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Abstract 
The search for novel forms of computing that show advantages as alternatives to the dominant 
von-Neuman model-based computing is important as it will enable different classes of problems 
to be solved. By using droplets and room-temperature processes, molecular computing is a 
promising research direction with potential biocompatibility and cost advantages. In this work, we 
present a new approach for computation using a network of chemical reactions taking place within 
an array of spatially localized droplets whose contents represent bits of information. Combinatorial 
optimization problems are mapped to an Ising Hamiltonian and encoded in the form of intra- and 
inter- droplet interactions. The problem is solved by initiating the chemical reactions within the 
droplets and allowing the system to reach a steady-state; in effect, we are annealing the effective 
spin system to its ground state. We propose two implementations of the idea, which we ordered 
in terms of increasing complexity. First, we introduce a hybrid classical-molecular computer where 
droplet properties are measured and fed into a classical computer. Based on the given 
optimization problem, the classical computer then directs further reactions via optical or 
electrochemical inputs. A simulated model of the hybrid classical-molecular computer is used to 
solve boolean satisfiability and a lattice protein model. Second, we propose architectures for 
purely molecular computers that rely on pre-programmed nearest-neighbour inter-droplet 
communication via energy or mass transfer.  
 
 

Significance statement  
Molecular computers—a promising alternative to semiconductor-based computers—not only 
compute but also re-organize matter, potentially admitting novel manufacturing approaches. The 
vast space of chemical reactions makes molecules a low-cost, energy-efficient, tunable and 
scalable computational vehicle. In molecular computers, memory and processing units combine 
into inherently parallelized single devices. We present a molecular computer for combinatorial 
optimization in a microdroplet array that employs an Ising Hamiltonian to map problems 
heuristically to droplet-droplet interactions. The droplets represent binary digits and problems are 
encoded in intra- and inter-droplet reactions. We propose two implementations: a hybrid classical-
molecular computer that enforces inter-droplet constraints in a classical computer and a purely 
molecular computer where the problem is entirely pre-programmed in the droplet reactions.  
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1. Introduction  
For science and technology to continue progressing at the current pace, we need our 
computational processing capabilities to keep growing. Conventional transistor-based computers 
follow the von Neumann architecture, where information is stored in memory units and processed 
in a central processing unit. Different logic gates, each acting on a single bit or multiple bits of 
information represented as a 0 or 1, are activated sequentially to perform an operation. However, 
as transistors are approaching tens of nanometers, i.e., the size of large molecules (1), high heat 
dissipation, and slow transfer rates between processors and memory are bringing about the 
breakdown of Moore’s Law. 
 
The search for alternatives to classical computers includes quantum computing, in which quantum 
mechanical phenomena allow information to exist as a superposition of states, not just individual 
binary bits (2, 3). For classical systems, computing with molecules is an attractive avenue given 
the vast chemical space and the relatively low energy dissipated in chemical reactions compared 
to transistors (4–6). Proposals for computers that exploit chemical processes have taken one or 
both of two broad approaches: 1) using chemistry and biochemistry to emulate circuit components 
or cellular automata, and 2) employing a large number of molecules to explore a combinatorial 
space in parallel. Examples for the first include reaction-diffusion systems (7), Belousov-
Zhabotinsky oscillatory reaction (8), memristive polymers (9), and transcription regulation for 
cellular signaling (10, 11), and other chemical and biochemical analogues of logic gates (12, 13). 
In the second category of parallelized computing, we find microfluidic devices (14), nanofabricated 
networks (15–17), and adaptive amoebal networks (18). DNA computers have explored both 
approaches, from early work that involved sifting through combinations of nucleic acid sequences 
to recently using DNA self-assembly to carry out an algorithm process (19–21). However, each 
method presents challenges in programmability, scaling, and maintaining accuracy in large 
calculations.  
 
Here we propose a new strategy for solving optimization problems using droplets spatially 
localized in a lattice and linked by a network of chemical reactions. Each droplet represents a 
binary variable that can communicate with its neighbouring droplets. We encode a problem in the 
intra- and inter-droplet interactions. As the droplets’ contents evolve following the 
thermodynamics of the system, it reaches a steady-state where the ensemble of droplet states 
corresponds to a solution of the given problem. As we shall explain in Section 2.1, our proposed 
droplet-based computer relies on an alternative approach inspired by the pioneering work of 
Kirkpatrick et al.’s, which employs simulated annealing to solve combinatorial optimization 
problems (22). It is a heuristic method that intrinsically combines both memory and processing 
units in one device.  
 
We ultimately envision a molecular computer that operates solely using chemical processes and 
without the aid of classical computers. This implementation, which we term the “purely molecular 
computer”, uses pre-programmable chemical couplings, corresponding to a given problem, that 
determines neighbouring droplets’ interactions. As a stepping stone to achieving complete 
autonomy, we have first conceived a “hybrid classical-molecular computer”, where a classical 

https://paperpile.com/c/zoiFHg/dD5K
https://paperpile.com/c/zoiFHg/A3Sqq+lEIE
https://paperpile.com/c/zoiFHg/C0GC+yfri+DjM0
https://paperpile.com/c/zoiFHg/Owrt
https://paperpile.com/c/zoiFHg/9Eux
https://paperpile.com/c/zoiFHg/EMl4
https://paperpile.com/c/zoiFHg/aTZl+8OYx
https://paperpile.com/c/zoiFHg/Zklo+ZQjn
https://paperpile.com/c/zoiFHg/rgBQ
https://paperpile.com/c/zoiFHg/lZ2p+8Lh0+Bl4p
https://paperpile.com/c/zoiFHg/qa5Z
https://paperpile.com/c/zoiFHg/CYXH+oTwE+IvwM
https://paperpile.com/c/zoiFHg/sbIv


 

4 

computer is used to enforce conditions that are then carried out by the droplet system. Both 
incarnations of the droplet-array computer would be inherently parallelized, easily scalable, 
efficient, specific purpose computing devices.  
 
We shall present in Section 2.2 the requirements for reactions to be suitable for our molecular 
computer. Section 3 is devoted to a description and simulation of the hybrid classical-molecular 
computer and Section 4, the purely molecular computer. In Section 5, we will explore ways to 
implement our device physically. Lastly, in Section 6, we will discuss the advantages of this 
approach and examine the scalability of the system. 

2. Concept 

2.1 Optimization by simulated annealing  
The basic principle of the droplet-array computer rests in the analogy between combinatorial 
optimization and statistical physics (22). Similarly to the ensemble behaviour of physical systems 
such as magnetic spins, an optimization problem is a complex system of interacting variables. 
Such interactions are captured in a cost function or Hamiltonian, where the constraints and 
requirements of the problem correspond to interaction energies between variables. At a given 
temperature, the equilibrium distribution of the configuration (ups and downs) of the spins follows 
a Boltzmann distribution, which favours the ground state of the Hamiltonian or the optimal (set of) 
solution(s) to the objective function. As the temperature lowers, the statistical weight (probability) 
of the ground state grows, which inspires the idea of simulated annealing to emulate the effect of 
such annealing process due to cooling for finding or approximating the ground state of the 
Hamiltonian. 
 
A canonical model for magnetic spins in crystalline materials is the Ising or lattice spin Hamiltonian  

𝐻𝐼𝑠𝑖𝑛𝑔 = −𝜇 ∑ℎ𝑖𝑠𝑖

𝑁

𝑖=1

− 𝐽 ∑𝑠𝑖𝑠𝑗

𝑁

𝑖<𝑗

,   𝑠𝑖 ∈ {−1,1} 

whose terms describe a tradeoff between the cost of flipping a spin 𝑠𝑖 in an external magnetic 
field ℎ and the interaction energy between neighbouring spins, 𝐽, and where 𝜇 is the magnetic 
moment. Even though this model has only two parameters ℎ and 𝐽, as we will discuss below in 
detail, it can already give rise to problems that are intractable in the worst cases. For encoding 
general combinatorial optimization problems, however, we allow for more tunability between pairs 
of coupled spins as well as the local fields on each spin, giving rise to the more general Ising 
Hamiltonian: 

𝐻𝑔𝑒𝑛𝑒𝑟𝑎𝑙 = ∑𝛼𝑖𝑠𝑖

𝑁

𝑖=1

+ ∑𝛽𝑖𝑗𝑠𝑖𝑠𝑗

𝑁

𝑖<𝑗

 

in which the 𝛼 and 𝛽 coefficients are given by the problem.  
 
In other words, the computational problem is encoded in the coefficients 𝛼𝑖, representing the local 
field for individual variables, and 𝛽𝑖𝑗, representing the couplings between pairs of variables. For 

https://paperpile.com/c/zoiFHg/sbIv
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the given values for the vector 𝛼 and matrix 𝛽, the optimal configuration of 𝑠𝑖 represents a solution 
that minimizes the Hamiltonian. 
 
In order to implement the Ising model, we need a way to control the local field and couplings (one-
body and two-body terms). In this work, we propose that chemical reactions can be used to 
achieve these features.  
 
The model can be generalized for higher-order terms (k-local). 

𝐻 = ℎ(0) + ∑ℎ𝑖
(1)𝑠𝑖 

𝑁

𝑖

+ ∑ℎ𝑖𝑗
(2)𝑠𝑖𝑠𝑗

𝑁

𝑖<𝑗

+ ∑ ℎ𝑖𝑗𝑘
(3)𝑠𝑖 𝑠𝑗 𝑠𝑘

𝑁

𝑖<𝑗<𝑘

+ ⋯   

We shall proceed with this notation, where the ℎ(𝑘) is the tensor of rank 𝑘 representing the 
coupling between 𝑘 variables. 
 
Quantum annealing devices were argued to be superior to classical annealing due to the 
availability of quantum effects such as superposition and tunneling (23, 24). This inspired several 
quantum and classical devices, including the D-Wave quantum annealer (25–27), the coherent 
Ising machine (28, 29), the recently-introduced Fujitsu-led application-specific CMOS-based 
digital annealer (30), and even more recently, the Toshiba simulated bifurcation algorithm (31). In 
Table 1, we give an overview of these optimization annealing machines and their characteristics. 
 

Table 1. A survey of optimization annealing machines and their capabilities  
 Algorithm Hardware Number of bits 

Connec-

tivity 

Typical time 

to solution 
Date 

Optimization 

Problem 
Ref 

Classical         

Fujitsu Digital 
Annealer 

Digital annealing Application-specific 
CMOS 

1024 variables Full  1 - 102 s April 2019 
 

Spin glass (30) 

Toshiba Simulated 
Bifurcation 

Simulated bifurcation FPGAs and GPUs 2000 variables Full 5 × 10-4 s 
 

April 2019 MAX-CUT 
(NP-hard) 

(31) 

Quantum         

Coherent Ising 
Machine 

Adiabatic quantum 
computation, quantum 
annealing 

Optical parametric 
oscillators; laser 
pulses 

2000 spins Full 5 × 10-3 - 
5 × 10-2 s 

Oct 2016 MAX-CUT (28, 29) 

D-WAVE 2000Q 
Chimera 

Quantum annealing Superconducting 
qubits 

2000 qubits 6  102 - 104 s Jan 2017 Numerous 
applications 

(26) 

D-WAVE “next  
gen” Pegasus 

Quantum annealing Superconducting 
qubits 

5000 qubits 15 n/a April 2019 Numerous 
applications 

(27) 

Chemical         

Hybrid classical-
molecular computer 

Simulated annealing, 
stochastic gradient 
descent 

Droplet array + 
classical computer 

12 droplets  
→ 10,000 
droplets 

Full ~6 × 102 s; to 
be reduced 
with smaller 
droplets 

2019 k-SAT, lattice 
protein 

This 
work 

Purely molecular 
computer 

Chemical annealing Droplet array  10’s droplets 
→ 10,000 
droplets 

4-6 n/a  2-local k-SAT, 
2-local lattice 
protein, TSP 

 

Long-term  
molecular computer 

Chemical annealing Droplet array  ~1.5 million 
droplets (38) 

4-6 n/a    

Inkjet printer Chemical annealing Microscopic nozzle 
(600 dpi) 

~30 million 
droplets 

4-6 n/a    

https://paperpile.com/c/zoiFHg/Sqqi+YySb
https://paperpile.com/c/zoiFHg/Sv0dM+8L0f+HZKU
https://paperpile.com/c/zoiFHg/3N2Jx+Ame9
https://paperpile.com/c/zoiFHg/omwn
https://paperpile.com/c/zoiFHg/KKjq
https://paperpile.com/c/zoiFHg/omwn
https://paperpile.com/c/zoiFHg/KKjq
https://paperpile.com/c/zoiFHg/3N2Jx+Ame9
https://paperpile.com/c/zoiFHg/imdv
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Adiabatic quantum computing and quantum annealing provide us with a method of solving for the 
Ising ground state, by evolving a system from the ground state of an accessible problem to that 
of a more difficult problem (23, 24, 32). Although a molecular computer remains a classical device, 
unable to avail itself of quantum tunneling across barriers in the potential energy surface relating 
to the problem Hamiltonian, the rationale can still be extended to simulated annealing.  
 
In adiabatic quantum optimization, a system is initially in the ground state of a Hamiltonian 𝐻0. To 
solve for the ground state of a problem Hamiltonian 𝐻𝑝, the Hamiltonian 𝐻 is adiabatically changed 
over time following a function 𝑎(𝑡):  𝐻(𝑡) = [1 − 𝑎(𝑡)] 𝐻0 + 𝑎(𝑡) 𝐻𝑝 
 
For simulated annealing, 𝐻0 represents kinetic or thermal energy and  𝐻𝑝 the potential energy, 
corresponding to the problem we would like to solve. Just like annealing metals, as the 
temperature of a system decreases, the spins or variables reach an optimal configuration.  
 
For any classical optimization algorithm that can be mapped to the classical Ising system, the 
time to solution (TTS) to find the ground state asymptotically grows at most exponentially in 𝑛,  
i.e., 𝑂(𝑐𝑛), as it is needed to explore all possible outcomes, and finding an approximate solution 
grows as polynomially in 𝑛, i.e., 𝑂(𝑛𝛾), where 𝛾 is a problem-dependent constant (32). By the 
Church-Turing thesis (4), the molecular computer should not have any exponential speed-up over 
any classical computing devices. 
 
Simulated annealing was found to be well-suited to tackle NP and NP-hard combinatorial 
optimization problems (33). These are problems whose computational complexity increases 
exponentially with the number of variables, and for which no efficient (polynomial-time) algorithm 
is presently known. Nevertheless, since solving the Ising model was shown to be NP-hard, a good 
heuristic Ising model solver will be beneficial for solving real-world problems that are often NP-
complete problems1, such as the traveling salesperson problem, graph colouring, and boolean 
satisfiability (35). Barahona showed that solving the states of the Ising model (36) on a 2D lattice 
with arbitrary interactions is NP-complete. Since every instance of a problem in NP can be 
efficiently encoded as an instance of an NP-complete problem, Barahona’s work implies that all 
problems in the NP complexity class can be mapped to instances of 2D Ising model (33), and 
thus can potentially be solved efficiently with a heuristic Ising solver. The work of Barahona and 
others (37), summarized in Table 2, also includes the complexity of solving different Ising models. 
 
Table 2. The complexity of the Ising ground state problem in one-, two-, and three-dimensions. 

Dimension and graph Restrictions on coupling Solving for the Ising ground state 

1 D none P 

2 D (planar graph) 
ℎ𝑖 = 0 P 

ℎ𝑖 ≠ 0 NP-hard 

Non-planar graph 𝐽𝑖𝑗 ∈ {−1,0,1} NP-hard 

 
1 NP-complete problems belong to both NP and NP-hard classes. They are defined as decision problems 
where a polynomial-time reduction exists from every other problem in NP (34).  

https://paperpile.com/c/zoiFHg/Sqqi+YySb+11Ow
https://paperpile.com/c/zoiFHg/11Ow
https://paperpile.com/c/zoiFHg/C0GC
https://paperpile.com/c/zoiFHg/JxeG
https://paperpile.com/c/zoiFHg/iToo
https://paperpile.com/c/zoiFHg/39gQ
https://paperpile.com/c/zoiFHg/JxeG
https://paperpile.com/c/zoiFHg/vOj6
https://paperpile.com/c/zoiFHg/6763
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2.2 Description and Requirements 
As described earlier, the proposed molecular computer consists of an array of droplets arranged 
in a lattice, which is shown in Figure 1. To apply the concept of adiabatic quantum optimization 
described above to the molecular computer, we begin with the random initialization of the droplet 
states. We can apply the problem Hamiltonian in the computer by programming the local field 
terms ℎ𝑖 and couplings 𝐽𝑖𝑗. The droplet-array molecular computer enforces these parameters so 
that as the system anneals, it reaches the ground state of the problem, which can be read out 
and interpreted. Since it is not a quantum computer, the system will not tunnel between local 
minima in the potential energy surface that is associated with the problem Hamiltonian. Instead, 
we will require multiple initializations to attain the global minimum, thus solving a given problem. 

 
Figure 1. Schematic of the droplet-array-based molecular computer. a) A hybrid classical-
molecular computer in which measurements of droplet states are sent to a computer that 
calculates the gradient on each droplet and directs the changes to be implemented in situ. b) A 
purely molecular computer where the droplets interact via nearest neighbour couplings, either 
‘positive’ or ‘negative’. The couplings are programmed into the device in the initiation stage. c) 
The scaling of the number of droplets for different optimization problems: lattice protein folding 
(quadratic/2-local and quartic/4-local forms), traveling salesperson, boolean satisfiability (3-SAT 
reduced to 2-local and k-SAT k-local). d) The number of variables in these problems that a given 
droplet-array size can handle.  
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To achieve molecular computing by annealing as described above, the chemistry taking place in 
the droplet array must fulfill several requirements. First, the system should exhibit physical 
properties that can be manipulated, read, and mapped as two states, so that each droplet can 
correspond to a binary variable. Second, changes of the states must be reversible and 
controllable by the state of their neighbouring droplets. Third, in order to implement interactions 
between the states that correspond to coupling terms of the Ising model, there must be 
connections between the droplets that allow for programmable positive and negative coupling 
interactions.  
 
We propose two approaches to implementing such a system: first, a hybrid classical-molecular 
computer in which an array of droplets is connected to a classical computer; and second, a purely 
molecular computer. In Table 1 we compare the two approaches and give the roadmap to scale 
to millions of droplets, as is currently achievable with inkjet printers at 600 dpi resolution (38).  
 
In the hybrid classical-molecular computer, measurements of each droplet’s state will be passed 
to a classical computer software that computes the interaction based on a given problem 
Hamiltonian and outputs instructions for the droplet-array to implement the calculated coupling, 
using, e.g. electrodes or optical excitations (see Section 5). In the case of the purely molecular 
computer, the coupling between nearest-neighbour droplets is pre-programmed in physical or 
chemical interaction between the droplets that take the form of mass or energy exchange (see 
Section 4). 
 
The reversibility of the chemical reaction is essential to maintaining the symmetry of the problem. 
For instance, two droplets that are positively coupled to each other have a coefficient𝐽 > 0. The 
contribution to the Hamiltonian −𝐽𝑠1𝑠2  is minimized when the two droplets are in the same state, 
either both 0 or both 1, which means both reactions 0 → 1 and 1→0 must be achievable. (This 
symmetry is broken as interactions with other droplets are taken into account, leading to possible 
frustration as they all compete with each other.)  
 
We must emphasize that the molecular computer does not have a priori knowledge of the solution 
to the problem. It merely imposes the problem Hamiltonian on the droplets via a local field and 
droplet couplings. As the chemical system evolves under these conditions, it will attempt to 
minimize its thermodynamic free energy, which is the physical impetus to explore distinct solution 
states associated with the problem Hamiltonian, imposed by the couplings. Depending on the 
given problem, it may have degenerate ground states corresponding to multiple optimal 
configurations.  
 
We expect that the kinetics of the problem, as well as imperfections in the settings of the molecular 
computer, will result in trapping in local minima for particular experiments, requiring the repetition 
of the computation to sample from the low-energy states of the problem. The alternative 
approaches mentioned earlier, namely simulated annealing, quantum annealing, and the Toshiba 
simulated bifurcation algorithm, share this challenge (30, 31). 

https://paperpile.com/c/zoiFHg/imdv
https://paperpile.com/c/zoiFHg/KKjq+omwn
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3. Modeling and application of the hybrid classical-molecular 
computer 
Tuning the intra- and inter-droplet chemical reaction to satisfy the requirements described above 
is not a trivial task. To test chemical systems for the droplet-based computer, we propose first 
developing a hybrid classical-molecular computer. A hybrid device also has the benefits of non-
local interactions, full connectivity between all droplets, and higher-order couplings that involve k 
droplets (k-local interaction). 
 
Our proposed implementation of a hybrid classical-molecular computer uses an array of 
microdroplets containing various chemical compounds. Manipulation of droplets can be achieved 
with electrostatic fields and electrochemical transformations induced by electrodes or optical 
stimuli induced by light-sources. The change in the states of droplets should be detectable by 
optical means, which allows for a convenient readout of the states. For the sake of simplicity in 
this concept paper, we use an abstract nomenclature of states 0 and 1. We shall assume that the 
droplets fluctuate within this range of states as a result of external stimuli controlled by a classical 
computer. We will discuss possible experimental schemes to build such a system in Section 4. 
One can think of the value associated with each droplet as the droplet’s progress along an 
arbitrary reaction coordinate.  
 
To explore the capabilities and potential application areas of the hybrid classical-molecular 
computer, we implemented an in-silico model of it. The model is composed of two parts, a set of 
readable and writable states that represents the droplet-array in the molecular computer and a 
computer algorithm that, given a model Hamiltonian, calculates and applies stepwise changes to 
these states. The model will be described below in Section 3.1. 
 
We applied the in-silico model of the hybrid classical-molecular computer to two applications that 
we discuss in Sections 3.2 and 3.3. The first application is Boolean satisfiability (in particular 3-
SAT), which was proven to be NP-complete (39). The second application is a simplified protein 
model comprising of six types of amino acids on a 2D square lattice. To solve these problems 
using the molecular computer, we map them to Ising Hamiltonians, initialize the droplets in 
random states and encode the coupling elements of the Ising Hamiltonian in the couplings 
between the droplets. Annealing of the system leads to a local optimum, from which a solution 
can be read out and checked on validity. Repetition of this procedure allows us to determine if a 
Boolean satisfiability problem has a solution that fulfills all conditions or that identifies low-energy 
conformations of the protein. A more exhaustive list of mappings from NP-complete problems to 
the Ising Hamiltonian is presented in Ref. (36).  

3.1 Simulation by stochastic gradient descent  
We modeled the annealing process of the hybrid classical-molecular computer using a stochastic 
gradient descent simulation. As shown in the methods section, it is possible to convert Boolean 
satisfiability problems, as well as the lattice protein folding model, to an Ising model that can be 
represented in the form of tensors ℎ(0), ℎ(1), . . . , ℎ(𝑛). The first term, ℎ(0) , is an offset to the global 

https://paperpile.com/c/zoiFHg/Kvpb
https://paperpile.com/c/zoiFHg/39gQ
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energy that does not influence the states of the system, ℎ(1) is a vector of bias terms to the states 
of each droplet, ℎ(2) is a matrix of two-droplet coupling terms, ℎ(3) is a tensor containing three-
droplet coupling terms, and so on. The 3-SAT problem can be converted to an Ising model with 
up to three-body interaction terms, while the lattice-protein model contains up to four-body 
interactions. As discussed earlier, the hybrid classical-molecular computer can handle 
interactions of any order (requiring n droplets for n-body terms), while the purely molecular 
computer will be limited to nearest-neighbour two-droplet interactions due to the limited 
connectivity between the droplets. It is, however, possible to convert higher-order interactions 
such as three- and four-droplet to two-body interactions by introducing ancillary states in the 
system (40). While our model of the hybrid classical-molecular computer can process any order 
of many-body interactions, we used the two-body representation of the lattice-protein model that 
includes ancillary states. 
 
To simulate the annealing process of the droplet-array, we use an iterative procedure. In each 
step, the state of the system is read, all gradients acting on the states in terms of bias potentials 
(ℎ(1)) and many-body interactions (ℎ(2)to ℎ(𝑛)) are calculated and changes to states are applied 
with a finite step size. We run the procedure in two modes, ensemble annealing mode and 
trajectory mode. In the ensemble annealing mode, we run many short annealing simulations from 
random initial states and analyse the statistics of the final states or search for the global optimum. 
In contrast, in trajectory mode, we run one instance of the molecular computer over a large 
number of steps but add a certain level of noise on the gradients to overcome barriers between 
local optima. Potentially, to overcome kinetic trapping, the hybrid classical-molecular computer 
could benefit from accelerated sampling methods developed for droplet dynamics simulations, 
e.g., basin-hopping, metadynamics and umbrella sampling. 

3.2 Application 1: Boolean satisfiability 
In order to solve Boolean satisfiability problems such as the 3-SAT problem with our 
computational model of the hybrid classical-molecular computer, it is necessary to convert it from 
its conjunctive normal form (CNF) to an Ising model (see Appendix). In the case of 3-SAT 
problems, the Ising model will contain up to three-body coupling terms, which requires 
connectivity that goes beyond that of a purely molecular computer. We tested the satisfiability of 
random 3-SAT problems with 𝑁 variables and 𝑀 unique clauses of 𝑘 = 3 literals and compared 
the results to solutions obtained using the Davis-Putnam-Logemann-Loveland (DPLL) algorithm 
(41) (see Figure 2a). The results are shown in Figure 2b, where we observe a transition from a 
high probability of a problem being satisfiable when clause density, i.e., the ratio of 𝑀/𝑁, is small 
to a low probability at large 𝑀/𝑁 ratios. The results obtained with the simulation are in good 
agreement with the results obtained using the (exact) DPLL algorithm. 
 

https://paperpile.com/c/zoiFHg/V7zM
https://paperpile.com/c/zoiFHg/OStL
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Figure 2. a) Illustration of two methods to solve the 3-SAT problem. b) Probability of satisfiability 
as a function of clause density (ratio of clauses and variables) for a random 3-SAT problem, 
showing agreement between the simulated hybrid classical-molecular computer (HCMC, solid 
lines) and the solutions of the Davis-Putnam-Logemann-Loveland (DPLL) algorithm. Each point 
is the average of up to 10000 3-SAT problems. 

3.3 Application 2: Lattice protein model 
As a second application, we tested the simulated hybrid classical-molecular computer on the two-
dimensional lattice protein model presented in Refs (42, 43). The proteins in this model consist of 
a sequence of amino acids that can fold onto a two-dimensional square lattice. The protein 
conformation is represented as a sequence of turns, where each turn is encoded by two bits (00: 
down, 01: right, 10: left, 11: up, see Figure 3a and 3b for a description and an example of a 
folding). 
 
The energy of each conformation contains two terms: clashes of two amino acids are penalized 
with positive terms of size 𝜆 whereas attracting interactions between specific amino acids (𝑖 and 
𝑗, |𝑖 − 𝑗| > 1) are rewarded with negative energy terms 𝜖𝑖𝑗 in case amino acids 𝑖 and 𝑗 are direct, 
non-diagonal neighbours (native contact). We can construct an Ising Hamiltonian with up to four-
body interactions that encodes both types of interactions. This requires ancillary bits that activate 
and deactivate depending on the state of the bits that encode the physical conformation of the 

https://paperpile.com/c/zoiFHg/vZe9+Al5S
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protein. The overlap parameter 𝜆 can be chosen in a way that the energy spectrum of the protein 
model and thus of the Ising Hamiltonian has negative or zero energies for all conformations 
without clash and positive energies for all other conformers. The global ground state of the 
Hamiltonian yields the protein conformation in which the highest possible number of native bonds 
are formed. Non-clashing conformers with fewer or less strong native bonds are local optima with 
energies smaller than zero, whereas non-clashing conformers without any native bond formed 
have zero energy (“unfolded”). 
 

 
Figure 3. Lattice protein model simulated on the molecular computer. a) encoding of each link in 
the amino acid chain as two bits, b) an example 5-link chain with the corresponding sequence of 
bits, c) results of a simulation for a 6-link chain, where each curve corresponds to an instance of 
random initialization followed by annealing to a local minimum, with the corresponding folded 
configuration. The ground state configuration, with an energy of -6, is shown in the lower right 
corner.  
 
As described in Section 3.1, the simulated hybrid classical-molecular computer is capable of 
solving Ising models with four-body interactions, whereas any purely molecular computer will only 
have local connections that can encode up to two-body interactions. There, the four-body Ising 
model of the protein was converted to a two-body Ising model, which requires the introduction of 
further bits (“reduction bits”). This procedure is described in Ref. (42). The results of annealing 
simulations of the lattice protein model are shown in Figure 3c. Selected trajectories that ended 
at low energy conformations show the energy as a function of the step number. Formation of 
native contacts, as well as annealing of the ancillary bits, reduce the total energy of the system. 

https://paperpile.com/c/zoiFHg/vZe9
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The final states shown in Figure 3c are local optima of the Hamiltonian. The barriers between 
these local optima are considerably higher than the energy differences between the local optima 
(further details are provided in the SI), which makes it impossible for a (stochastic) gradient 
descent algorithm to overcome the barrier between local and global optima. To find the global 
optimum and, thus, the ground state of the protein, it is necessary to run many instances of the 
molecular computer. No speed-up can be expected compared to an algorithm that searches 
through all 2K states of the protein, with K being the number of bits that encode the physical 
conformation of the protein (K = 7 in our example). 

4. Future: purely molecular computer  
Ultimately, we envisage a purely molecular version of the droplet-array computer that anneals to 
a ground state configuration solely by the physical and chemical interactions between droplets. 
In the absence of an external classical computer to enforce droplet-droplet couplings, the problem 
must be pre-programmed into the contents of the droplets and the interactions of neighbouring 
droplets. These programmable couplings can take place via mass exchange (diffusion, biological 
membranes) or energy exchange (excitons, Förster resonance energy transfer (FRET) (44)).  
 
Such a system benefits from the complete parallelization of the problem. For a QUBO problem, a 
hybrid computer still requires that, at each step of the optimization, a classical computer calculates 
𝑛2 terms representing the pairwise energies of the 𝑛 variables, and even more for problems with 
higher-order terms. A purely molecular computer would implement these couplings 𝑛  times 
faster since all pairwise interactions occur simultaneously, in 𝑂(𝑛) time. 
 
Rather than using a classical computer to perform stochastic gradient descent, as we did in the 
hybrid version of the device, the system is driven, kinetically and thermodynamically, to its ground 
state. The key is to select the appropriate reactions and chemicals. A few proposed mechanisms 
are detailed in Section 5. 
 
While the hybrid computer does not make use of the spatial arrangement of the droplets, in the 
purely molecular version, each droplet is connected only to those droplets with which it can 
physically interact. A problem must therefore be mapped to this graph using minor-embedding 
techniques to address the sparse connectivity (45, 46).  
 
Additionally, this device can only implement two-body terms, which means auxiliary ancilla 
droplets are needed for reducing k-local problems (PUBO) to a quadratic expression (QUBO). 
Such algorithms are commonly used to map problems to various quantum devices such as the 
D-WAVE quantum annealer and the Rigetti quantum computer (40, 47).  

𝐻 = 𝑐 + ∑ℎ𝑖𝑠𝑖

𝑁

𝑖

+ ∑𝐽𝑖𝑗𝑠𝑖𝑠𝑗

𝑁

𝑖<𝑗

 

In the following section, we discuss practical considerations for building a physical device.  

https://paperpile.com/c/zoiFHg/1rtA
https://paperpile.com/c/zoiFHg/bEeA+SdpR
https://paperpile.com/c/zoiFHg/V7zM+8hc3
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5. Implementation 
Given the requirements above for the hybrid and purely molecular computers, numerous chemical 
systems can be considered as viable candidates. A physical system capable of implementing 
either the hybrid classical-molecular computer or the purely molecular computer should have 
properties that can be precisely defined and measured. Since each droplet will be subjected to 
changing constraints from neighbouring droplets (two-body terms, ℎ(2)) as the computation 
progresses, changes in these properties must be reversible. 
 
Measurable properties of a droplet can be mapped onto a binary variable, for example, by using 
a threshold value. Figure 4 gives two examples of physical properties that can be used to 
represent a droplet as a binary variable, namely polymer molecular weight distribution and pH. 
Other candidate properties include the concentration of a reagent, oxidation states, and colour. 
The state of each droplet can be read out in a non-interfering manner via optical or 
electrochemical means. For example, pH-sensitive dyes or ion indicators can be used to read out 
a fluorescence signal proportional to the pH or ion concentration in each droplet in the array (48). 
Functionalized electrode arrays can be used to address individual droplets and determine their 
pH. Fluorescent dyes sensitive to gelation or viscosity changes can be used to indicate the 
presence of polymer (49).  
 

 
Figure 4. Two approaches to representing a droplet as a binary variable: in a), polymerization 
and depolymerization giving different molecular weight distribution, and in b), redox reactions 
altering the pH of the droplet.  
 
One of the most versatile ways to form the basis of computing bits for the hybrid classical-
molecular computer is using the pH of a droplet, by converting the logarithmic pH scale to a binary 
variable. The pH of a droplet can be reversibly adjusted using several chemical reactions, such 
as the addition of acid or base or by tuning electric potentials to drive redox reactions that generate 
or consume H+.  
 
In the hybrid classical-molecular computer, the inter-droplet couplings, whose nature and strength 
correspond to the problem being optimized, are enforced by an external control algorithm. In the 
purely molecular computer, these couplings should be pre-programmed into the inter- and intra-

https://paperpile.com/c/zoiFHg/2JR5
https://paperpile.com/c/zoiFHg/RXJ0
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droplet interactions. Information between neighbouring droplets can be shared via mass transfer 
or energy transfer. The former relies on the movement of molecules across the droplet 
membranes, which can take place through passive diffusion across the interface, by 
electrophoretic motion, or via pores installed in the membranes to enhance the rates of transport 
between droplets (50, 51). The latter energy transfer-based system could eliminate these 
considerations by allowing for inter-droplet communication without mass transfer. 
 
To execute either version of the molecular computer, we must achieve precise control over droplet 
placement. Microfluidic-based robotic platforms, as well as inkjet printers, can be used to generate 
droplets with precise compositions and to place them in square or hexagonal packed arrays. In 
this way, the droplets can be situated on electrode arrays for external control of droplet couplings 
or the readout of droplet states. The states of the droplets can be determined via optical or 
electrochemical readout using the means mentioned above. For the hybrid classical-molecular 
computer, this readout can be sent to a classical computer that can implement the necessary 
couplings. The classical computer can manipulate the droplets through external stimuli (optical 
and electrochemical control) based on the set couplings. This control loop would continue until 
the problem reaches a minimum energy state. For the purely molecular computer, the couplings 
are pre-programmed into the droplet interactions, removing the need for a classical computer to 
impose these couplings.  

6. Discussion 
6.1 Problem scaling analysis of molecular computer 
An essential factor in the choice of problems to solve on the microdroplet-array computer is how 
the number of droplets needed scales with the number of variables in the problem. Compared to 
quantum annealers, which are constructed using Josephson junctions cooled to near absolute 
zero temperature, the cost of adding droplets to the molecular computer is negligible compared 
to the overall cost of the setup.  
 
Since the molecular computer takes Ising parameters as input, any problem that can be efficiently 
encoded in a spin Ising system can also be efficiently implemented on a microdroplet array 
computer. As far as we know, the parallelization of chemical reactions across all droplets could 
give the molecular computer an advantage over numerical gradient evaluations in a classical 
computer or GPU.  
 
In Figure 1c and 1d we plotted the scaling of four types of problems that can be represented by 
an Ising Hamiltonian and solved on either the hybrid or the purely molecular computer (36). They 
include the two applications given in the main text, boolean satisfiability and lattice protein folding, 
as well as the traveling salesperson (e.g. searching for the shortest path between a set of cities.) 
 
Recall that the hybrid version of the molecular computer is fully connected and allows for k-local 
terms (higher-order expressions involving k variables). The purely molecular computer, on the 
other hand, is limited to 2-local, nearest-neighbour connections. Therefore the scaling formulas 
account for ancilla bits used in embedding and locality reduction algorithms.  

https://paperpile.com/c/zoiFHg/F015+ZAae
https://paperpile.com/c/zoiFHg/39gQ
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On the hybrid computer, boolean satisfiability for k variables per clause (k-SAT) scales as 𝑂(𝑛) 
since each variable corresponds to one droplet. For three or more clauses, the problem is NP-
complete. To reduce a 3-SAT problem to an Ising Hamiltonian (2-local), we need (𝑛 − 1)2/4 
ancilla droplets (40). The traveling salesperson is a significant problem for logistical optimization. 
Given 𝑛 nodes (“cities”), we require 𝑛2 droplets to account for the sequence as well as labels of 
the cities visited, so the number of droplets scales as 𝑂(𝑛2) (36). The mapping involves only 
quadratic terms (2-local), so it can be directly implemented on the purely molecular computer. 
Lastly, the lattice protein problem is the most complex since the Hamiltonian must encode self-
avoidance constraints as well as interactions between neighbouring amino acids  (42, 43). It 
scales as 𝑛2𝑙𝑜𝑔(𝑛). We note that the scaling of the described problems is at most polynomial in 
the length of the input. 
 
It has been shown that embedding QUBO problems on a sparsely connected graph scales linearly 
with the number of variables in the problem (47).  

6.2 Advantages of the molecular computer 
With a fully-realized molecular computer, there will be many advantages compared to 
conventional silicon-based computers, as well as compared to many other recent proposed 
computing architectures. If some of the proposed mechanisms in previous sections could be 
realized, we believe that a molecular computer to be particularly well-suited to solving 
combinatorial optimization problems, including some NP-problems. 
 
Comparison to classical computation: Since the rules of classical physics still govern the 
operation of a molecular computer, we do not believe it will be more efficient than classical 
conventional computers in terms of time or space scaling. There are nevertheless many 
advantages to using chemical reactions for solving specific types of problems such as discrete 
optimization. First, this approach removes the need for physically defined, atomic-sized circuits. 
The molecular computer benefits from the intrinsic parallelization of chemical reactions, effectively 
solving a system of differential equations of motion in parallel and remove the need for memory 
to store each step of the optimization process. The computation speed is, however, limited by the 
intrinsic speed of droplet motions and chemical reactions, nuclear rearrangements being orders 
of magnitude slower than electronic rearrangements in the Born-Oppenheimer approximation. 

 
Comparison to biomolecular computation: The droplet-array molecular computer also has 
advantages over biomolecular methods, such as DNA computing and cellular signaling, with 
faster operation speed, fewer errors, and significantly less complexity than biological cells. There 
is no need for post-processing or offline analysis of the chemical content, allowing for immediate 
readout. Droplet-array initialization, computation through annealing, and optical readout are all 
fast and automatable processes. The phase space of chemical reactions, mechanisms, reagents, 
is extensive. The contents of each droplet can be cost-effective, widely available, and safe 
materials.  
 

https://paperpile.com/c/zoiFHg/V7zM
https://paperpile.com/c/zoiFHg/39gQ
https://paperpile.com/c/zoiFHg/vZe9+Al5S
https://paperpile.com/c/zoiFHg/8hc3
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Comparison to quantum computation: In recent years, quantum computing has gained much 
attention due to the potential for solving problems that are intractable for classical Turing 
machines. These include encryption (prime factorization), quantum chemistry, as well as the 
optimization problems described above. However, with quantum entanglement and superposition 
come challenges in error correction, noise and decoherence, and qubit scaling, which must be 
overcome before quantum computers attain their full potential. The droplet-array, on the other 
hand, is easily scalable through inkjet printing. The cost of adding additional droplets, representing 
bits, is negligible compared to the cost of the overall experimental setup (38). As well, there is 
little experimental overhead to operate the molecular computer, since we can select for chemical 
reactions that take place at or near room temperature. Information storage would also be trivial 
since the output of a calculation can be printed onto a piece of paper for future readout.  

7. Conclusion 
In sum, we have proposed a new heuristic method for computation with programmable droplet- 
arrays to solve combinatorial optimization problems. The device consists of a two-dimensional 
array of microdroplets that represents a set of interacting binary variables that evolve under an 
Ising Hamiltonian. Each droplet corresponds to one variable, whose value is determined by 
measuring a specific property of the droplet. A specific problem is solved by programming the 
intra-droplet contents and inter-droplet interactions. As the system evolves collectively, the droplet 
states approach the optimal solution of the problem through a process akin to annealing in 
materials.  
 
D-WAVE first adopted a quantum version of this approach; more recently, a classical digital 
annealer by Fujitsu. To our knowledge, this is the first proposal of a molecular computer operating 
in annealing mode. In its purely molecular version, the microdroplet-array computer benefits from 
all of the advantages of computing with molecules: concurrent information processing and 
storage, massive parallelization of chemical reactions, energy-efficient processes, vast phase 
space of molecules and reactions, cost-effectiveness, and scalability of the device.  
 
As a stepping stone to a purely molecular computer, we first developed a hybrid model where a 
classical computer imposes the parameters of the optimization problem, and the information 
processing and storage is carried out by the individual droplets in the array. Throughout numerous 
iterations, the classical computer takes in the set of droplet states and performs a stochastic 
gradient descent algorithm to search for the optimal ground state using the droplets. A simulation 
of the hybrid classical-molecular computer demonstrated its ability to solve two NP-hard 
problems, reproducing the phase transition in boolean satisfiability (3-SAT) as a function of clause 
density, and identifying the ground state configuration in a lattice protein folding problem. 
 
Our next step is to perform these calculations on a physical hybrid classical-molecular computer. 
The challenge of identifying suitable chemical reagents and reactions to program the 
microdroplet-array can be facilitated with machine learning and high throughput experimentation. 
We would also employ robotics and computer vision to operate the device. In due course, we 
shall tackle droplet miniaturization to scale up to thousands and eventually millions of droplets. In 

https://paperpile.com/c/zoiFHg/imdv
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the ultimate limit of this technology, we imagine a molecular computer operated by inkjet printing 
a problem onto a sheet of paper; by the time the ink dries, the problem is solved and imprinted 
onto the sheet.  Applying the same concept to a 3D printed ink may open a novel route for 
manufacturing large scale assemblies of matter with nanoscopic precision. 
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A. Boolean Satisfiability: Conjunctive Normal Formula to Ising 
Hamiltonian 

A k-SAT Boolean formula of N variables consists of M clauses of k literals each. An 
example of a 3 variable 2-SAT in conjunctive normal form (CNF) is: 

( 𝑥 or 𝑦 ) and ( 𝑦 and not 𝑧 ) 
 
To convert this expression into an Ising Hamiltonian, we represent each Boolean variable 
as a spin, 𝑠𝑖 ∈ {−1,+1}, 𝑖 = 1,… ,𝑁. 
 
 
First, define a clause matrix: 
 

{
𝑤𝑗𝑖 = 1 , if clause 𝑗 includes 𝑠𝑖

𝑤𝑗𝑖 = −1 , if clause 𝑗 includes not 𝑠𝑖
 

 
 
Then each clause indicator:  

𝑣𝑗 =
1

2𝑘
∏(1 − 𝑤𝑗𝑖𝑠𝑖)

𝑁

𝑖=1

 

  
 
The overall Hamiltonian becomes:  
 

𝐻𝑘−𝑆𝐴𝑇 = ∑𝑣𝑗 =
1

2𝑘

𝑀

𝑗=1

∑∏(1 − 𝑤𝑗𝑖𝑠𝑖)

𝑁

𝑖=1

𝑀

𝑗=1

 

  
 
When the CNF is satisfied, 𝐻𝑘−𝑆𝐴𝑇 = 0. For 𝐻𝑘−𝑆𝐴𝑇 > 0 , the value of 𝐻𝑘−𝑆𝐴𝑇 gives the 
number of violated clauses.  
 
To use binary variables 𝑥𝑖 ∈ {0,1} instead of spin variables, we can use a simple 
transformation (1-2):  
 

𝑠𝑖 = 2𝑥𝑖 − 1  or  𝑥𝑖 =
1

2
(𝑠𝑖 + 1) 
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B. Example 1: a four-droplet system 

To illustrate how the molecular computer works, consider the following satisfiability 
problem of five clauses, each with two variables per clause (2-SAT). Although the 2-SAT 
problem is in P and not NP, it is the simplest and easiest to illustrate how the device 
operates.  

In conjunctive normal form:  

( 𝑠1 or 𝑠2 ) and ( 𝑠2 𝑜r not 𝑠3 ) and ( 𝑠3 or 𝑠4 ) and ( not 𝑠4 or 𝑠1 ) and ( not 𝑠2 or not 𝑠4 )  

or  ( 𝑠1 ⋁ 𝑠2 ) ⋀ ( 𝑠2 ⋁  ! 𝑠3 ) ⋀ ( 𝑠3 ⋁ 𝑠4 ) ⋀ ( ! 𝑠4 ⋁ 𝑠1 ) ⋀ ( ! 𝑠2 ⋁ ! 𝑠4 ) 

Figure S1 shows how this calculation would be implemented in a four-droplet system, 
using our simulation of a hybrid classical-molecular computer.    

The problem is first mapped to an Ising Hamiltonian, according to the procedure 
described in Section A above. 

𝑯 = 𝒉(𝟎) + ∑𝒉𝒊
(𝟏)

𝒔𝒊

𝒊

+ ∑𝒉𝒊𝒋
(𝟐)

𝒔𝒊𝒔𝒋

(𝒊,𝒋)

 

 

ℎ(0) =
5

4
 

 
ℎ(1) = [−2 −1 0 1] 

 

ℎ(2) = [

0 1 0 −1
1 0 −1 1
0 −1 0 1

−1 1 1 0

] 

 
These arrays are entered into the control algorithm of the computer software. To run a 
calculation, we first randomly initialize each droplet state (Figure S1 panel b)). The 
control algorithm takes in the droplet states (panel d)), then computes the gradients on 
each droplet based on the Hamiltonian above (panel e)). These gradients are delivered 
to the droplets via changes in electric potential, for example. Over a number of 
iterations, the system reaches a minimum energy state and stops when the gradients 
reach zero. The final state is rounded to the nearest integer value, −1 or +1 and the 
result is read out, after a change of basis from ±1 to 0,1 (panel d)). In this case, a 
solution of 𝑠1 = 1, 𝑠2 = 0, 𝑠3 = 0, 𝑠4 = 1 satisfies all of the clauses in the formula given 
above. 
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Figure S1 - Example of a 2-SAT problem of 4 variables with 5 clauses. In a) the clauses 
are indicated by the lines connecting the droplets (yellow for “positive” coupling, blue for 
“negative”). Panel b) gives the random initialization of the problem, giving each droplet an 
initial value between -1 and +1. The steps of the optimization process are simulated in 
the lower two panels: at each step, the droplet states are measured, and shown in d), and 
in e) the gradients calculated based on the Ising Hamiltonian. Once the system has 
reached a minimum, the final droplet states are mapped to a bit value of 0 or 1. (𝑠𝑖 ∈

[−1,0) → 𝑥𝑖 = 0, 𝑠𝑖 ∈ (0,1] → 𝑥𝑖 = 1). One solution to the CNF is shown in panel c). 
 

 

Clause (𝑠1⋁ 𝑠2) (𝑠2⋁ ! 𝑠3) (𝑠3⋁ 𝑠4) (! 𝑠4⋁ 𝑠1) (! 𝑠2⋁ ! 𝑠4) 

Check 
solution 1 or 0 0 or ! 0 0 or 1 ! 1 or 1 ! 0 or ! 1 

 True True True True True 
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C. Barriers in the lattice protein model 

 
In order to investigate whether or not a (stochastic) gradient descent model will be able 
to escape local minima, we analysed the energy landscape between local minima using 
constrained optimizations at states between the optima. In particular, we interpolated 
between the ground state conformation with an energy of -6 (lower left) and a non-
clashing, unfolded conformation with an energy of 0 (upper left). The energy barrier on a 
linear interpolation between the two states that only differ by one bit (Bit #7) is higher than 
90, which is considerably more than the differences between all valid conformations (E = 
-6 to E = 0). Interpolations of other bitflips show the same results (3). 
 

 

Figure S2 - a) Energy landscape between four configurations of the lattice protein. The 
energy differences at the edges (shown next to the heatmap) are considerably lower than 
the barrier height between them. b) The energy of the system on a line between the 
unfolded state 0001010 and the folded state 0001011 (Bit #1 is 0). 
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D. Example 2: Mapping bits to a hybrid and a purely-molecular 
computer for 9 variables 

 
Here we give an example of how a Boolean satisfiability problem can be mapped to the 
hybrid computer and the purely-molecular computer implemented on two lattices. For the 
purposes of easily illustrating the relation between the variables, we will use a 2-SAT 
problem (9 variables, 17 clauses). The CNF is:  
 

(1 ∨  4)  ∧  (! 2 ∨  5)  ∧  (! 3 ∨  ! 9)  ∧  (! 2 ∨  4)  ∧  (! 3 ∨  5)  ∧  (6 ∨  ! 9)  ∧  (! 3 ∨  7)  ∧ 
(! 4 ∨  8)  ∧  (2 ∨  9)  ∧  (7 ∨  ! 8)  ∧  (! 2 ∨  ! 6)  ∧  (1 ∨  6)  ∧  (! 4 ∨  5)  ∧  (2 ∨  5)  ∧  

(! 4 ∨  9)  ∧  (3 ∨  4)  ∧  (! 2 ∨  3) 

 
which can be represented as an Ising Hamiltonian with the bias, one-body, and two-body 
term coefficients:  
 

𝐻 = ℎ(0) + ∑ℎ𝑖
(1)

𝑠𝑖

𝑖

+ ∑ ℎ𝑖𝑗
(2)

𝑠𝑖𝑠𝑗
(𝑖,𝑗)

 

 

ℎ(0) =
9

2
 

 

ℎ(1) =
1

4
[−2 3 1 0 −4 0 −2 0 0] 

 

ℎ(2) =
1

8

[
 
 
 
 
 
 
 
 
0 0 0 1 0 1 0 0 0
0 0 −1 −1 0 1 0 0 1
0 −1 0 1 −1 0 −1 0 1
1 −1 1 0 −1 0 0 −1 −1
0 0 −1 −1 0 0 0 0 0
1 1 0 0 0 0 0 0 −1
0 0 −1 0 0 0 0 −1 0
0 0 0 −1 0 0 −1 0 0
0 1 1 −1 0 −1 0 0 0 ]

 
 
 
 
 
 
 
 

 

 
 
In Figure S3 we first represent this 2-SAT problem first as a graph and then show how to 
physically place this problem on a molecular computer (hybrid and purely-chemical 
versions). Since the hybrid classical-molecular computer is fully connected and relies on 
a classical computer to enforce the inter-droplet couplings, the droplets can be placed 
anywhere, in any order. For the purely-molecular computer, depending on the lattice, 
square or hexagonal, each droplet can be coupled to four or six nearest-neighbour 
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droplets. To overcome the spatial and connectivity constraints, we require minor 
embedding techniques and ancilla bits. For example, in Figure S3 c) the square lattice 
has an extra droplet for bits 3, 4, and 6. Although this invariably increases the size of the 
system, it ensures that all droplets can be pairwise coupled (4).  

 

Figure S3 - Mapping a 9-variable 2-SAT problem onto a hybrid and purely-molecular 
computer. a) graph representing the problem, with “positive” couplings in yellow and 
“negative” couplings in blue, and its mapping to droplets on b) a hybrid computer, c) a 
purely-molecular computer on a square and hexagonal lattice. 
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