation

Given the requirements above for the hybrid and purely molecular computers, numerous chemical
systems can be considered as viable candidates. A physical system capable of implementing
either the hybrid classical-molecular computer or the purely molecular computer should have
properties that can be precisely defined and measured. Since each droplet will be subjected to
changing constraints from neighbouring droplets (two-body terms, h(?)) as the computation
progresses, changes in these properties must be reversible.

Measurable properties of a droplet can be mapped onto a binary variable, for example, by using
a threshold value. Figure 4 gives two examples of physical properties that can be used to
represent a droplet as a binary variable, namely polymer molecular weight distribution and pH.
Other candidate properties include the concentration of a reagent, oxidation states, and colour.
The state of each droplet can be read out in a non-interfering manner via optical or
electrochemical means. For example, pH-sensitive dyes or ion indicators can be used to read out
a fluorescence signal proportional to the pH or ion concentration in each droplet in the array (48).
Functionalized electrode arrays can be used to address individual droplets and determine their
pH. Fluorescent dyes sensitive to gelation or viscosity changes can be used to indicate the
presence of polymer (49).

Figure 4. Two approaches to representing a droplet as a binary variable: in a), polymerization
and depolymerization giving different molecular weight distribution, and in b), redox reactions
altering the pH of the droplet.

One of the most versatile ways to form the basis of computing bits for the hybrid classical-
molecular computer is using the pH of a droplet, by converting the logarithmic pH scale to a binary
variable. The pH of a droplet can be reversibly adjusted using several chemical reactions, such
as the addition of acid or base or by tuning electric potentials to drive redox reactions that generate
or consume H*.

In the hybrid classical-molecular computer, the inter-droplet couplings, whose nature and strength

correspond to the problem being optimized, are enforced by an external control algorithm. In the
purely molecular computer, these couplings should be pre-programmed into the inter- and intra-
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droplet interactions. Information between neighbouring droplets can be shared via mass transfer
or energy transfer. The former relies on the movement of molecules across the droplet
membranes, which can take place through passive diffusion across the interface, by
electrophoretic motion, or via pores installed in the membranes to enhance the rates of transport
between droplets (50, 51). The latter energy transfer-based system could eliminate these
considerations by allowing for inter-droplet communication without mass transfer.

To execute either version of the molecular computer, we must achieve precise control over droplet
placement. Microfluidic-based robotic platforms, as well as inkjet printers, can be used to generate
droplets with precise compositions and to place them in square or hexagonal packed arrays. In
this way, the droplets can be situated on electrode arrays for external control of droplet couplings
or the readout of droplet states. The states of the droplets can be determined via optical or
electrochemical readout using the means mentioned above. For the hybrid classical-molecular
computer, this readout can be sent to a classical computer that can implement the necessary
couplings. The classical computer can manipulate the droplets through external stimuli (optical
and electrochemical control) based on the set couplings. This control loop would continue until
the problem reaches a minimum energy state. For the purely molecular computer, the couplings
are pre-programmed into the droplet interactions, removing the need for a classical computer to
impose these couplings.

6. Discussion

6.1 Problem scaling analysis of molecular computer

An essential factor in the choice of problems to solve on the microdroplet-array computer is how
the number of droplets needed scales with the number of variables in the problem. Compared to
quantum annealers, which are constructed using Josephson junctions cooled to near absolute
zero temperature, the cost of adding droplets to the molecular computer is negligible compared
to the overall cost of the setup.

Since the molecular computer takes Ising parameters as input, any problem that can be efficiently
encoded in a spin Ising system can also be efficiently implemented on a microdroplet array
computer. As far as we know, the parallelization of chemical reactions across all droplets could
give the molecular computer an advantage over numerical gradient evaluations in a classical
computer or GPU.

In Figure 1c and 1d we plotted the scaling of four types of problems that can be represented by
an Ising Hamiltonian and solved on either the hybrid or the purely molecular computer (36). They
include the two applications given in the main text, boolean satisfiability and lattice protein folding,
as well as the traveling salesperson (e.g. searching for the shortest path between a set of cities.)

Recall that the hybrid version of the molecular computer is fully connected and allows for k-local
terms (higher-order expressions involving k variables). The purely molecular computer, on the
other hand, is limited to 2-local, nearest-neighbour connections. Therefore the scaling formulas
account for ancilla bits used in embedding and locality reduction algorithms.
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On the hybrid computer, boolean satisfiability for k variables per clause (k-SAT) scales as 0(n)
since each variable corresponds to one droplet. For three or more clauses, the problem is NP-
complete. To reduce a 3-SAT problem to an Ising Hamiltonian (2-local), we need (n — 1)%/4
ancilla droplets (40). The traveling salesperson is a significant problem for logistical optimization.
Given n nodes (“cities”), we require n? droplets to account for the sequence as well as labels of
the cities visited, so the number of droplets scales as 0(n?) (36). The mapping involves only
quadratic terms (2-local), so it can be directly implemented on the purely molecular computer.
Lastly, the lattice protein problem is the most complex since the Hamiltonian must encode self-
avoidance constraints as well as interactions between neighbouring amino acids (42, 43). It
scales as n%log(n). We note that the scaling of the described problems is at most polynomial in
the length of the input.

It has been shown that embedding QUBO problems on a sparsely connected graph scales linearly
with the number of variables in the problem (47).

6.2 Advantages of the molecular computer

With a fully-realized molecular computer, there will be many advantages compared to
conventional silicon-based computers, as well as compared to many other recent proposed
computing architectures. If some of the proposed mechanisms in previous sections could be
realized, we believe that a molecular computer to be particularly well-suited to solving
combinatorial optimization problems, including some NP-problems.

Comparison to classical computation: Since the rules of classical physics still govern the
operation of a molecular computer, we do not believe it will be more efficient than classical
conventional computers in terms of time or space scaling. There are nevertheless many
advantages to using chemical reactions for solving specific types of problems such as discrete
optimization. First, this approach removes the need for physically defined, atomic-sized circuits.
The molecular computer benefits from the intrinsic parallelization of chemical reactions, effectively
solving a system of differential equations of motion in parallel and remove the need for memory
to store each step of the optimization process. The computation speed is, however, limited by the
intrinsic speed of droplet motions and chemical reactions, nuclear rearrangements being orders
of magnitude slower than electronic rearrangements in the Born-Oppenheimer approximation.

Comparison to biomolecular computation: The droplet-array molecular computer also has
advantages over biomolecular methods, such as DNA computing and cellular signaling, with
faster operation speed, fewer errors, and significantly less complexity than biological cells. There
is no need for post-processing or offline analysis of the chemical content, allowing for immediate
readout. Droplet-array initialization, computation through annealing, and optical readout are all
fast and automatable processes. The phase space of chemical reactions, mechanisms, reagents,
is extensive. The contents of each droplet can be cost-effective, widely available, and safe
materials.
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Comparison to quantum computation: In recent years, quantum computing has gained much
attention due to the potential for solving problems that are intractable for classical Turing
machines. These include encryption (prime factorization), quantum chemistry, as well as the
optimization problems described above. However, with quantum entanglement and superposition
come challenges in error correction, noise and decoherence, and qubit scaling, which must be
overcome before quantum computers attain their full potential. The droplet-array, on the other
hand, is easily scalable through inkjet printing. The cost of adding additional droplets, representing
bits, is negligible compared to the cost of the overall experimental setup (38). As well, there is
little experimental overhead to operate the molecular computer, since we can select for chemical
reactions that take place at or near room temperature. Information storage would also be trivial
since the output of a calculation can be printed onto a piece of paper for future readout.

7. Conclusion

In sum, we have proposed a new heuristic method for computation with programmable droplet-
arrays to solve combinatorial optimization problems. The device consists of a two-dimensional
array of microdroplets that represents a set of interacting binary variables that evolve under an
Ising Hamiltonian. Each droplet corresponds to one variable, whose value is determined by
measuring a specific property of the droplet. A specific problem is solved by programming the
intra-droplet contents and inter-droplet interactions. As the system evolves collectively, the droplet
states approach the optimal solution of the problem through a process akin to annealing in
materials.

D-WAVE first adopted a quantum version of this approach; more recently, a classical digital
annealer by Fujitsu. To our knowledge, this is the first proposal of a molecular computer operating
in annealing mode. In its purely molecular version, the microdroplet-array computer benefits from
all of the advantages of computing with molecules: concurrent information processing and
storage, massive parallelization of chemical reactions, energy-efficient processes, vast phase
space of molecules and reactions, cost-effectiveness, and scalability of the device.

As a stepping stone to a purely molecular computer, we first developed a hybrid model where a
classical computer imposes the parameters of the optimization problem, and the information
processing and storage is carried out by the individual droplets in the array. Throughout numerous
iterations, the classical computer takes in the set of droplet states and performs a stochastic
gradient descent algorithm to search for the optimal ground state using the droplets. A simulation
of the hybrid classical-molecular computer demonstrated its ability to solve two NP-hard
problems, reproducing the phase transition in boolean satisfiability (3-SAT) as a function of clause
density, and identifying the ground state configuration in a lattice protein folding problem.

Our next step is to perform these calculations on a physical hybrid classical-molecular computer.
The challenge of identifying suitable chemical reagents and reactions to program the
microdroplet-array can be facilitated with machine learning and high throughput experimentation.
We would also employ robotics and computer vision to operate the device. In due course, we
shall tackle droplet miniaturization to scale up to thousands and eventually millions of droplets. In
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the ultimate limit of this technology, we imagine a molecular computer operated by inkjet printing
a problem onto a sheet of paper; by the time the ink dries, the problem is solved and imprinted
onto the sheet. Applying the same concept to a 3D printed ink may open a novel route for
manufacturing large scale assemblies of matter with nanoscopic precision.
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A. Boolean Satisfiability: Conjunctive Normal Formula to Ising
Hamiltonian

A k-SAT Boolean formula of N variables consists of M clauses of k literals each. An
example of a 3 variable 2-SAT in conjunctive normal form (CNF) is:

(xory)and (yandnotz)

To convert this expression into an Ising Hamiltonian, we represent each Boolean variable
asaspin,s; € {—-1,+1},i=1,...,N.

First, define a clause matrix:

w;; = 1, if clause j includes s;
{Wﬁ = —1, if clause j includes not s;

Then each clause indicator:

1 N
vj = ﬁl_[(l - Wjisi)
i=1

The overall Hamiltonian becomes:

When the CNF is satisfied, Hy,_s4r = 0. For Hy_gar > 0 , the value of H,_g,r gives the
number of violated clauses.

To use binary variables x; € {0,1} instead of spin variables, we can use a simple
transformation (1-2):

sl-=2xi—1 or xi:§(5i+1)
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B. Example 1: a four-droplet system

To illustrate how the molecular computer works, consider the following satisfiability
problem of five clauses, each with two variables per clause (2-SAT). Although the 2-SAT
problem is in P and not NP, it is the simplest and easiest to illustrate how the device
operates.

In conjunctive normal form:
(syors,)and (s, ornotssz)and (s;ors,)and (nots,ors; )and (nots, ornots, )
or (51V52)/\(52V !53)/\(53V54)/\(!S4V51)/\(!52V!S4)

Figure S1 shows how this calculation would be implemented in a four-droplet system,
using our simulation of a hybrid classical-molecular computer.

The problem is first mapped to an Ising Hamiltonian, according to the procedure
described in Section A above.

H = h(O) + Z hgl)si + Z hE]Z)SlS]
i ()]

5
0 ==
h 4

A =[-2 -1 0 1]

0o 1 0 -1
|1 0 -1 1
0o -1 0 1
-1 1 1 0

These arrays are entered into the control algorithm of the computer software. To run a
calculation, we first randomly initialize each droplet state (Figure S1 panel b)). The
control algorithm takes in the droplet states (panel d)), then computes the gradients on
each droplet based on the Hamiltonian above (panel e)). These gradients are delivered
to the droplets via changes in electric potential, for example. Over a number of
iterations, the system reaches a minimum energy state and stops when the gradients
reach zero. The final state is rounded to the nearest integer value, —1 or +1 and the
result is read out, after a change of basis from +1 to 0,1 (panel d)). In this case, a
solutionof s; =1, s, =0, s3 =0, s, = 1 satisfies all of the clauses in the formula given
above.
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Figure S1 - Example of a 2-SAT problem of 4 variables with 5 clauses. In a) the clauses
are indicated by the lines connecting the droplets (yellow for “positive” coupling, blue for
“negative”). Panel b) gives the random initialization of the problem, giving each droplet an
initial value between -1 and +1. The steps of the optimization process are simulated in
the lower two panels: at each step, the droplet states are measured, and shown in d), and
in e) the gradients calculated based on the Ising Hamiltonian. Once the system has
reached a minimum, the final droplet states are mapped to a bit value of 0 or 1. (s; €
[-1,0) - x; =0, s; € (0,1] - x; = 1). One solution to the CNF is shown in panel c).

Clause (51V s3) (s2V !s3) (53V s,) ('s4V sy) ('s,V!1sy)
Check 10r0 Oor!0 0or1 11 0or 1 10or!1
solution

True True True True True
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C. Barriers in the lattice protein model

In order to investigate whether or not a (stochastic) gradient descent model will be able
to escape local minima, we analysed the energy landscape between local minima using
constrained optimizations at states between the optima. In particular, we interpolated
between the ground state conformation with an energy of -6 (lower left) and a non-
clashing, unfolded conformation with an energy of 0 (upper left). The energy barrier on a
linear interpolation between the two states that only differ by one bit (Bit #7) is higher than
90, which is considerably more than the differences between all valid conformations (E =
-6 to E = 0). Interpolations of other bitflips show the same results (3).

Figure S2 - a) Energy landscape between four configurations of the lattice protein. The
energy differences at the edges (shown next to the heatmap) are considerably lower than
the barrier height between them. b) The energy of the system on a line between the
unfolded state 0001010 and the folded state 0001011 (Bit #1 is 0).
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D. Example 2: Mapping bits to a hybrid and a purely-molecular
computer for 9 variables

Here we give an example of how a Boolean satisfiability problem can be mapped to the
hybrid computer and the purely-molecular computer implemented on two lattices. For the
purposes of easily illustrating the relation between the variables, we will use a 2-SAT
problem (9 variables, 17 clauses). The CNF is:

AVAAU2ZVEIAUZVIONAU2VAAUZVE)AGBGVIACUIVT)A
(4VBAQRVIDAGTVIBAU2ZVIE)ADAVE)ACEVE)ARVS)A
14V 9) A (BV4AA(U2V3)

which can be represented as an Ising Hamiltonian with the bias, one-body, and two-body

term coefficients:
1
H=hO + 2 hDs; + z BPs;s
@n

9
0 = -
h 2

1
h(1>=1[—2 310 -4 0 -2 0 0]

0 0 0 1 0 1 0 0 07
0o 0 -1 -1 0 1 0 0 1

0 -1 0 1 -1 0 -1 0 1

qr -1 1 0 -1 0 0 -1 -1
h®==-lo0 0 -1 -1 0 0 0 0 O
811 1 0o 0o o 0o o o -1

0 0 -1 0 0 0 0 -1 0

00 0 -1 0 0 -1 0 0

0 1 1 -1 0 -1 0 0 0

In Figure S3 we first represent this 2-SAT problem first as a graph and then show how to
physically place this problem on a molecular computer (hybrid and purely-chemical
versions). Since the hybrid classical-molecular computer is fully connected and relies on
a classical computer to enforce the inter-droplet couplings, the droplets can be placed
anywhere, in any order. For the purely-molecular computer, depending on the lattice,
square or hexagonal, each droplet can be coupled to four or six nearest-neighbour
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droplets. To overcome the spatial and connectivity constraints, we require minor
embedding techniques and ancilla bits. For example, in Figure S3 c) the square lattice
has an extra droplet for bits 3, 4, and 6. Although this invariably increases the size of the
system, it ensures that all droplets can be pairwise coupled (4).

Figure S3 - Mapping a 9-variable 2-SAT problem onto a hybrid and purely-molecular
computer. a) graph representing the problem, with “positive” couplings in yellow and
“negative” couplings in blue, and its mapping to droplets on b) a hybrid computer, c) a
purely-molecular computer on a square and hexagonal lattice.
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