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Detecting alien life is a difficult task because it's hard to find signs of life that could apply to any 

life form. However, complex molecules could be a promising indicator of life and evolution. 

Currently, it's not possible to experimentally determine how complex a molecule is and how that 

correlates with information-theoretic approaches that estimate molecular complexity. Assembly 

Theory has been developed to quantify the complexity of a molecule by finding the shortest path 

to construct the molecule from simple parts, revealing its molecular assembly index (MA). In this 

study, we present an approach to rapidly and exhaustively calculate molecular assembly and 

explore the MA of over 10,000 molecules. We demonstrate that molecular complexity (MA) can be 

experimentally measured using three independent techniques: nuclear magnetic resonance 

(NMR), tandem mass spectrometry (MS), and infrared spectroscopy (IR), and these give consistent 

results with good correlations. By identifying and counting the number of absorbances in IR 

spectra, carbon resonances in NMR, or molecular fragments in tandem MS, the molecular 

assembly index of an unknown molecule can be reliably estimated from experimental data.  This 

represents the first experimentally quantifiable approach to defining molecular assembly, a 

reliable metric for complexity, as an intrinsic property of all molecules and can also be performed 

on complex mixtures. This paves the way to use spectroscopic techniques to unambiguously detect 

alien life in the solar system, and beyond on exoplanets. 
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The exploration of chemical space reveals the striking fact that most molecules greater than molecular 

weight of 300 Da, which are not simple oligomers, are all connected to the existence of life on earth.1 

This is because complex molecules such as natural products2 are too complex to form by chance in any 

detectable abundance, and therefore can only be made by the complex biochemical pathways found in 

biological cells. Currently, the exploration of complex chemical space is done in-silico3,4 and this 

focusses on chemical structure,5 topological features,6 application-specific physicochemical descriptors 

and graph theory and tends to explore medicinal chemical space for drug discovery and development.7 

In this regard pharmaceuticals can also be considered to be biosignatures, or more specifically 

technosignatures, since many are complex and would not have been made without humans using 

technology.8–10 In addition to target selectivity, synthetic accessibility is important to explore the 

complexity of the molecule.11 There are many competing notions of chemical complexity12, which have 

led to different algorithmic methodologies being developed using metrics based on molecular weight, 

counting chiral centres or primarily focusing on substructure properties etc.13–15 However, with the recent 

development in automated chemical synthesis,16 a proxy for complexity is required that is fast to estimate 

molecular complexity directly from the acquired experimental data, instead of performing complete 

structure elucidation. Additionally, for  biosignature detection,17 it is important that the complexity metric 

can be estimated directly from the experimental data without any assumptions about the local 

environment or chemistry due to the minimalistic information available for an unknown sample. 

Recently, we developed a novel approach to quantify and explore the complexity of molecules using 

Assembly Theory (AT).18 Assembly Theory estimates the complexity of a molecule by quantifying the 

minimum constraints required to construct an object from the building blocks. The assembly pathway 

gives the shortest path to create an object in the absence of physical constraints and reusing the 

substructures formed along the pathway. The complexity of an object is therefore defined by the number 

of steps along the assembly pathway and is called the Assembly Index,19 which for molecules is called 
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Molecular Assembly (MA). Among the other complexity measures, MA is unique as it has been shown 

that it can be determined experimentally via tandem mass spectrometry.20 To date, all other approaches 

to measure molecular complexity cannot be estimated from experimental measurements, and instead 

require the formula and connectivity of the molecule to be known.21 The Molecular Assembly (MA)22,23 

for a molecule is computed by representing the molecule as a graph and performing an algorithmic search 

to find the shortest pathway to construct the graph by reusing previously made structures along the 

pathway, see Fig. 1A. Thus, various constraints in the molecular graph are found along the pathway to 

quantify the complexity of the molecule. This means that if you take a given target molecule with n 

bonds, and you take n copies of the molecule and break one different bond in each of the n copies, it is 

possible to deduce the molecular assembly index for that molecule if you remove identical units thereby 

only counting the number of unique parts, see Fig. 1.  

In previous work, we used Tandem Mass Spectrometry (MS/MS) for the experimental measurement of 

MA and were able to rank molecules in order of their complexity by placing them on a scale where 

molecules beyond a MA of 15 were considered to be biosignatures for life-detection. Experimentally, 

over a range of high MA molecules, it was demonstrated that a high correlation exists between MS2 

peaks and computed MA values20. However, a key limitation of the technique is its requirement for the 

molecules to be in a charged state in the gas phase, which limits the search space of complex molecules.24 

Herein, we developed experimental measurement strategies to infer molecular complexity using MA by 

using IR and NMR spectroscopies. Using both simulated and experimental data, we demonstrate that 

MA can be experimentally inferred over a wide range of complex molecules as well as mixtures. 

Additionally, we demonstrate that by combining multiple spectroscopic techniques into one measure, the 

MA prediction can be improved further. 

Infrared Spectroscopy (IR) is routinely used to confirm the presence of specific bond types in molecules 

by observing their characteristic vibrational energies in higher energy ranges (1500–3600 cm–1). 
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Vibrational motion corresponding to those absorption bands is typically of local nature, for example, a 

stretch vibration of one bond. Contrary, lower energy (fingerprint) region 400–1500 cm–1 typically 

possesses a plethora of absorption bands, without direct easy interpretation toward structure 

elucidation.25 These modes include various collective motions, bending vibrations, and coupled modes. 

Since the number of different substructures increases with the molecular complexity, we hypothesise that 

number of unique absorption bands in the fingerprint region can be used to infer the complexity of 

organic molecules. Moreover, IR has previously been used to fingerprint complex molecular ensembles 

in their native natural environment.26 

Nuclear Magnetic Resonance (NMR) spectroscopy provides resonance frequencies of magnetically 

inequivalent atoms nuclei in the structure. The exact chemical shift of each nucleus of the same element 

depends on the effective magnetic field experienced by it, strongly influenced by its chemical 

microenvironments (affected by e.g. bond correlation via scalar coupling, or through space (de)shielding 

effects).27 NMR has been used in the past to analyse chemical space for fragment screening in drug 

discovery28–30 and characterising structural complexity of compound classes31. In contrast to mass 

spectrometry, NMR has minimal solvent limitation allowing to keep the sample in its native state/solvent 

if desired.  NMR is uniquely equipped to address the structural diversity as symmetric (magnetically 

equivalent) units in an isotropic environment (e.g., in a homogenous solution) possess the same chemical 

shift (thus not creating duplicated resonances). Further, from the perspective of molecular assembly, the 

effect of symmetry and bond rotation on NMR spectra was hypothesised to provide near equivalent 

resonances for duplicated fragments, even if not magnetically equivalent as a result of very similar 

chemical microenvironment experiences by the fragment. This represents the fact that assembled 

fragments may be utilised in multiple symmetric positions in a structure without having to ‘rebuild’ them 

each time. Therefore, we hypothesise that number of observed NMR resonances will reflect a degree of 

structural complexity.  
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Both IR and NMR will agnostically indicate the complexity of a molecule defined by MA since Assembly 

Theory states that the MA utilizes unique irreducible motifs to construct the molecule that are indicated 

by the observed spectral features. This suggests that spectroscopy techniques that can quantify the 

properties of unique environments, and molecular substructures should in principle produce a good 

correlation with MA. Thus, we hypothesise that with more unique bond types and atomic environments 

for a given molecule, the larger the number of peaks that should be found in IR and NMR spectra for that 

molecule, see Fig. 1. 

 

 

Fig 1. Molecular Assembly of 5-aminoisophathalic acid. (A) Molecular Assembly pathway of 5-
aminoisophathalic with a total of 7 steps. The various chemical bonds are considered as fundamental 
building blocks (shown in red) and the substructures (shown in blue) along the pathways constitute the 
assembly pool. (B-D) Experimental NMR, IR, and MS2 spectra of 5-aminoisophathalic acid highlight 
different features of the molecule from which the molecular constraints and the MA can be inferred.  
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Calculating Assembly Index from a molecular graph 

The Assembly index, and associated minimal assembly pathways, are calculated using an algorithm 

written in the Go programming language. In prior work20, the assembly index was calculated using a 

serial algorithm written in C++ and yielded the "split-branch" assembly index, an approximation that 

provides a reasonably tight upper bound for the assembly index. The Go algorithm used in this work is 

a faster algorithm that incorporates concurrency and can provide the exact assembly index if it can be 

calculated in a reasonable time. The process can also be terminated early to provide the lowest assembly 

index found so far, which has been found to be a good approximation for the assembly index in most 

cases. 

The assembly index is calculated by iterating over subgraphs within a molecular graph and finding 

duplicates of that subgraph within the remainder of the molecule. For each of the matching subgraphs 

found an assembly pathway can be represented by a duplicate structure and a remnant structure (see Fig. 

2). The remnant structure comprises the original structure with one duplicate removed, and the other 

"broken off", which ensures that all structures on an assembly pathway that are duplicated will be first 

constructed. The process can then be repeated recursively with the remnant structure as an input, which 

may result in more pathways containing two duplicate structures and a smaller remnant. Thus, each 

pathway is represented by a sequence of duplicated structures and a remnant structure. In this regard it 

is important to note that molecular assembly uses bonds as building blocks and not atoms. In order to 

determine the assembly index, we consider that a molecular graph with 𝑁 bonds could be constructed in 

𝑁 − 1 steps by adding one bond at a time (the naive MA, or 𝑀𝐴!"#$% ). Each duplicate structure of size 

𝑁&'( allows us to add that structure in one step, reducing the number of steps compared to 𝑀𝐴!"#$% by 

𝑁&'( − 1. Thus, the MA for a particular pathway is 𝑀𝐴!"#$% − ∑ (𝑁&'( − 1)&'( 	. For more details, see 

SI Section 1. 
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Fig 2. (a) The general structure of the Go assembly algorithm, with a pool of worker extending pathways. 
Some features are omitted for brevity, such as branch and bound methods to improve efficiency. (b) A 
sequence of assembly pathways as processed by the Go algorithm. The top pathway is the starting 
pathway for the molecule shown, and each subsequent pathway is extended from the pathway above. 
Pathways are generally extended in multiple ways, and only one such sequence of extensions is shown 
here. (c) An example of MA values found over time for Primisulfuron-methyl, run to completion, and 
approximated by stopping early at various stages prior. The new algorithm found pathways at the correct 
MA of 22 by 10 s, significantly before completion at ~2064 s. The red circle shows split branch algorithm 
performance on the same molecule. The naïve MA (blue hexagon) is calculated trivially for pathways in 
which one bond is added at a time (placed illustratively at 10–3 s, as 0 s cannot be represented on the 
logarithmic scale). 

Inferring Assembly Index using Infrared Spectroscopy 

As a first step, we computationally explore the potential for inferring the assembly index from IR 

absorption. A set of 10,000 molecules were chosen uniformly from the previous dataset20 of approx. 106 

molecules with MA. The new algorithm vastly speeded up the calculation and we were able to sample 

chemical space calculating the MA (previously called Pathway Assembly, calculated using a split-branch 

algorithm). This was done so that we calculated MA for ca. 650 molecules at each MA unit between 2 

and 23 MA for each molecule with the new implementation.32  We calculated the IR spectra of the 
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molecules using an extended semiempirical Tight Binding model implemented in xTB software 

including geometry optimization and calculating frequency resonances (see SI Section 2.3). For each 

spectrum, we estimated the total number of peaks in the fingerprint region (400–1500 cm–1) assuming a 

resolution of 2 cm–1. The number of peaks correlated significantly (Pearson correlation coefficient of 

0.86) with the calculated MA, yielding a simple prediction function that was phenomenologically derived 

via linear regression: MA = 0.21 × 𝑛(%")*– 0.15 (Eq. 1). This observation corroborated our hypothesis 

that number of absorption peaks in the IR fingerprint region reflects molecular complexity, see Fig. 3. 

 

Fig. 3. Inferring Molecular Assembly from infrared spectroscopy. (A) XTB-calculated IR spectrum 
of 5-aminoisophthalic acid with highlighted fingerprint region (400–1500 cm–1). (B) Example of the six 
most intense vibrational bands in the fingerprint region demonstrating its collective-motion nature. (C) 
Assembly index vs. IR-inferred assembly index estimated from the number of IR peaks in the fingerprint 
region (400–1500 cm–1) based on XTB calculation on 10,000 molecules (see Eq. 1). Correlation between 
the predicted and expected assembly index is 0.86. (D) Assembly index vs. IR-inferred assembly index 
estimated from the number of IR peaks in the fingerprint region (400–1500 cm–1) based on the 
experimental measurement on 99 molecules (see Eq. 2). Correlation between the predicted and expected 
assembly index is 0.75.  
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Further, we expanded the study with experimental validation, using a set of 99 compounds MA over the 

range 4–26. The experiments were performed using diamond-attenuated total reflectance IR 

spectroscopy with a resolution of 2 cm–1. The obtained spectra were processed at 50% sensitivity and up 

to 80% transmittance threshold for selecting peaks using OMNIC software as the coarse filter against 

low-intensity noise in real spectra. The total number of IR peaks in the fingerprint region (400–1500 cm–

1) correlated well with the compounds MA with a 0.75 correlation coefficient. This provided a handle for 

inferring an assembly index from an experimental IR using a simple linear function: MA =

0.45 × 𝑛(%")*– 2.3 (Eq. 2). For more details see SI Section 3. 

Inferring assembly index from NMR spectra 

Most organic molecules (by definition) are composed of mainly carbon and hydrogen atoms, we 

hypothesised that 13C NMR is a practical technique to infer the molecular assembly of organic molecules. 

This was because the computation of molecular assembly is based upon bonds as building blocks and 

that NMR will be uniquely able to explore the connectivity within complex organic molecules by 

exploring and quantifying the types of carbon atom present such as CH3, CH2, CH , and C, along with 

their relative connectivity’s. For the experimental measurement, a spectral width within which typically 

observed 13C nuclei resonances is relatively broad (~200 ppm) was considered, and it is reasonable to 

assume that inequivalent nuclei of sufficiently different microenvironments would rarely possess the 

same resonance frequency within a resolution of 0.5 ppm. Further, we expect that magnetically non-

equivalent, yet structurally very similar sub-units with the exact environment in nuclei vicinity will be 

found within the resolution width (see SI Section 2.2). Observing such overlap will reflect the unit’s 

similarity and the peaks will not be overcounted as the corresponding substructures likely share the 

assembly space (the space of motifs that are used to construct the target) and do not contribute to the 

assembly index (e.g. repeating units of the polymer chain such as –CH2–).  
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Further information that can be experimentally extracted from the 13C-NMR spectrum is the classification 

of the carbon nuclei by the number of attached hydrogens. Based on the assembly theory, we hypothesise 

that the presence of carbons with no attached hydrogens (for clarity will be referred to as quaternary) 

reports most significantly on the molecular complexity as such centres are highly connected to four 

different atoms, but also can be connected to a range of different heteroatoms. Thus, these centres are 

hard to produce, and needed a large number of constraints to construct them. Analogously, we 

hypothesise that the more hydrogens are attached to the carbon, the less localized information it stores 

and hence, contributes less to the molecular assembly. From the experimental point of view, the 

classification of carbon nuclei by the number of attached hydrogens can be experimentally achieved 

using standard DEPTQ-90 and -135 routines, which provide information about the number of hydrogens 

attached to the carbon via the hydrogen-carbon coupling.33,34 

Theoretical investigation 

To test our hypothesis, we examined a set of predicted 13C NMR spectra of 10,000 molecules (the same 

set as in the case of theoretical IR investigation). We have used the established predicting tool 

NMRShiftDB employing the Hierarchical Organization of Spherical Environments (HOSE) method.35 

An example of NMR prediction for two molecules (5-aminoisophathalic acid (MA = 7) and Quinine 

(MA = 16) with various carbon atoms labelled is shown in Fig. 4(A&B). We classified the carbons by 

the number of hydrogens attached to them and summed the number of predicted peaks of a certain type 

assuming a bin width of 0.5 ppm. We performed multivariate linear regression (weighing out differently 

different types of carbons) and provided a model with a good correlation of 0.87, see Fig. 4C. The 

formula for inferring the assembly index from the number of found peaks associated with individual 

carbon types was phenomenologically derived via linear regression to be: MA = 1.3 × C + 0.8 × CH +

0.6 × CH+ + 0.3 × CH, + 2.1 (Eq. 3), where C (quaternary), CH (tertiary), CH2 (secondary) and CH3 

(primary) are the number of binned (by 0.5 ppm) 13C resonances of carbons with none, one, two or three 
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hydrogens attached, respectively. This observation on a large dataset significantly corroborates our 

prediction that quaternary carbons possess the highest degree of constraints and have the highest potential 

to report on molecular complexity. 

 

Fig. 4. Inferring molecular complexity from 13C NMR spectra. (A) and (B) shows the predicted 
13C NMR spectrum of 5-aminoisophathalic acid and quinine, with highlighted different types of carbons. 
(C) Assembly index vs. NMR-inferred assembly index estimated from the number of different types of 
carbons (see Eq. 3) based on NMRshiftDB calculation on 10,000 molecules. The correlation between 
the predicted and expected assembly index is 0.87. (D) Assembly index vs. NMR-inferred assembly 
index estimated from the number of different types of carbons experimentally on 101 molecules, using 
the same model as in the theoretical set. The correlation between the predicted and expected assembly 
index is 0.81.  

 

Experimental validation 

For experimental validation, we have assessed 101 compounds covering a range of assembly index of 3–

26. We have acquired 13C NMR spectra and experimentally assigned the carbon type (C, CH, CH2 and 



 12 

CH3) via DEPTQ-90 and DEPTQ-135. The correct assignment was further cross-validated with 

1H-13C HSQC since occasionally post processing of DEPTQ spectra can result in the inversion of the 

peaks phase. As the number of peaks is a simple and reliable measure directly comparable to the 

experimental observable property, we could test the trained model (Eq. 3) directly on independently 

chosen experimental molecules. Testing the trained model provided a good correlation of 0.81, see Fig. 

4D. Allowing the change in the multivariate regression on the experimental set could provide an even 

better correlation of 0.86 (see SI Section 4), however, we have considered using the model train on a 

large dataset as the more robust model, less biased by the sampling of the chemical space.  

Measuring the complexity of mixtures  

Measuring the complexity of mixtures is essential for analyzing samples of unknown origins for 

biosignatures, exploring natural products, and closed-loop robotic platforms performing open-ended 

exploration without setting any explicit target. Additionally, the information content of a mixture requires 

complexity and the relative abundance of individual compounds present in the mixture19. Experimentally, 

estimating the complexity of an unknown mixture is a challenge for analytical techniques as the predicted 

complexity could either be a function of a large number of compounds of lower complexity or a smaller 

number of compounds with large complexity.13,36,37 Here, we demonstrate two different techniques for 

analyzing mixture complexity utilizing 13C DOSY spectroscopy and LC-MS/MS based on previous 

work. 

Analysing Mixtures using NMR 

The NMR technique is well-equipped for analysing complex mixtures.26 To experimentally deconvolute 

the mixture of chemical resonances to their individual components, we investigated 13C DOSY 

spectroscopy on mixtures, separating individual compounds via their diffusion coefficient.38 Together 

with the experimental assignment of the carbon types, we could predict the assembly index of each 
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component in the mixture, using the same logic as for the individual compounds. An example of such 

workflow is assessing a mixture of 5-aminoisophathalic acid and quinine: Using the DEPTQ routines, 

different types of carbons were assigned (Fig. 5A). Using 13C DOSY, the peaks were assigned to two 

different individual components (Fig. 5B). Finally, the assembly index of the species based on the 

number of carbon resonances was inferred to be 8 and 19, in reasonably good agreement with the 

expected real value of 7 and 16, respectively (Fig. 5C). For more details, see SI Section 6.1. 

 

Fig. 5. Example of deconvolution of mixture complexity. (A) Overlay of spectra using DEPTQ-90 and 
DEPTQ-135 methods to differentiate different types of carbons. (B) 13C-DOSY deconvolution of peaks 
to the individual compound assignment via diffusion. (C) Assigned deconvolution of 13C-NMR spectra, 
with peaks for 5-aminoisophathalic acid in red and quinine in blue.  
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Analysing Mixtures using Tandem Mass Spectrometry 

It has been shown that tandem mass spectrometry can be used to assess the complexity of molecules with 

a high degree of certainty.20 Building on the prior work, we used the new MA algorithm32 to calculate 

the MA values for correlation with the experimental data from the available dataset, see Fig. 6. 

 

Fig. 6 LC-MS Mixture Analysis allows the determination of MA number for individual molecules. 
(A) Ordinary Linear Regression between calculated MA and average MS2 peaks (from previous work), 
including small molecules and peptides. (B) Calculated and predicted MA using the linear regression 
model on the same dataset with a Pearson Correlation Coefficient of 0.84. (C) Chromatogram of a 
mixture of ten molecules with seven molecules identified. (D–F) MS2 spectra of Ceftiofur, 
Succinylsulfathiazole, and Sildenafil respectively showing compounds from the mixture can be resolved. 
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We performed ordinary linear regression analysis on this dataset and show a good correlation between 

the previously estimated number of MS2 peaks and calculated MA with Pearson’s correlation coefficient 

of 0.84. The relationship between MA and the number of MS2 peaks can be described as MA =

0.4 × 𝑛-./01 + 6.3 (Eq. 4), see Fig. 6A and 6B. As an extension, to demonstrate its capability to address 

the complexity of individual compounds in a mixture, we prepared a solution of 10 different compounds 

with MAs in the range 5–26 including ceftiofur, sildenafil, folic acid, ketoconazole, 

succinylsulfathiazole, L-valine, and uracil. LC-MS/MS analysis of this mixture was performed which 

allowed the isolation of individual species based on retention time and an estimation of their MA values 

by basic peak counting of their respective MS2 spectra and determining MA using Eq. 4, see SI Section 

6.2 for details. Fig. 5C shows the chromatogram from LC distinguishing seven molecules and Fig. 6D-

E shows respective MS2 fragmentation spectra for three individual molecules.  

Combining analytical techniques for Molecular Assembly inference 

Molecular constraints are probed by different physical interactions depending on the spectroscopic 

techniques, which independently have been shown to correlate with Molecular Assembly. In general, 

due to different limitations in the considered spectroscopic techniques (NMR, IR, and MS), individual 

spectral features of a specimen of unknown origin can be considered biased or contaminated. For 

example, MS/MS fragments distribution is biased by the strengths of the different chemical bonds, which 

molecular assembly calculation does not consider. Similarly, 13C NMR spectroscopy might not fully 

reflect the MA should the constraints be realised through heteroatoms; further diastereotopic carbons can 

be overcounted although considered equivalent. IR fingerprint region can contain overtones of the 

functional groups, causing the peak overcount. All herein listed examples responsible for variance in the 

correlation with the MA have principally different physical interactions. We, therefore, hypothesised that 

a combination of the analytical techniques can increase confidence in the MA inference, see Fig. 7.  
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Fig. 7 (A) Assembly index vs. combined IR and NMR-inferred assembly index (using weights of 0.55 
and 0.45 from NMR and IR, respectively) based on 10,000 calculated spectra showing an increased 
correlation of 0.90. (B) Assembly index vs. combined IR and NMR-inferred assembly index (using 
weights of 0.7 and 0.3 from NMR and IR, respectively) based on 55 experimental spectra showing an 
increased (relative to the individual components) correlation of 0.89. (C) Assembly index vs. individual 
and combined IR, NMR and MS-inferred assembly index based on the 19 molecules where all three 
experimental datasets were available.  
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On the set of 10,000 calculated NMR and IR spectra, we have examined our hypothesis that combined 

information can provide a more reliable MA prediction. We have used the same models (Eq. 1 and Eq. 3) 

for the individual spectroscopic techniques and allowed them to optimise for their relative weighting. 

The combined model provided a higher correlation of 0.91 using the weighted average of 0.55×NMR 

and 0.45×IR inferred MA, see Fig. 7A. Further, we have validated this approach on the available 

intersection of the experimental NMR and IR data, comprising 55 molecules. The combined model 

provided a higher correlation of 0.89 using a combination of 0.7×NMR and 0.3×IR inferred MA, see 

Fig. 7B.  

Lastly, we have explored the combination of all three techniques to infer MA. Where the experimental 

dataset was available, we used predicted MA from all three techniques, both as individual components 

and as an average and compared it with the expected MA value (Fig. 7C). Although the average value 

might not always provide a better estimate than certain individual components, it provides more robust 

prediction not susceptible to large deviations coupled to individual physical phenomena. This 

demonstrates that for inferring MA of unknown species it would be preferable to apply more 

experimental techniques and acquire an average of their MA predictions.  

The work here shows that the general concept of measuring molecular complexity as a function of the 

number of different parts in a molecule, using spectroscopic measurements, gives a very strong 

correlation with the theoretical assembly complexity. This is important since it means we can use 

experimental measurements on environmental samples to read out the amount of selection and evolution 

that the samples have been subjected to making this approach suitable for the search for new life on earth 

and life beyond earth. 
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Conclusion 

We have demonstrated on a set of 10,000 simulated and approximately 100 experimental IR and NMR 

spectra that it is possible to predict the MA of compounds, without their structural elucidation. This is 

particularly useful for molecules from unknown origins and cases when a fast metric for probing 

complexity is required. In the case of IR, the constraints and molecular complexity are reflected by the 

number of peaks in the fingerprint region and their simple summation can be used to predict molecular 

complexity. In NMR, we have shown that the weighted sum of the number of carbon resonances, sorted 

by the number of hydrogens attached to them, provides a good prediction of MA. We found that the 

fewer hydrogens attached to the carbon, the higher weight it possesses for the MA prediction. This 

finding corroborates our interpretation based on Assembly Theory that the quaternary carbons effectively 

encode the most information whereas the primary carbons, which have more hydrogen atoms, are least 

encoded and hence contributes less to the molecular assembly. Finally, we have demonstrated that is 

possible to address the complexity of the components in mixtures. We have shown that 13C DOSY 

facilitates deconvolution of the 13C NMR signals to their individual compounds based on diffusion 

coefficient which MA can be inferred. Similarly, LC-MS/MS can discern the individual components of 

a mixture and be used to predict MA values. In combination with the previously reported method of using 

tandem mass spectrometry to measure molecular complexity, NMR and IR provide an important tool to 

predict and cross-validate experimentally measured MA. 

These findings are of particular significance for the development of missions looking for life in our solar 

system.39 NASA has already managed to put several mass spectrometers on Mars,40 and several mass 

specs have been in the solar system including on the Cassini probe which visited Saturn and Enceladus.41 

Dragonfly is set to visit Titan, launching in 2026 and arriving in 2034, is important since it will be a 

mobile mass spectrometer that flies around Titan.42 Of critical importance will be the ability to resolve 

high molecular weight compounds (300-600 Da) with the possibility of generating in situ fragmentation. 
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In this instance, the use of Assembly Theory when analysing the data will allow us to put some limits on 

the complexity of the molecules found on Titan. Further afield, as exo-planet spectroscopy becomes more 

advanced, it will be possible to look for infra-red signatures associated with exoplanets. Whilst very high-

resolution imaging will not be possible, without using gravity lensing (using the sun),43 it might be 

possible to build a network of chemistries that could be constructed from the small molecule disequilibria 

found on any exoplanets.17 Whilst these applications seem far away, it is only now with assembly theory 

making firm and experimental predictions about the complexity of molecules that can result from an 

evolutionary or informational process, that we can seriously contemplate truly agnostic biosignature 

searches now we have validated the measurement of molecular complexity across three different 

experimental domains.  

Experimental Section: 

Infrared Experimental Setup: IR spectra were acquired on a Thermo Scientific Nicolet iS5 with Specac 

Golden Gate Reflection Diamond ATR System. All data were processed with Thermo Scientific OMNIC 

8.3.103. All samples were measured in the native state at room temperature (solid state unless liquid at 

room temperature). 

NMR Experiment Setup: NMR data were acquired on a Bruker Ascend Aeon 600 MHz NMR 

spectrometer with a DCH cryoprobe (13C + 1H channels) at 300 K unless otherwise stated in which case 

a Room temperature BBFO probe head (1H + 19F-183W channels) was used. 1H NMR were acquired using 

16 scans, spectral width 20 ppm and relaxation delay 2 s. Spectra on the 13C channel were acquired with 

a spectral width of 200 ppm. The 13C NMR spectra were acquired using 16 scans and a relaxation delay 

of 0.8 s. The DEPTQ routines were carried out using 16 scans and a relaxation delay of 1 second. The 

13C DOSY spectra were acquired using 256 scans, a relaxation delay of 8 seconds and a 500-1000 µs 

gradient pulse. All spectra were processed using Bruker Topspin 3.6 and Mestrenova 14.1.1. The spectra 
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were phase and baseline corrected and calibrated relative to the residual solvent peak. Residual solvent 

peaks were not included in resonance counts. Unless otherwise stated samples were prepared in 

DMSO-d6 at the concentration stated in the ESI.  

Supplementary Data 

This describes the algorithm for calculating assembly index for molecules (molecular assembly – MA), 

the details of the theoretical calculations for NMR, Infra-Red (xTB and DFT simulations), sample 

preparations for the experimental data collection, experimental IR and NMR data, the regression analysis, 

mixture analysis. The Molecular Assembly calculator called AssemblyGo was written in GO 

programming language (https://github.com/croningp/assembly_go). The codes used for processing data 

and further details can be found at https://github.com/croningp/molecular_complexity. 
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 Calculating Assembly Index From Molecular Graph 

1.1 Algorithm Description 

The assembly index, and associated minimal assembly pathways, are calculated using an algorithm 

written in the Go programming language. In prior work,1 the assembly index was calculated using a 

serial algorithm written in C++, and yielded the "split-branch" assembly index, an approximation that 

provides a reasonably tight upper bound for the assembly index. The Go algorithm used in this work 

is a faster algorithm that incorporates concurrency, and can provide the exact assembly index if it can 

be calculated in a reasonable time. The process can also be terminated early to provide the lowest 

assembly index found so far, which has been found to be a good approximation for the assembly 

index in most cases. 

The assembly index is calculated by iterating over subgraphs within a molecular graph, and finding 

duplicates of that subgraph within the remainder of the molecule. For each of the matching subgraphs 

found an assembly pathway can be represented by a duplicate structure and a remnant structure. The 

remnant structure comprises the original structure with one duplicate removed, and the other "broken 

off", which ensures that all structures on an assembly pathway that are duplicated will be first 

constructed (Fig. S1).  

 

Fig. S1. Illustration of process used by the assembly algorithm to extend an assembly pathway. At 
each step (top to bottom) a duplicate is found (red) and stored in separately. The remnant is the 
remaining part of the structure, but with the matching duplicated separated. The process can then be 
repeated recursively on the remnant.  
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The process can then be repeated recursively with the remnant structure as an input, which may result 

in more pathways containing two duplicate structures and a smaller remnant. Thus each pathway is 

represented by a sequence of duplicated structures and a remnant structure. In order to determine the 

assembly index, we consider that a molecular graph with 𝑁 bonds could be constructed in 𝑁 − 1 

steps by adding one bond at a time (the naive 𝑀𝐴, or 𝑀𝐴!"#$%). Each duplicate structure of size 𝑁&'( 

allows us to add that structure in one step, reducing the number of steps compared to 𝑀𝐴!"#$% by 

𝑁&'( − 1. Thus the MA for a particular pathway is 𝑀𝐴!"#$% − ∑ (𝑁_𝑑𝑢𝑝 − 1)&'( 	. 

Concurrency is implemented through a worker pool, with each worker iterating over the subgraphs 

of a particular pathway and placing generated extended pathways into a jobs queue to be picked up 

and extended by other workers. In order to prevent unbounded resource use, the jobs queue size is 

limited, and if full a worker will process generated pathways in a depth-first fashion until there is 

space in the queue, before resuming the breadth first search. The algorithm has some branch and 

bound methods to reduce the search space (it will not extend pathways that cannot have lower MA 

than the lowest found so far), and can be terminated early to output the best pathway found so far.  

The approximation through stopping early has been found to output values at or close to the actual 

assembly index fairly quickly (Fig. S2).  

The subgraph iteration process is based on,2 and the subgraph matching functions are based on 

processes used in Nauty.3 The overall algorithm concept is similar to the exact MA algorithm we 

published previously,4 but with substantial improvements in terms of performance. 

Molecular assembly can be expected to correlate with molecular weight. This is because there are 

upper and lower bounds for molecular assembly indices that scale with the number of bonds in the 

molecule. The trivial upper bound for the assembly index relates to pathways where one bond is 

joined at a time without any leverage of duplication (so the assembly index is equal to the number of 

bonds minus one). A basic lower bound can be determined by considering that quickest way to 

increase the size of a structure using an assembly pathway is to take the largest structure created so 

far and combine it with itself, essentially doubling the size at each step. For example, a structure of 8 

bonds cannot be made in less than 3 joining operations, and in general a structure of N bonds has a 

lower bound on the assembly index of log)(𝑁). Both these bounds increase with the number of bonds, 

and since the number of atoms and hence the molecular weight tends to increase with the number of 

bonds, we can expect the assembly index to increase with the molecular weight.  
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Fig. S2: Outline of algorithm process (top left). Illustration of extension of a single pathway 
(bottom left). Outline of process for single worker (right). 

 

 Theoretical calculations 

2.1 Database and sampling 

The calculation and theoretical basis for Molecular Assembly (MA) calculation are described in detail 

in our previous work.1,5 Most of the analysis was performed using Python 3 and Mathematica 12. The 

Molecular Assembly calculator called AssemblyGo was written in GO programming language 

(https://github.com/croningp/assembly_go). The codes used for processing data and further details 

can be found at https://github.com/croningp/molecular_complexity.  

To study the relationship between the MA and physically measurable properties, we used a previously 

published database of compounds for which the MA was calculated (~2.2M compounds). In order to 

address the molecular complexity of organic molecules, and given that we try to address the molecular 

complexity through carbon-sensitive 13C NMR, hence, a relatively high abundance of carbon is 

essential. We filtered the compounds to have at least 50% and not more than 85% of the heavy atoms 

as carbons and must contain at least 4 carbon atoms. Such a filtered database contained ca. 0.77 

million compounds. The range of the previously calculated Molecular Assembly (called Pathway 
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Assembly, using the split-branch algorithm) was found in between 3–25. The distribution of MA in 

the database is not uniform with the highest counts between 8-12 see Fig. S3.  

 

Fig. S3. Distribution of molecules over the Molecular Assembly from the previous dataset. The 
Fig. Shows the histogram of MA (previously called Pathway Assembly) distribution in the available 
dataset, containing ~0.77 million compounds with 50–85% carbons as heavy atoms, originating from 
the previously published dataset.1  

The MA distribution of the compounds filtered from the previously published1 database reflects 

synthetic availability (as the compounds originate from the published Reaxys database) and our 

previous capacity to reliably calculate MA using the split-branch algorithm (compounds for which it 

was assumed it would be impossible (at the time) to calculate MA reliably were rejected from the 

database). To assess the characteristic relationship between the MA with the spectroscopic 

techniques, we sampled 10,000 compounds uniformly across the MA range, up to 629 compounds 

per MA.  The sampling was performed on the subset of which both theoretical NMR and IR data 

could be calculated using the simulation tools discussed in the later sections. For those compounds, 

the MA was recalculated using the newly developed assembly algorithm AssemblyGo which provides 

more accurate estimates at faster timescales, generally leading to estimating the assembly index to be 

lower by 1 or 2 relative to the original value (previously calculated Pathway Assembly). The 

distribution of the molecules over the MA range with newly calculated MA is shown in Fig. S4.  
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Fig. S4. Histogram of distribution in the sample of 10,000 molecules to cover uniformly the range of 
MA (recalculated values using a more accurate algorithm).   

 

A representative subset of the molecules in the dataset over the range of MA values is shown in Fig. 

S5 on the following page. 
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Fig. S5. Example of 55 compounds sampled from the database of 10,000 compounds used in the 
theoretical study.   
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2.2 NMR Prediction 

The 13C NMR spectra were predicted using nmrshiftdb2 tool.6 The corresponding chemical shifts 

were grouped by the type of carbon (primary (CH3), secondary (CH2), tertiary (CH) and quarternary 

(C)). Such sorting was performed by Python script using the rdkit7 tool to estimate the number of 

hydrogen atoms attached. Further, the number of chemical shifts was binned, applying the minimum 

0.5 ppm chemical shifts difference (i.e. resonances within the 0.5 ppm were considered as a single 

peak for analysis). 

The importance of an actual 13C NMR measure/prediction instead of the sole counting of the number 

of chemically non-equivalent carbons in structure can be demonstrated on a large dataset of ~1.1 

million compounds (allowing all compounds with more than 4 carbons and no constraints on the C 

content). This set was analysed by both NMR prediction, as well as by counting the number of 

nonequivalent carbons (for simplicity, the carbons were not classified by the type) (Fig. S6). Also, 

note that considered assembly index values are based on the old database that used the previous 

algorithm which is relatively less accurate. The potential outliers deviating from the linear trends 

highlight the utility of the actual NMR measure (as an oriented oligomer possesses plenty of non-

equivalent carbons, yet of very similar chemical shift).  

 
Fig. S6. Analysis of ca. 1.1 million compounds. a) Molecular Assembly (assembly index) vs. the 
number of unique carbons. b) MA vs. the number of predicted 0.5 ppm binned 13C NMR resonances. 
Note that the z-axis (histogram count) is scaled logarithmically with base 10 to emphasise even the 
very uncommon cases.  

 

On the sample of 10,000 molecules, whose MA was recalculated using the new algorithm, we used 

multivariate fit of the number of 0.5 ppm binned resonances of C, CH, CH2 and CH3 carbon 

resonances. For the fit, the statsmodels.api.OLS module in Python was used (Fig. S7).8  
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Fig. S7. Print output from the multivariate fit of MA = x1×C + x2×CH + x3×CH2 + x4×CH3 + const.; 
using statsmodels.api.OLS in python.8  

 

The best prediction of MA based on the NMR data is given by: 

MA = 1.32 × C + 0.80 × CH + 0.65 × CH) + 0.26 × CH* + 2.15 (1) 

where C, CH, CH2 and CH3 are the number of calculated unique (binned with 0.5 ppm resolution) 
13C resonances corresponding to carbons with 0, 1, 2 and 3 attached hydrogens, respectively. The 

distribution of MA vs. NMR-predicted MA is visualised as a histogram is shown in Fig. S8.  
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Fig. S8. Histogram of predicted MA (based on the Eq. 1) vs. MA on 10,000 compounds sample. 

 

2.3 Infrared Spectroscopy – xTB simulations 

To predict the IR spectra of the sampled molecules, we have used the xTB-service tool9,10 for faster 

prediction over a large dataset. The provided Python interface11 was used with the default setting, 

using 100 seconds as timeout for the geometry optimisation using the GFNFF forcefield. The default 

gaussian broadening was not applied to the observed intensity. Using the default threshold checks, 

calculated spectra assumed for the interpretation were based on the molecule with no large imaginary 

frequency (set as maximum i·10 cm–1, although many structures possess small imaginary 

frequencies). The peaks in the range of 400–1500 cm–1 were counted with a threshold of 0.0005 

(D/Å)2 · amu–1 to not consider signals with 0 oscillatory strength and binned together peaks within 

2 cm–1. The coefficients for the simple linear function of the number of IR peaks were fit using the 

statsmodels.api.OLS module in python (Fig. S9).8  
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Fig. S9. Print output from the fit of MA = x1×npeaks + const.; using statsmodels.api.OLS in python.8  

 

The best prediction of MA based on the xTB-based IR predicted data is thus: 

MA = 0.21 × 𝑛+,_./012 − 0.15 (2) 

where nIR_peaks is the number of IR peaks in the region of 400–1500 cm–1 with intensity above 0.0005 

(D/Å)2 · amu–1. The distribution of MA vs. IR-predicted MA is visualised as a histogram in Fig. S10.  

 

 
Fig. S10. Histogram of predicted MA (based on the Eq. 2) vs. MA on 10,000 compounds dataset. 
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Our general hypothesis is that modes in the IR fingerprint region could be associated largely with 

collective motions, involving bonds from the various subgraphs of the whole structure. Therefore, 

from number of the total modes in the fingerprint region the overall molecular complexity could be 

inferred. To illustrate that on a simple and a complex molecule, vibrational modes in the fingerprint 

region (400–1500 cm–1) above the set intensity threshold of 0.0005 (D/Å)2 · amu–1 for chemical 

structures of 5-aminoisopthalic acid (Fig. S11.) and quinine ( 

Fig. S12–Fig. S15) are visualised. On the molecular structure, bonds involved it the vibrational modes 

are highlighted.   
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Fig. S11. Example of all vibrational bands of 5-aminoisopthalic acid in the fingerprint region 
demonstrating its collective-motion nature. Vibrational modes are ordered by intensity as calculated 
by xTB. 
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Fig. S12. Example of all vibrational bands of quinine in the fingerprint region demonstrating its 
collective-motion nature. Vibrational modes are ordered by intensity as calculated by xTB. (part 1)   
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Fig. S13. Example of all vibrational bands of quinine in the fingerprint region demonstrating its 
collective-motion nature. Vibrational modes are ordered by intensity as calculated by xTB. (part 2)   
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Fig. S14. Example of all vibrational bands of quinine in the fingerprint region demonstrating its 
collective-motion nature. Vibrational modes are ordered by intensity as calculated by xTB. (part 3)   
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Fig. S15. Example of all vibrational bands of quinine in the fingerprint region demonstrating its 
collective-motion nature. Vibrational modes are ordered by intensity as calculated by xTB. (part 4)  
 

2.4 Infrared Spectroscopy – DFT simulations 

To validate potential inaccuracies in the predicted frequency spectra using the semiempirical method, 

a detailed rigorous analysis over a limited set of 101 compounds was performed. The theoretical 

approach has been used as described in the work by Swart and colleagues.12 Detailed quantum 

chemical simulations were performed using Amsterdam Density Functional (ADF 2017)13 software. 

In this study, QUILD14 (Quantum-regions interconnected by Local descriptions) program was used 

with delocalized coordinates for optimization of equilibrium structures until the maximum gradient 

component was less than 10-4 a.u. Energies, gradients and Hessians for vibrational frequencies 

including Raman intensities were calculated using BP86-D315–17 with a triple/double-zeta valence 

plus polarization basis set (TZP for metals, DZP for other elements). In all cases, these calculations 

included solvation effects through the COSMO18 dielectric continuum model with appropriate 

parameters for solvent, and scalar relativistic corrections through Zeroth Order Regular 

Approximation (ZORA).11  
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The number of peaks in the fingerprint region (400–1500 cm–1) above an intensity threshold 

(25 km·mol-1) was found to be 0.76 (Fig. S16). The histogram of calculated MA vs. the expected is 

depicted in Fig. S17.  

 

Fig. S16. Print output from the fit of MA = x1×nIR_peaks + const.; using statsmodels.api.OLS in Python.8  

 

List of chemical structures of all compounds used for the DFT study is in Fig. S18–Fig. S20.  

The best model for infering the MA based on the DFT-predicted IR spectra is thus: 

MA = 0.49 × 𝑛+,_./012 + 5.6 (3) 

where nIR_peaks is the number of IR peaks in the region of 400–1500 cm–1 with intensity above 

25 km·mol–1.  

 
Fig. S17. Histogram of predicted MA (based on the Eq. 3) vs. MA on 112 compounds dataset of DFT 
calculated IR peaks in the range of 400–1500 cm–1 above intensity 25 km·mol–1. 



 19 

 

Fig. S18. Molecular structures with calculated molecular assembly (MA) were used in the DFT-
calculated IR study (Part 1). 
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Fig. S19. Structures with calculated molecular assembly (MA) used in the DFT calculated IR study 
(Part 2) 
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Fig. S20. Structures with calculated molecular assembly (MA) used in the DFT calculated IR study 
(Part 3) 

 

 Experimental Infrared Spectroscopy  

All experimental IR spectra were acquired on a Thermo Scientific Nicolet iS5 with Specac Golden 

Gate Reflection Diamond ATR System. All samples were measured in their native state at room 

temperature (solid state unless liquid at room temperature). The acquired data were processed with 

Thermo Scientific OMNIC 8.3.103 software; using diamond attenuated total reflectance IR (64 scans, 

resolution 2 cm-1). The spectra were processed at 50% sensitivity and 80% threshold for selecting 

peaks using OMNIC software (see an example of an acquired spectrum in Fig. S21). IR peaks in the 

fingerprint region (400-1500 cm–1) were counted and correlated against the MA of the molecule. To 

reduce the error between sample screenings, the background IR spectra were recorded after every 3rd 

sample measurement. Linear regression fit between the experimental IR peaks number in the 

fingerprint region vs. MA agreed provided simple model (Eq. 4) with a Pearson’s correlation 

coefficient 0.75: 

MA	 = 	0.45 × 𝑛+,_./012 	+ 	2.26 (4) 

where 𝑛+,_./012 is the number of IR peaks in the region of 400–1500 cm–1. The distribution of MA 

vs. IR-predicted MA is visualised as a histogram in Fig. S22. Structures of all compounds used in the 

study are shown in Fig. S23 and Fig. S24. 
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Fig. S21. Example of an experimental IR spectrum of Caffeine. Identified peaks in the fingerprint 
region 400–1500 cm–1 considered in the peak count.  

 

 

 

Fig. S22. Histogram of predicted MA based on the 99 experimental IR data using Eq. 4 vs MA. 
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Fig. S23. Structures with calculated molecular assembly (MA) used in the experimental IR study 
(Part 1).   
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Fig. S24. Structures with calculated molecular assembly (MA) used in the experimental IR study 
(Part 2).   
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The coefficients for the simple linear function of the number of IR peaks were fi using the 

statsmodels.api.OLS module in python was used (Fig. S25).8  

 

Fig. S25. Print output from the fit of MA = x1×npeaks + const. for experimental IR spectra; using 
statsmodels.api.OLS in python.8  

 

 Experimental NMR 

The investigation of NMR spectroscopy as a prediction tool for MA was experimentally examined 

on 101 molecules with a range of MA 3–26. Here, the same model that was used to in prediction of 

MA from the number of different 13C resonances in theoretical dataset was used for 

used to predict MA from was used as developed in the theoretical NMR set (Eq. 1).  

 

4.1 Sample Preparation details 

All samples were prepared with 600 mL d6-DMSO in 5 mm Bruker 600 MHz rated NMR tube. 

Concentrations varied from 0.19 mM to 1.17 M due to solubility factors. Several samples (5-

aminioisophthalic acid, Oxacillin Sodium Salt, Sildenafil, Triclabendazole) were analyzed via NMR 

at 5, 30 and 300 mM and have shown minimal effect of the concentration on extracted number of 

chemical environment values from spectra. Samples that did not dissolve in d6-DMSO were dissolved 

in a D2O:d3-MeCN mixture (ratio 75:25).  
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4.2 NMR Experimental Parameters: 

The NMR used was a Bruker Ascend Aeon 600 MHz NMR spectrometer with a CP DCH 600S3 

C/H-D-05 Z cryoprobe installed. All data was processed using Bruker Topspin 3.6.2 and Mestrenova 

14.1.1-2451.The NMR experimental parameters are as follows: 1H NMR(16 scans, 20 ppm spectral 

width, 3.46 second acquisition time, 2.00 second relaxation delay), 13C NMR(128 scans, 250 ppm 

spectral width, 1.73 second acquisition time, 0.80 second relaxation delay), 13C DEPTQ 90 and 

DEPTQ 135 (64 scans,250 ppm spectral width,1.73 seconds acquisition time, 1.00 second relaxation 

delay), 1H PSYCHE(16 scans, 12.49 ppm spectral width, 0.89 seconds acquisition time, 1.00 second 

relaxation delay), HSQC (8 scans, 10 ppm spectral width F2, 250 spectral width F1, 0.09 second 

acquisition time, 1.49 seconds relaxation delay), 13C DOSY (pseudo 2D experiment scans, 200 ppm 

spectral width F2, 8 TD points, 1.10 second acquisition time, 8.00 second relax delay, 0.80 second 

diffusion time d20, 1450 µsec gradient pulse P30).  

The experiments were tested on several examples to cover range of concentrations from 5 mM to 

300 mM to prove the same number of individual carbon peak types can be achieved, regardless the 

concentration.  

 

4.3 Classification of the Carbon Types 

Accurate counts for all individual 13C type environments were obtained using a combination of 13C, 

DEPTQ135, DEPTQ90 and HSQC analysis to ensure maximum accuracy before unblinding samples.  

To determine degree of substitution for 13C chemical environments, this was first approached using 

two types of 13C DEPT experiment, DEPTQ 135 and DEPTQ 90, that phase carbon signals positive 

or negative depending on their degree of substitution. The DEPTQ experiment was chosen (not the 

DEPT) to detected quaternary carbons (otherwise not detected by DEPT). The 135 and 90 portion 

stands for the final 1H tip angle of the pulse in the pulse program before acquisition.19,20  

First, 13C DEPTQ 135 observes quaternary and CH2 peaks as one phase and the CH and CH3 peaks 

as the other. The 13C DEPTQ 90 then is measured to compliment the 13C DEPTQ 135 with only 

detection of quaternary peaks in one phase and the CH peaks in the other. Using DEPTQ135 and 

DEPTQ 90 together, all degrees of substitution of the carbons can be identified via NMR. The solvent 

(expected as quaternary if deuterated) peak must be disregarded in the two counts of carbon peaks. 

To verify assignment of degree of unsubsitution for 13C chemical environments in blind samples, 
1H-13C HSQC was used. In the HSQC experiment, the peaks are phased as they are in DEPT with 

CH2 cross peaks in one phase and CH and CH3 in the other. As CH2 cross peaks are detected in their 
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phase alone, this provides an easy method of counting number of CH2 chemical environments from 

CH2 cross peaks. Quaternary 13C cross peaks are not detected in HSQC.  

The herein described workflow is illustrated on quinine, and its 13C NMR (Fig. S26), DEPTQ-90 

(Fig. S27), DEPTQ-135 (Fig. S28) and 1H-13C HSQC (Fig. S29) spectra. 

Structures of all compounds used in the NMR study are in Fig. S30 and Fig. S31. 

 
Fig. S26. 13C NMR (150 MHz) of quinine.   

 
Fig. S27. DEPTQ-90 13C NMR (150 MHz) of quinine. Peaks at positive phase are C, peaks at 
negative are CH. The solvent peak needs to be subtracted from the C count (in this case DMSO-d6 
in the positive phase).    
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Fig. S28. DEPTQ-135 13C NMR (150 MHz) of quinine. Peaks at positive phase are C and CH2, peaks 
at negative as CH and CH3.   

 
Fig. S29. 1H-13C HSQC Spectra of Quinine- Crosspeaks in red note CH and CH3, blue note CH2     
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Fig. S30. Structures with calculated molecular assembly (MA) used in the experimental NMR study 
(part 1).   
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Fig. S31. Structures with calculated molecular assembly (MA) used in the experimental NMR study 
(part 2).    
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 Combing IR and NMR data 

On the set of 10,000 calculated NMR and IR spectra, we have examined our hypothesis that combined 

information can provide a more reliable MA prediction. We have used the models for the individual 

spectroscopic techniques (Eq. 1 and Eq. 2) and allowed them to optimise for their relative weighting. 

The combined model provided a higher correlation of 0.90 using the weighted average of 0.55×NMR 

and 0.45×IR inferred MA (Fig. S32). 

 
Fig. S32. Histogram of predicted MA vs expected MA on 10,000 compounds sample based on the fit 
of NMR and IR prediction using Eq. 1 and Eq. 2, respectively, using weighted average of NMR and 
IR of 0.55 and 0.45, respectively.  

 

Analogously to the simulated data, the ratio for weighted average of the models based on the Eq. 1 

for NMR and the experimental model fit for IR Eq. 4 were optimised for the experimental test sample 

on the available intersection of the experimental NMR and IR data, comprising 55 molecules. The 

weighting was 0.7 and 0.3 for ratio of NMR and IR MA predictions, respectively, yielding correlation 

of the predicted and experimental MA of 0.89 (Fig. S33).   
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Fig. S33. Histogram of predicted MA vs expected MA on 55 compounds sample based on the fit of 
NMR and IR prediction using Eq. 1 and Eq. 4, respectively, using weighted average of NMR and IR 
of 0.7 and 0.3, respectively.  

 

 Mixture Analysis 

6.1 NMR 

To deconvolute the mixture via NMR as a proof of concept, the mixture of two compounds was 

examined using 13C DOSY.  The experimental setup of the 13C DOSY was 200 ppm spectral width, 

8 TD points, 1.10 second acquisition time, 8.00 second relax delay, 0.80 second diffusion time d20, 

1450 µsec gradient pulse P30 using the 13C DOSY-stebpgppg1s routine with 256 scans. An example 

of quinine and 5-aminoisopthalic acid is presented in Fig. S34. 
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Fig. S34. 13C DOSY of quinine and 5-aminoisophthalic acid mixture. Two horizontal lines guides 
the separation of the 13C signals.  

 

6.2 LC-MS 

MA was measured by Mass Spectrometry by counting MS peaks after MS2 fragmentation with exact 

post processing as described previously by our group in Nature Communications.1 Individual sample 

underwent a 15 µl injection from a Advion Nanomate followed by a MS1 full scan and MS2 

fragmentation using a Thermo Fusion Lumos Orbitrap. The mixture was analysed by 

chromatographic separation with a 15cm C18 column (Agilent) on a Thermo U300 HPLC system 

with a flow rate of 0.4 ml/min for 35 minutes using a 10 µL injection. The test sample was equimolar 

mixture of 10 components in 80% MeOH in H2O. The resolution for MS1 and MS2 was set at 240000 

and 30000, respectively. 
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Compound MS2 Peak 
Count 

Inferred 
MA MA 

Ceftiofur 31 19 26 
Sildenafil 37 21 25 

Ketoconazole 47 25 24 
Folic Acid 43 24 20 

Succinylsulfathiazole 44 24 20 
Sucrose n.a. — 8 
Glucose n.a. — 6 
Uracil 6 9 5 

L-Valine 3 8 5 
S-Limonene n.a. — 4 

 

 

Fig. S35. Print output from the fit of MA = x1×npeaks + const. for experimental MS spectra; using 
statsmodels.api.OLS in python.8  
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