Polyoxometalates (POMs) have been found to be good end-capping ligands for gold nanoparticles (AuNPs). Herein, we introduce a new synthetic method to synthesize gold nanoparticle–POM hybrids by heating a solution of AuNO₃(PMe₃) in acetonitrile in the presence of appropriate POM species with tetrabutylammonium (TBA) as a countercation at 120 °C in a microwave. This method allowed us to produce POM-capped AuNPs without over-reduction of the solution causing decomposition or reorganization of the POMs. Analysis of the resulting material by transmission electron microscopy showed that the POM’s size, charge, and functionality are key factors controlling the resulting POM–AuNP hybrid structure. Additionally, the reaction was monitored by electrospray ionization mass spectrometry (ESI-MS), ultraviolet-visible spectroscopy, and dynamic light scattering. The ESI-MS studies reveal crucial information regarding the nature of the reaction that takes place, showing the cation exchange between Au(I) and TBA cations, followed by self-reduction of the Me₃PAu(I)−POM complex.

INTRODUCTION

Polyoxometalates (POMs) are discrete negatively charged inorganic metal oxide clusters with fascinating properties and applications in diverse research areas ranging from catalysis to medicine and biology. This is because POM clusters represent a large family of compounds that exhibit a wide range of shapes, sizes, and topologies. Because of their polyanionic nature, structural diversity, and redox properties, POMs also have been employed as end-capping ligands for nanoparticle synthesis. Exploration of their redox activity led to the development of various synthetic methodologies for nanoparticle formation: (1) chemical reduction (the use of chemical reductants such as NaBH₄, H₂, ascorbic acid, and Zn triggers the formation of POM nanoparticles), (2) photochemical reduction [POMs can act as reducing agents as well as end-capping ligands upon photoreduction by ultraviolet (UV) light irradiation or γ irradiation], (3) electrochemical reduction (reduced POMs generated by bulk electrolysis and later used as reductants for the synthesis of nanoparticles), and (4) reduction by POMs with “built-in reducing ability” [POMs with d-electron-containing metal ions (for example MoV or VIVO) have intrinsically reducing ability, enabling nanoparticle synthesis in the absence of chemical additives and/or external stimuli].

Alternatively, POM-capped nanoparticles can also be synthesized following a ligand exchange approach. For example, alkanethiol or citrate ligands can be exchanged successfully with a POM species. The main advantage of this method is the mild reaction conditions that are employed, without utilization of complex routes and over-reduction of the system that can be a problem for the stabilization of NPs by different POM structures. Weinstock and co-workers have achieved great success in developing rational synthetic approaches for coating the surfaces of nanoparticles with POM ligands followed by detailed characterization with cryo-transmission electron microscopy (cryo-TEM). Their method is robust with careful control of the pH and redox potential.

Herein, we report a new synthetic method for forming gold nanoparticle–POM hybrids (AuNP–POMs) without involving reduction of the POM species. The hybrids were easily synthesized upon heating both the gold and POM precursors. In addition, the resulting hybrids exhibited different levels of nanoparticle surface coating depending on the size, charge, and functionality of the POMs (Figure 1). The reaction was also monitored using electrospray ionization mass spectrometry (ESI-MS), which has been proven to be a powerful tool for monitoring reactions and revealing details of reactivity and formation of intermediate species. Additionally, ESI-MS can be used to identify the nature of the intermediates and compositions of coordination, organometallic, and cluster compounds. In this case, ESI-MS studies revealed some information regarding the first step of the reaction involving...
obtained by heating AuNO₃(PMe₃), which we determined to undergo a thermally induced reduction process. Indeed, the observation that it can decompose to metallic Au after the microwave heating induces the decomposition of the Au(NO₃)PMe₃, during which the color of the solution turns purple. However, the UV−visible (UV−vis) spectra of the solution after completion of the reaction exhibited clear differences depending on the POM species utilized (see Figure 3). The extent of surface coverage by POM species affects the thickness of the POM layer as well as the average size distribution, which is reflected in the observed shifts in the UV−vis maxima.

The existence of POM-coated gold nanoparticles was confirmed by transmission electron microscopy (TEM), showing clear differences as a function of the POM’s properties (Figure 5). Importantly, the reaction solutions were purified by dialysis treatment with a CH₃CN/H₂O mixed solvent, prior to the TEM measurements; during this process (Figure 5), POMs could show some level of organization on or around the gold nanoparticles as evidenced by the UV−vis) spectra of the gold nanoparticles with various POMs.
nanoparticles, accompanied by the removal of excess POMs. In addition, energy-filtered TEM (EFTEM) measurements were conducted to investigate the distribution of gold nanoparticles and POMs, showing that the gold nanoparticles were surrounded by POMs (Figure 6).

The differences observed in the hybrids formed depend greatly upon the size and charge of the POM species utilized (Figure 6). In the case of \{W_6\} and \{V_{10}\}, which are small and have overall negative charges, they showed a tendency to aggregate more easily even in solution due to minimum steric and electrostatic repulsion. A lower coverage of \{V_{10}\} compared to that of \{W_6\} also supports this finding. This may be due to the fact that stronger repulsion leads to smaller POM aggregates, resulting in a small domain for \{W_{12}\} and layer formation for \{P_2W_{18}\} and \{P_2W_{15}V_3-pyrene\}. The lower POM coverage observed in the case of \{P_2W_{15}V_3-pyrene\} is also likely due to steric hindrance induced by the pyrene group leading to less aggregation. In contrast, almost all of the \{W_{48}\} species were removed during the purification process, presumably due to a high degree of electrostatic repulsion. Additionally, the wheel-shaped \{W_{48}\} appears to interact less well with the surface of the nanoparticles.

TEM studies of the reaction mixtures showed the inability of \{W_{48}\} species to interact efficiently with the gold nanoparticles. Instead, the AuNPs formed were spatially separated by the \{W_{48}\} species, resulting in a narrower absorption band in the UV–vis spectrum (Figure 3). These results indicated that the aggregation of NPs depends upon the size and charge of the POMs and consequently their ability to allow effective surface coverage.

Monitoring the Reaction with UV–Vis and DLS. In an effort to investigate aspects of the reaction that leads to the formation for POM–NP complexes, we monitored the reaction by UV–vis and DLS measurements in the case of \{W_{12}\}. The UV–vis spectra showed a shift of the absorption band from 545 to 560 nm accompanied by an increase in the absorbance maximum (Figure 7a). Figure 7b shows the position and intensity of the plasmon resonance band as a function of reaction time. The rapid increase in absorbance up to 6 h indicates fast formation of particles. As such, the DLS measurements allowed the collection of more direct information regarding the size and number of the nanoparticles. Figure 8 reveals an increase in particle size is accompanied by a small increase in the polydispersity of particles without a change in the average number.

Moreover, between 4 and 6 h, the particle size suddenly increases to 20 nm, which is accompanied by a decrease in their population that is in agreement with the coalescence of
the particles. The increase in particle concentration and the relatively weak coordination ability of POMs seem to be responsible for the coalescence. Finally, between 6 and 12 h, the experiments revealed very small changes in particle size, suggesting that most of the Au(NO$_3$)PMe$_3$ has already been consumed in the early stages of the reaction.

Monitoring the Reaction with ESI-MS. ESI-MS is a powerful tool for the precise determination of the composition and speciation of reaction mixtures. To investigate the reaction that leads to the formation of NP–POM hybrids in more detail, ESI-MS measurements were conducted before and after the reaction. The spectrum obtained from the mixture before the reaction (Figure 9a) clearly shows peaks that can be assigned to (TBA)$_4$NO$_3$ and Au(NO$_3$)PMe$_3$, indicating that the TBA cations associated with the POM species can easily undergo a cation exchange process with the gold(I) cation even at ambient temperature. Additionally, it was possible to identify peaks associated with the complex formed between Au(I) and POM in the high-m/z region (Figure 9b). It is worth noting that no reaction occurs in the case in which AuClPMe$_3$ was used as a gold precursor. This initial cation exchange step is key for the effective stabilization of nanoparticles by the POMs that will form upon the reduction of the Au(I) source. The low-m/z region of the spectrum recorded from the reaction mixture upon completion of the reaction (Figure 9c) showed a decrease in the intensity of the peak associated with Au(NO$_3$)PMe$_3$, which indicates the consumption of the Au(I) source during nanoparticle formation and the appearance of a new small peak that could be assigned to Au(NO$_3$)(PMe$_3$)$_2$. The appearance of Au(NO$_3$)(PMe$_3$)$_2$ suggests that unreacted traces of Au(NO$_3$)-PMe$_3$ groups produced from the decomposition of Au(NO$_3$)PMe$_3$. The high-m/z region of the spectrum provides additional evidence of the initial stages of the reaction (Figure 9d); most of the peaks initially associated with the complexes between Au(NO$_3$)PMe$_3$ and [W$_{12}$] clusters appeared to have their intensity dramatically reduced after the reaction. On the other hand, the intensities of peaks assigned to the gold–POM complexes associated with one TBA (m/z 1655–1700) and without TBA (m/z 1529–1572) cations increased, while those of the species associated with two TBA cations (m/z 1800–1835) have been decreased, indicating that the cation exchange between TBA and the gold cation plays a key role during the reaction.

The combination of data obtained from UV–vis, DLS, and ESI-MS revealed some important information in regard to the species involved in the reaction that takes place in this case, and it is shown in Figure 10. The formation of nanoparticles observed at the early stages of the reaction is associated with the decomposition of gold–POM complexes triggered by a cation exchange process between the Au(NO$_3$)PMe$_3$ and [W$_{12}$] species followed by a rapid increase in their average size. The observed increase in the size of the nanoparticles is based on the coalescence of the nanoparticles as a function of time.
It has been reported that the existence of the Au(III) intermediate species is due to disproportionation,\(^\text{[41-43]}\) however, we were not able to detect any Au(III) species during the ESI-MS studies, suggesting that Au(I) is directly reduced to Au(0). This is potentially important in terms of the efficiency and prevention of potential side reactions that could affect the atom economy and/or the homogeneity of the hybrids generated.

CONCLUSIONS

In conclusion, we have introduced a new and easy synthetic method for preparing gold nanoparticle–POM hybrids. The presence of the POM species in solution is crucial for the prevention of uncontrolled and random aggregation of NPs. We have demonstrated that the POMs provide an elegant, energy efficient, and facile way to initiate the reduction and subsequent controlled growth of Au-NPs. We also showed that smaller POMs such as \{W\}_6 and \{V\}_10 with smaller negative charges could easily coat and stabilize NPs due to their weaker steric and electronic repulsions, leading to more efficient coating of the surface of gold nanoparticles with POM species. Additionally, larger POMs with a high negative charge demonstrated different interactions, which influences the surface’s coating of gold nanoparticles. In the case of \{W\}_13 and \{P\}_W_{13}, clusters form uniform POM layers on the surface, while in the case of \{W\}_46, no distinct surface organization was observed.

Finally, we also demonstrated that ESI-MS spectroscopy can be useful for monitoring the different species that form during the reaction of the starting materials and are crucial for the further development of NPs; the cation exchange between AuNO\(_3\)(PMe\(_3\)) and POM species has been proven to be a crucial step at the early stages of the reaction and subsequent initiation of gold nanoparticle formation during heat-induced reduction. Moreover, UV–vis absorption and DLS were used to monitor the direct conversion of the gold precursor to gold nanoparticles followed by further rapid growth. Our observations are summarized in Figure 10.

A noteworthy advantage of this synthetic method is the fact that it is possible to form gold nanoparticle–POM hybrids without the use of additional internal (e.g., chemical reductants) or external (e.g., UV light irradiation) stimuli. This is important because it allows us to use any known POM species with various topologies and charges, including those that are unstable to chemical reduction or photoreduction. Because of the fascinating electrochemical properties of POMs, the new nanoparticle–POM hybrids would be expected to be promising candidates for the development of a new type of electronic and optoelectronic devices. For example, facile transport of charge carriers could occur compared to the case of the nanoparticles with organic capping ligands. Furthermore, nanoparticle–POM hybrids could also finely tune their electronic and optical properties via electrochemical reduction, which opens the door for the development of new sensors. Further studies of nanoparticle–POM hybrids along with detailed mechanistic investigations aiming to elucidate the products from the reduction process are underway.

EXPERIMENTAL SECTION

Synthesis

The TBA,P,W\(_{13}\)V\(_{O42}\)(C\(_6\)H\(_5\)N), TBA,P,W\(_{13}\)O\(_{46}\), (TBA,P,W\(_{13}\)V\(_{O42}\)(C\(_6\)H\(_5\)N)), (TBA,P,W\(_{13}\)O\(_{46}\), and (TBA,P,W\(_{13}\)K\(_{2}\)P,W\(_{13}\)O\(_{46}\). The TBA salts of the POM clusters were synthesized according to previously reported methods.\(^{44-46}\)

In conclusion, we have introduced a new and easy synthetic method for preparing gold nanoparticle–POM hybrids. The presence of the POM species in solution is crucial for the prevention of uncontrolled and random aggregation of NPs. We have demonstrated that the POMs provide an elegant, energy efficient, and facile way to initiate the reduction and subsequent controlled growth of Au-NPs. We also showed that smaller POMs such as \{W\}_6 and \{V\}_10 with smaller negative charges could easily coat and stabilize NPs due to their weaker steric and electronic repulsions, leading to more efficient coating of the surface of gold nanoparticles with POM species. Additionally, larger POMs with a high negative charge demonstrated different interactions, which influences the surface’s coating of gold nanoparticles. In the case of \{W\}_13 and \{P\}_W_{13}, clusters form uniform POM layers on the surface, while in the case of \{W\}_46, no distinct surface organization was observed.

Finally, we also demonstrated that ESI-MS spectroscopy can be useful for monitoring the different species that form during the reaction of the starting materials and are crucial for the further development of NPs; the cation exchange between AuNO\(_3\)(PMe\(_3\)) and POM species has been proven to be a crucial step at the early stages of the reaction and subsequent initiation of gold nanoparticle formation during heat-induced reduction. Moreover, UV–vis absorption and DLS were used to monitor the direct conversion of the gold precursor to gold nanoparticles followed by further rapid growth. Our observations are summarized in Figure 10.

A noteworthy advantage of this synthetic method is the fact that it is possible to form gold nanoparticle–POM hybrids without the use of additional internal (e.g., chemical reductants) or external (e.g., UV light irradiation) stimuli. This is important because it allows us to use any known POM species with various topologies and charges, including those that are unstable to chemical reduction or photoreduction. Because of the fascinating electrochemical properties of POMs, the new nanoparticle–POM hybrids would be expected to be promising candidates for the development of a new type of electronic and optoelectronic devices. For example, facile transport of charge carriers could occur compared to the case of the nanoparticles with organic capping ligands. Furthermore, nanoparticle–POM hybrids could also finely tune their electronic and optical properties via electrochemical reduction, which opens the door for the development of new sensors. Further studies of nanoparticle–POM hybrids along with detailed mechanistic investigations aiming to elucidate the products from the reduction process are underway.

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.inorgchem.8b03013.

DLS, ESI-MS spectra, TEM images, and thermogravimetric analysis (PDF)

AUTHOR INFORMATION

Corresponding Authors

E-mail: Charalampos.Miras@Glasgow.ac.uk.
E-mail: lee.cronin@glasgow.ac.uk.

ORCID

Haralampos N. Miras: 0000-0002-0806-5173
Leroy Cronin: 0000-0001-8035-5757

4114

DOI: 10.1021/acs.inorgchem.8b03013

Inorg. Chem. 2019, 58, 4110–4116
The authors gratefully acknowledge financial support from the EPSRC for funding (Grants EP/L023652/1, EP/R020914/1, EP/L023652/1, EP/R01308X/1, EP/K023004/1, EP/H024107/1, EP/1033459/1, and EP/J015156/1) at the University of Glasgow and the ERC (Project 670467 SMART-POM), and L.C. thanks the Royal-Society Wolfson Foundation for a Merit Award. Y.-F.S. thanks the National Key Research and Development Program of China (2017YFB0307303), the National Nature Science Foundation of China (NFSC), and the Beijing Advanced Innovation Center for Soft Matter Science and Engineering (BAIC-SM) for financial support. The authors thank Donald A. MacLaren for EM measurements.

ACKNOWLEDGMENTS

The authors declare no competing financial interest.

REFERENCES