Inorganic crown: the host–guest chemistry of a high nuclearity ‘Celtic-ring’ isopolyoxotungstate \([H_{12}W_{36}O_{120}]^{12−}\)†

De-Liang Long, Oliver Brücher, Carsten Streb and Leroy Cronin*

Received 9th November 2005, Accepted 2nd February 2006

First published as an Advance Article on the web 3rd May 2006

DOI: 10.1039/b515935k

A range of complexes based on the high-nuclearity \([W_{36}]\) isopolyoxotungstate cluster, \([H_{12}W_{36}O_{120}]^{12−}\), with a triangular topology has been isolated by using the organic cation, protonated triethanolamine. In analogy to an 18-crown-6 crown ether with six oxygen donors on a ring, the cluster can form alkali and alkaline earth metal complexes \(\{M⊂W_{36}\} (M = K^+, Rb^+, Cs^+, NH_4^+, Sr^{2+} \text{ and } Ba^{2+}, 1–6, \text{ respectively})\). Compounds 1–6 were characterized by single-crystal X-ray diffraction, elemental analysis, IR spectroscopy. Comparisons between the structures of 1–6 and 18-crown-6 as well as the symmetry directing influence of the organo-cations in the isolation of the overall cluster architecture are discussed.

Introduction

The self-assembly of clusters based on molybdenum, tungsten or vanadium oxo anions gives rise to an almost unrivalled range of polyoxometalate cluster anions. The versatile nature of these clusters originates from the ability to polymerize metal-based polyhedra to form a range of clusters from low to high nuclearities.1 In particular, the ability for molybdenum- and tungsten-based systems to form very large clusters has been demonstrated by a number of nano-sized cluster systems with over 100 tungsten2 and molybdenum3–4 atoms in a single cluster molecule. Therefore it is not surprising that polyoxometalates have been subjected to a vast number of studies due to their attractive electronic and molecular properties that give rise to a variety of applications e.g. in catalysis,5–6 magnetism,7–8 and materials science.9–15 Despite this great range of cluster types and properties, the ability to assemble large cluster systems from smaller known building blocks in a pre-determined way is a great challenge, as such routes could be a direct way to systematically control the overall cluster architecture and properties. This is because the understanding and manipulation of the self assembly processes that underpin the formation of POM clusters has to be an attractive route to enable the design of designer clusters and multifunctional materials, which take advantage of the unique physical properties associated with this extraordinary class of molecules.1

The true enormity of this challenge can be further clarified when one realizes the main route to synthesize POM clusters (large or small) often employs ‘one-pot’ reactions1–4 Therefore, the manipulation of some of the many reaction parameters often represents a straightforward, but rather tedious, route to new, self-assembled POM architectures. To overcome such problems, the design of larger architectures (based on clusters) using POM building blocks as synthons could provide a step change in the design and assembly of such systems. This is because the ability to assemble large cluster systems from smaller known building blocks could be a direct way to systematically control the overall cluster architecture and properties while retaining the geometries of the building blocks. Thus, such building blocks of well-defined shape and connectivity might form the basis for work towards the growth of nanoscopic clusters of predetermined structure and function.16 However, the major problem with this approach lies in establishing routes to produce reactive building blocks present in solution in significant concentrations that can be reliably utilized in the formation of larger architectures, without re-organizing or isomerization to other fragments. Access to such building blocks has been the major limitation in stepwise growth of W- and Mo-based POM clusters. Such limitations may be circumvented by adopting an approach that kinetically stabilizes the building block in solution, thereby effectively preventing its reorganization to other structure types.17–21

One possible route to this goal is to use bulky organic cations to isolate a new structure type by virtue of the cations used to ‘encapsulate’ the new building blocks, thereby limiting their reorganization to simpler structural types.17–21 By trapping clusters during the self-assembly process it may be possible to restrain the cluster from reorganizing into other well-known structure types, see Fig. 1. Also, in many cases, synthetic strategies to W- and Mo-based cluster systems are guided by the fact that structures of polyoxomolybdate clusters are frequently derived from highly stable, low-nuclearity structural archetypes such as the \(O_6\)-symmetric Lindqvist\(^{22}\) anion \([Mo_6O_{19}]^{3−}\) and the various

Fig. 1 A schematic showing the ‘encapsulation’ of the \([H_2Mo_16O_{52}]^{12−}\) cluster units during the cluster assembly process (shown schematically by the central view within the dotted circle) in the presence of the bulky organo-cation HMTAH (protonated hexamethylenetetramine).
between the four central W1 groups also display a distorted WO6 octahedral coordination geometry, each sharing four bridging oxo ligands in the equatorial plane with the W11 cluster subunits; one W=Oav (W–O ∼1.70 Å) points to the central potassium ion and one water ligand (W–OH2 ∼2.20 Å) points outside the cluster. The potassium ion has a rather distorted coordination geometry and is coordinated by 10 oxygen atoms; four of these 10 are water ligands (K–O distances are in the range 2.75(2) and 3.03(2) Å) the other six are Oterm ligands coming from the WO6 moieties. The potassium ion is displaced slightly above the equatorial plane, formed by the six Oterm ligands, with three water molecules coordinating from above (RHS inset on Fig. 2), and one below the equatorial plane (LHS inset on Fig. 2). Overall the coordination geometry of the potassium ion can be described as a distorted polyhedron with 10 vertices, 16 faces and 24 edges and can be considered to be a kind of distorted dipyramid.

It is interesting to see that the six WO6 moieties, which form the cluster cavity in which the potassium ion is ligated, map extremely well onto the structure of the crown ether 18-crown-6. Using this observation as inspiration, we have extended our investigations to see how far this analogy can be taken. The present work extends this initial observation and focuses on the investigation of the host–guest chemistry of this new W6 cluster by extending its potassium ion complex to other alkali and alkali-earth metal ions.

Results and discussion

Synthesis of W6 derivatives with alkali and alkali-earth metal cations

The W6 cluster was initially isolated from an aqueous solution containing NaWO4, 2H2O and triethanolamine, which was adjusted to a pH of 2.0 with hydrochloric acid followed by the addition of Na2S2O7 as reducing agent. As revealed by X-ray crystallographic studies, the product has an approximate formula of (TEAH)9Na2(H2O)4K⊂[H12W36O120]⊂[H12W36O120]−17H2O (1). Although there was no potassium added to the reaction mixture, the X-ray crystallographic data clearly supports the unambiguous assignment of a K+ ion coordinated to the central cavity of the cluster. Therefore the small amount of potassium needed to produce the cluster compound 1 was assumed to originate from...
the glassware used. This assumption was confirmed by atomic absorption analysis on the postulated \{K\subset W_{n}\} system, which indeed revealed the presence of potassium at the required concentration. The slow sequestration of potassium from the glassware was also supported by the observation that it took over four weeks for the product to form in the initial synthetic system, whereas the addition of potassium directly to the reaction mixture reduces this time to only a few days. Subsequent studies also demonstrated that no product was obtained when plastic flasks were used for the original reaction system. Furthermore the experiment confirmed that the addition of Na\textsubscript{2}S\textsubscript{2}O\textsubscript{4} is not necessary for the formation of the cluster 1, although the addition of Na\textsubscript{2}S\textsubscript{2}O\textsubscript{4} can form a more soluble reduced polyoxotungstate at the starting point, and this serves to prevent precipitation of insoluble polymers. However we have now discovered that warming of the solution can also prevent precipitation of the intermediates whilst the pH is lowered to the crystallization pH for compound 1.

Comparisons between the \{W_{n}\} cluster anions, crown ether chemistry and other polyoxometalates

Today the design of highly sophisticated macrocycles based on polyethers, the crown ethers, is continuing to accelerate since their first discovery by Pederson in the mid-1960s.27,28 This is because they are an extremely important class of molecules capable of recognition and binding of cations. They are able to form selective and stable complexes with various cations, most notably metal ions, and their selectivity as complexing agents results from the definite size of the crown cavity, which only accepts cations of comparable ionic radii. The well known 18-crown-6 ether for instance, has an estimated cavity radius of 2.6–3.2 Å and is most suitable for complexing K+, NH\textsubscript{4}+ and Rb+, but is also known to bind to other metal cations.28 As such, the crown ethers find ubiquitous application from ionophores in cation sensing, to phase transfer catalysis in chemical synthesis, to chiral separators in chromatography to name but a few.29–31

During the last two decades chemists realized that the size selectivity, so effectively applied by crown ethers in the differentiation and complexation of cations, could also be utilized to recognize, design, and apply inorganic ring-type compounds that resemble organic crown ethers for binding cations. Notable examples are reported by Pecoraro et al. such as [Mn\textsubscript{11}(salicylhydroximate)]\textsubscript{12–32} \(\text{[C}_{4}\text{H}_{9}\text{N}_{8}\text{O}_{10}\text{Cu,Sm}]^{13}\) and [Cu\textsubscript{n}(picha)], (picha = picoline hydroxamic acid),30 which are often referred to as metallacrowns. This comparison may also be made with the \{W_{n}\} cluster, which in analogy to 18-crown-6, has a very similar cavity radius of ca. 2.8 Å, see Fig. 3.

Polyoxometalates can also encapsulate metal ions such as potassium in a \{W_{n}\} cluster,31 but in the absence of

\[\text{[W}_{12}\text{O}_{38}\text{H}_{6}]^{2–} \]

as a further internal control, samples of the reaction mixtures, without added metal salt were kept as control samples and were never observed to lead to the formation of the \{W_{n}\} cluster. This indicated that the potassium-free approach was efficient and the results of these investigations are shown below (Table 1).

During the reactions, the \{W_{n}\} cluster emerged as colourless needles of \{W_{n}\}-based clusters 1–6 which were obtained for all

Fig 3 Comparative illustration of the \{W_{n}\} cluster framework and the 18-crown-6 structure (show to scale). W and O atoms shown as blue and red spheres with the crown ether superimposed on O atoms forming the ‘cavity’ of the cluster (these are larger for clarity). The ball and stick structure is also superimposed on the space-filling CPK representation of the \{W_{n}\} to show the central cavity.

Complexes of \{W_{n}\} with Rb+, Cs+, NH\textsubscript{4}+, Sr2+ and Ba2+

As already discussed, the \{W_{n}\}-based cluster type has a similar oxygen coordination environment as in the 18-crown-6 ether and also shows the ability to capture potassium ions from aqueous solution, even though the oxygen atoms that comprise the ‘crown-like’ cavity are terminal oxo ligands rather than the bridging oxo ligands found in both organic-based crown ethers and the metallacrowns.32–34 Extension of this work was relatively straightforward in so far as our experiments were conducted in plastic vessels (to avoid sequestration of potassium from glassware; the potassium originates from the KOH/alcohol base bath used to clean the glassware),26 and the new metal cations added to the solution of the cluster at the correct pH. Interestingly, in the presence of only Na+, the \{W_{n}\} cluster could not be isolated, even if the concentration of Na+ was elevated in the reaction mixture. Therefore experiments, with Rb+, Cs+, NH\textsubscript{4}+, Sr2+ and Ba2+ were carried out as a function of pH, concentration of tungstate, triethanolamine and total ionic strength. By varying these parameters and adjusting an aqueous solution of sodium tungstate and triethanolamine hydrochloride to a certain pH with HCl solution, followed by a short period of heating, the corresponding chlorides of these cations were added to the reaction mixture which was then stored for crystallization. In addition to the use of plastic vessels, special attention was focussed on preventing possible contamination of the reactions with potassium sources (e.g. from the reagents, pH meter etc). As a further internal control, samples of the reaction mixtures, without added metal salt were kept as control samples and were never observed to lead to the formation of the \{W_{n}\} cluster. This indicated that the potassium-free approach was efficient and the results of these investigations are shown below (Table 1).
of the applied cations. For K+, Rb+, Cs+, NH4+, Sr2+, and Ba2+, the reaction condition with a pH of 2.2 seems to be optimal for the formation of the \{Wₙ\} cluster, whereas for Ba2+ no crystals could be obtained (but material quickly precipitates from solution) at this pH value directly. Therefore the Ba2+ compound was produced as follows: the barium chloride was added to the tungstate solution at pH 1.3 and then the pH of the solution was brought up to 2.2 for crystallization. It would appear that a lower pH is needed for the barium chloride to react with the tungstate to form Ba₂{[H12W36O120]}·15H₂O (1).

Structures of compounds 2–6

The structures of all cluster derivatives 1–6 were determined by single-crystal X-ray diffraction. Except that 1 was previously reported,26 crystal structures of 2–6 are included in this paper. All six compounds are essentially isomorphous and crystallize in the same orthorhombic system with space group Pnma. The asymmetric unit contains only half a \{Wₙ\} cluster with a crystallographic mirror plane passing through the cluster and the central coordinated metal ions (K+ to Ba2+). Even though the TEAH+ cation derivatives, see Fig. 4. As revealed by single-crystal X-ray diffraction and chemical analysis, this compound contains one \{Wₙ\} unit and half Ba2+ cations per \{Wₙ\} unit. The extra half Ba2+ cation was found to sit between \{Wₙ\} frameworks and link them together to form 3-D polymers in the solid state, see Fig. 5. This observation also helps explain the poor solubility of compound 6 in water. While compound 3 \{WₙCs\} is the most soluble derivative, compound 6 is only about half as soluble. The decreased solubility of the latter can be explained with the stated linking of the cluster frameworks by the additional Ba2+ ions present in the structure. Interestingly, the terminal oxo ligands of the \{Wₙ\}
cluster that are connected to the polymeric network by the Ba\(^{2+}\) were previously postulated (on the basis of DFT calculations\(^{28}\)) as to be one of the possible sites (high nucleophilicity) for linkage with electrophiles.

Given the \{W\(_n\)\} cluster has a triangular shape (this is unique among the known family of isopolyoxometalates, even though there are a few examples of triangular heteroPOMs, \[\text{P}_1\text{Co}_6\text{W}_2\text{O}_{10}\text{H}_2\]\(^{16-}\), \([\text{Si}-\text{W}_{11}\text{MnO}_{38}\text{OH}]^{15-}\)), with the cavity centre resting on the approximate \(C_3\)-symmetry axis (Fig. 1), it is possible to examine the displacement of the complexed metal ions from the equatorial plane formed by the six terminal oxo-ligands. The degree of displacement from the equatorial plane above or below should reflect the increasing ionic radii of the cations as they fit less well into the cavity. These displacements are pronounced in the metal ion derivatives 1–3 and 4–5, which can be seen in distances between the corresponding central ions and the six surrounding oxygen atoms from the \(W=O\) ligands of the \{W\(_n\)\} crown. These distances are summarized in Table 2 and visualized in Fig. 6.

As seen in the table, the found average metal–oxygen distances in the \{W\(_n\)\} host–guest complexes 1–6 are very close to those shown in the corresponding 18-crown-6 complexes. The metal cations in the synthesized compounds show different distances to the equatorial plane of the cluster framework which reflect the different sizes of their ionic radii, see Fig. 6.

Although there are some great similarities between the \{W\(_n\)\} system and 18-crown-6, there are some features that are not common to both systems. Firstly the six-coordinated oxygen atoms on \{W\(_n\)\} are not planar but in a manner with three oxo ligands up and three down alternatively forming two parallel planes distant at \(\sim 0.5\,\text{Å}\), while those on 18-crown-6 can adopt a planar conformation. Further, the \([W=O]_6\) donor groups of the \{W\(_n\)\} crown are considerably more rigid unlike 18-crown-6, which is much more flexible. This means that 18-crown-6 can deform to form metal complexes with small ions like Na\(^+\), Ca\(^{2+}\), lanthanide ions and d-transition metal ions. This is because 18-crown-6, along with other similar crown ethers is able to distort and wrap itself around these smaller metal cations in an attempt to maximize the electrostatic interactions. This increases the strain of the ligand, which makes these complexes less stable than the ones with metal cations of optimal spatial fit. However, the \{W\(_n\)\} framework, due to its high rigidity, simply cannot change conformation in such a way to bind these metal cations. This is partly confirmed by the observation that the diameter of the central cavity present in the family of \{W\(_n\)\} clusters presented here is very well defined and shows no significant differences in structures 1–6. In addition, other studies also confirmed that small ions cannot be complexed by the cavity present in the \{W\(_n\)\} cluster. This is because we have attempted to synthesize the \{W\(_n\)\} cluster in the presence of Ca\(^{2+}\), lanthanide ions, and first row transition metal ions without success. Although experiments with CaCl\(_2\) also yielded in colourless crystals, the presence of the Ca\(^{2+}\) ion in the cluster cavity could not be confirmed and chemical analysis showed only a low concentration of Ca\(^{2+}\) to be present in the system. In the case of lanthanide ions, the electrophilic nature of these cations appeared to complex rapidly with other tungstate-based species yielding polymeric compound precipitates rapidly upon reaction.

Table 2

Comparison of acquired metal-oxygen distances and displacements of metal ions to the cavity centre in the \{W\(_n\)\} cluster and the corresponding figures for the 18-crown-6 ether (esds are all within 0.02 Å)

<table>
<thead>
<tr>
<th>M(^+)</th>
<th>Ionic radius/Å</th>
<th>Av. (d_{O\text{-}O}/\text{Å}) ({W(_n)} cluster)</th>
<th>Av. (d_{O\text{-}O}/\text{Å}) (18-crown-6)</th>
<th>(d_{M\text{-}c}/\text{Å}) ({W(_n)} cluster)</th>
<th>(d_{M\text{-}c}/\text{Å}) (18-crown-6)</th>
</tr>
</thead>
<tbody>
<tr>
<td>K(^+)</td>
<td>1.38</td>
<td>2.80</td>
<td>2.80</td>
<td>0.70</td>
<td>0</td>
</tr>
<tr>
<td>Rb(^+)</td>
<td>1.52</td>
<td>2.87</td>
<td>2.95</td>
<td>0.84</td>
<td>0.93</td>
</tr>
<tr>
<td>Cs(^+)</td>
<td>1.67</td>
<td>3.16</td>
<td>3.18</td>
<td>1.61</td>
<td>1.47</td>
</tr>
<tr>
<td>Sr(^{2+})</td>
<td>1.18</td>
<td>2.70</td>
<td>2.73</td>
<td>0.53</td>
<td>0</td>
</tr>
<tr>
<td>Ba(^{2+})</td>
<td>1.35</td>
<td>2.82</td>
<td>2.82</td>
<td>0.73</td>
<td>0</td>
</tr>
</tbody>
</table>

Av. \(d_{O\text{-}O}\) is the average distance from M\(^+\) to the six oxo ligands on the ring. \(d_{M\text{-}c}\) is the distance from M\(^+\) to the cavity centre, which is defined as the intersection of the main molecular axis and the equatorial plane defined by the six oxo ligands.

Fig. 6 An overlay of the six structures of 1–6. The top view shows that the framework of \{W\(_n\)\} is basically unchanged as a function of the cation complexed. The bottom view shows the maximum extent of the distortions found for all the complexes characterized; the largest distortions out of the plane upwards was found in compound 3 (Cs-surface in yellow) and downwards was found in compound 2 (Rb-surface in yellow). The front \{W\(_i\)\} unit is omitted in the bottom side view for clarity.
pH and symmetry transferring effects on cluster formation

In our work we have been investigating the formation of new POM cluster types using a number of control parameters, in particular pH, and cation types, and have identified a very strong dependence upon both parameters. Indeed, there have been a number of reports that discuss the syntheses of a range of isopolyoxotungstates where the structural types are precisely controlled by the pH. However there is no system reported previously concerning the uses of water-soluble organic cations to help isolation of new isopolyoxotungstates.

By using TEAH\(^+\) cations, we have also isolated a number of hetero-POM Keggin ions and [H\(_4\)W\(_{11}\)O\(_{38}\)]\(^6\)-, as well as the [W\(_n\)] (see in ref. 26) and a new isopolyoxotungstate [H\(_2\)W\(_9\)O\(_{28}\)]\(^4\)-.\(^47\)

The pH effects on cluster formation in the presence of TEAH\(^+\) cations are summarized in Scheme 1. At pH around 4, the reaction always gives rise to the production of Keggin anion [H\(_2\)W\(_{11}\)O\(_{38}\)]\(^6\)- as main product, however at a lower pH of ca. 2.0, the Keggin ion, [H\(_2\)W\(_9\)O\(_{28}\)]\(^4\)-, can also be produced as a by-product as well as the main [H\(_2\)W\(_9\)O\(_{28}\)]\(^4\)- product. Of relevance to the work reported here, is that all the [W\(_n\)]-based complexes, 1-6 ([H\(_2\)W\(_9\)O\(_{28}\)]\(^4\)-), can only be produced at pH around 2.0 and the yields can be increased if the solution is warmed to dissolve the intermediate tungstate precipitates before the addition of the metal ions. By going to even lower pH values, and by refluxing for longer time, the system produces another new isopolyoxotungstate [H\(_2\)W\(_9\)O\(_{28}\)]\(^4\)- which has a Dawson-like structure of three-fold symmetry but with a [WO\(_x\)] as central template rather than two hetero-tetrahedral [XO\(_x\)] templates.

![Scheme 1 pH effects in the synthesis of new POM clusters with TEA.](image)

One extremely interesting observation we have made in all the work done utilizing the TEAH\(^+\) cations, is that clusters with three-fold symmetry are exclusively produced from the reaction systems. These observations may be entirely circumstantial, but we have isolated over four distinct structure types using the TEAH\(^+\) cations, and this has led us to propose that the TEAH\(^+\) cation is able to transfer its symmetry onto the clusters in solution, see Scheme 2. Indeed, supramolecular interactions between the TEAH\(^+\) cation and the cluster building blocks via the three hydroxyl groups on the TEAH\(^+\) cation, can form H-bonds to intermediate components of the final product and possibly guide their assembly to the overall cluster architecture. The first example we discovered was in the synthesis of reduced molybosulfite cluster [Mo\(_9\)O\(_{24}\)(SO\(_3\))]\(^6\)-, which was produced by the reaction of sodium molybdate with Na\(_2\)SO\(_4\) reducing agent in the presence of TEA at a pH of ca. 4.\(^49\) The cluster anion [Mo\(_9\)O\(_{24}\)(SO\(_3\))]\(^6\)- has a Dawson-like structure with main symmetry of a three-fold axis, which is therefore postulated to be derived from the templating influence of the three-fold symmetric TEAH\(^+\) cation. Although appealing, we treated this idea with a degree of scepticism but this hypothesis is strengthened further by the observation that similar reaction conditions (e.g. pH value, concentrations, ionic strength, and temperature), but with different large cations, e.g. protonated hexamethylenetetramine, results in the formation of low symmetrical-type POM clusters of [H\(_2\)Mo\(_{10}\)O\(_{38}\)]\(^4\)-.\(^17,18\) In the tungsten system, the observations of the cluster formation in TEAH\(_6\)[H\(_2\)W\(_9\)O\(_{28}\)] at pH 4,\(^26\) and (TEAH)\(_6\)[H\(_2\)W\(_9\)O\(_{28}\)] at pH 0.8 also verify the symmetry-transferring hypothesis as these two clusters also demonstrate three-fold symmetry. Finally, the [W\(_n\)] clusters shown in this paper all comprise three [W\(_{12}\)] cluster subunits linked together by three [W\(_7\)] bridges to form the overall triangular shaped cluster. However, the three [W\(_{12}\)] subunits are analogous to the framework geometry of the [H\(_2\)W\(_{11}\)O\(_{39}\)]\(^5\)- cluster, which was isolated by Lehmann \textit{et al.} in the 1980s by using K\(^+\) as counter cations at pH 1.3.\(^47\) This [H\(_2\)W\(_{11}\)O\(_{39}\)]\(^5\)- cluster has a spherical shape with approximate mirror symmetry. Therefore, the isolation of [H\(_2\)W\(_{11}\)O\(_{39}\)]\(^5\)- as K\(^+\) salt suggests that in solution, the [W\(_{12}\)] cluster is the precursor for the [W\(_n\)] clusters and the isolation of [W\(_n\)] only become possible when three-fold symmetric TEAH\(^+\) cations are present; indeed attempts to assemble the [W\(_n\)] cluster in the presence of other cations, but under the same reaction conditions, has not been possible.

Conclusions

A range of new complexes of the triangular [W\(_n\)] cluster, [H\(_2\)W\(_9\)O\(_{28}\)]\(^4\)- that incorporate cations within the central cavity complexed by six W=O pendant donor groups, have been characterized. These complexes demonstrate the [W\(_n\)] can act like a type of inorganic “crown ether” with similar preferences to 18-crown-6, but with much greater rigidity, and therefore, potential to distinguish between different cations. The synthetic routes to the [W\(_n\)] cluster, along with other clusters we have previously characterized, using the TEAH\(^+\) cation imply a possible route to ‘ imprinting’ or transferring symmetry from the organo-cation to the cluster architecture. In future work we will attempt to...
exploit the rigid nature of the \(W_n \) and attempt to determine selectivity for a range of metal ions, as well as attempt to build new architectures by complexation of rigid organo-amines with primary amino groups that can be bound in the cavity of the \(W_n \) cluster. We will also attempt to extend our observation of apparent symmetry transfer between the organo-cations and the cluster type to gain access to new polyoxometalate structures types and symmetries.\(^{47}\)

Experimental

General procedures

All reagents and chemicals were purchased from commercial sources and used without further purification. Infrared spectra were recorded as KBr disc using a Perkin-Elmer paragon 1000 PC or Nicolet Magna 550 series II FTIR spectrometer. Elemental analyses were carried with dried samples. It should be noted that there are differences between the analytical values determined and theoretical values calculated from crystallographic formula. This is because these compounds contain a large amount of solvent of crystallization and drying occurs very quickly. However these problems were minor and did not hinder the overall formula determination for the main cluster \(W_n \) and the guest metal ions encapsulated.

Synthetic procedures

Synthesis of (TEAH)\(_n\)Na\(_2\)(\(\text{H}_2\text{O}\)\(_4\)\(\text{Rb}\)\(_7\))·17\(\text{H}_2\text{O}\) (1). Na\(_2\)WO\(_4\)·2\(\text{H}_2\text{O}\) (2.00 g, 6.06 mmol) and triethanolamine-hydrochloride (2.5 g, 13.47 mmol) were dissolved in \(\text{H}_2\text{O} \) (50 ml) in a plastic flask and the solution was adjusted to a pH of 2.2 with 2.0 ml HCl (4 M). After heating the reaction mixture to 80 °C in a water bath for 30 min, 0.030 g (0.40 mmol) KCl were added to the hot solution and the mixture was cooled down without further stirring. The crystals were washed with cold water, collected by filtration and dried. Yield was 0.869 g (49% based on W). IR (KBr disk): \(\nu/\text{cm}^{-1} \): 3442, 1623, 1485, 1456, 1404, 1321, 1255, 1197, 1093, 950, 879, 781, 666, 414; UV/VIS (\(\text{H}_2\text{O} \)): \(\lambda_{\text{max}} \) = 276 nm (br sh, 0.34); elemental analysis: calc. for C\(_{27}\)H\(_{110}\)Na\(_2\)N\(_9\)O\(_{166}\)W\(_{36}\): C 6.29, H 1.74, N 1.36, Na 0.44, W 64.2; found: C 6.92 H 1.66 N 1.37, Na 0.46, W 66.5%.

Synthesis of (TEAH)\(_n\)Na\(_2\)(\(\text{H}_2\text{O}\)\(_4\)\(\text{Sr}\))·17\(\text{H}_2\text{O}\) (2). The same procedure as preparing 1, with SrCl\(_2\)-6\(\text{H}_2\text{O}\) (0.107 g, 0.40 mmol) replacing KCl, yielded colourless needles of 2 in 2–3 days. Yield 0.93 g (53% based on W). IR (KBr disk): \(\nu/\text{cm}^{-1} \): 3433, 1632, 1440, 1398, 1320, 1257, 1204, 1093, 1066, 953, 898, 779, 660, 416; UV/VIS (\(\text{H}_2\text{O} \)): \(\lambda_{\text{max}} \) = 276 nm (br sh, 0.34); elemental analysis: calc. for C\(_{27}\)H\(_{110}\)Na\(_2\)N\(_9\)O\(_{166}\)SrW\(_{36}\): C 6.23, H 1.91, N 1.21, Na 0.44, Sr 0.84, W 63.6; found: C 6.76 H 1.58 N 1.29, Na 0.48, Sr 0.81, W 64.0%.

Synthesis of (TEAH)\(_n\)Na\(_2\)(\(\text{H}_2\text{O}\)\(_4\)\(\text{Ba}\)\(_{1.5}\))·17\(\text{H}_2\text{O}\) (3). The same procedure as preparing 1, with BaCl\(_2\)-6\(\text{H}_2\text{O}\) (1.25 g, 3.03 mmol) and triethanolamine hydrochloride (1.25 g, 6.73 mmol) dissolved in \(\text{H}_2\text{O} \) (35 ml) and the solution was adjusted to pH 1.3 with \(\text{HCl} \). After heating the reaction mixture to 80 °C in a water bath for 30 min, BaCl\(_2\)-2\(\text{H}_2\text{O}\) (0.025 g, 0.10 mmol) dissolved in \(\text{H}_2\text{O} \) (5 ml) were added to the hot solution. The pH was then immediately adjusted to 2.2 with a few drops of aqueous triethanolamine solution (3M) and the mixture was cooled down without further stirring. After a little amount of white precipitate was filtered off, the sample was stored undisturbed for crystallization, which yielded colourless needles of 3 in 2–3 days. The crystals were washed with cold water, collected by filtration and dried. Yield was 0.422 g (48% based on W). IR (KBr disk): \(\nu/\text{cm}^{-1} \): 3434, 1618, 1450, 1386, 1320, 1255, 1204, 1093, 1066, 953, 898, 779, 660, 416; UV/VIS (\(\text{H}_2\text{O} \)): \(\lambda_{\text{max}} \) = 276 nm (br sh, 0.34); elemental analysis: calc. for C\(_{27}\)H\(_{110}\)Na\(_2\)N\(_9\)O\(_{166}\)Ba\(_{1.5}\): C 6.17, H 1.89, N 1.29, Na 0.48, Ba 2.1, W 60.1%.

NMR measurements

Compounds 1–6 show basically the same signals in \(^1\text{H} \) NMR spectra. These comprise two triplets for the methylene protons of the surrounding TEAH\(^+\) cations at 3.4–3.6 and 3.8–4.0 ppm, small singlets between 5.2–5.6 ppm, which belong to the six protons forming hydrogen bonds inside the \(W_n \) moieties and various small signals in the \(\text{H}_2\text{O} \) area, which can not be clearly assigned to the different types of water molecules present in the cluster framework.
The exact chemical shift values for the methylene groups of the TEAH\(^+\) cations depend on the included metal ion and differ slightly.

Crystallographic structure determinations

Details of data collection procedures and structure refinements are given in Table 3. Single crystals of suitable size were attached to glass fibres using Fomblin YR-1800 oil and mounted. Some samples suffered solvent loss, and were glued to the glass fibre under solvent and transferred as rapidly as possible to the cold stream of the Oxford Instruments Cryostream. All data were collected on a Nonius KappaCCD or Bruker Apex II CCD diffractometer, equipped with graphite monochromated X-radiation (\(\lambda = 0.71073\) A), running under the Collect software. The structures were solved by SHELXS-97.\(^{46,47}\) Most of the non-hydrogen atoms were refined anisotropically. In some structures the hydrogen atoms on the TEAH\(^+\) cations were refined using a riding model using the SHELXL HFIX instructions. In all other cases hydrogen atoms on the TEAH\(^+\) cations were not present due to disorders on the TEAH\(^+\) cations themselves. No attempts were made to add hydrogen atoms to water molecules as they are quite disordered and have partial occupancy in the structures. Refinement was with SHELXL-97 using full-matrix least squares.

For crystallographic data in CIF or other electronic format see CCDC reference numbers 289116–289120.

Acknowledgements

This work was supported by the Leverhulme Trust (London), The Royal Society, The University of Glasgow and the EPSRC. The EPSRC provided funds for the X-ray diffractometer. We would like to acknowledge Prof. A. Slavin (the University of St Andrews) for help with the preliminary analysis of compounds 5 and 6.

References