Ever since the synthesis and structure of the gigantic polyoxomolybdate (POM) wheel of $\left(\text{NH}_4\right)_{25}\text{Mo}_{176}\text{O}_{528}\text{H}_{16}\left(\text{H}_2\text{O}\right)_{80}$ was unveiled by Müller et al.1 in 1995, the race has been on to structurally characterize and exploit these gigantic molecular oxide systems to develop new types of nanostructured functional materials. Herein we outline a new approach to build upon the Mo_{176}-based wheel structure with aqueous 0.5 M HCl utilizing iron powder as the reducing agent. The chemical composition of the new nanosctructured material was simply prepared by condensation process appears preferentially to yield the Mo_{176}-wheel in which is comparable to that of proteins. Since the synthetic process for the assembly of 3 involves the partial reduction of 2 in HCl, with iron powder as a reducing agent, the heterometal counterions are introduce in one step without need for cation exchange reactions. As such, the assembly condensation process appears preferentially to yield the Mo_{176}-wheels.

Figure 1a shows the packing structure of Mo_{176}-wheels viewed along the a-axis where the Mo_{176}-wheels were overlapped with respect to each other, forming an interdigitated molecular arrangement within the bc-plane. Since the presence of Mo–O–Mo bonded interactions between the wheels is not observed, the discrete nature of the gigantic Mo_{176}-wheel arrangements is a possibility. Further, the channels are elongated along the a-axis, being filled with Na+, FeIII, Cl-, and H_2O molecules. However, it could be postulated that the disordered structures surrounding the rigid Mo_{176}-wheel framework could provide liquid-like environments for ionic conduction, and certainly the high level of hydration for these clusters is comparable to that of proteins.

The electronic spectrum of 3, obtained from a pressed in KBr pellet, shows two broad absorption maxima at 9.0 × 103 and 13.2 × 103 cm-1, which are consistent with those of mixed-valence 1a and 1b.3,4 Although the diatomic properties of 1a and 1b have been confirmed by temperature dependent magnetic susceptibility studies, conversely paramagnetic behavior with weak antiferromagnetic interactions was observed in 3 (Figure 2a).

The $\chi_{\text{iso}}T$ of 3 at higher temperatures ($T > 100$ K) gave a value of 35.7 emu K mol-1, which is consistent with the incorporation of the CoII and FeIII into the compound. Further, the magnetic exchange interaction

1. Research Institute for Electronic Science, Hokkaido University.
2. Graduate School of Environmental Science, Hokkaido University.
3. Nagoya Institute of Technology.
emu K mol$^{-1}$ corresponds to the desorption of K. The weight loss at 350 K was $\sim 20\%$ from the TG data, which corresponds to the desorption of $ca. 300$ H$_2$O molecules, and the σ_i of $1a$, $1b$, and 3 at 300 K were 1.0×10^{-6}, 1.1×10^{-6}, and 0.3×10^{-6} S cm$^{-1}$, respectively. The σ_i value of 3 was lower than those of $1a$ and $1b$, and the activation energy (E_a) of $1a$, $1b$, and 3 were 0.33, 0.40, and 0.43 eV, respectively, suggesting that the ionic conductivity of 3 was lower than those of $1a$ and $1b$. Since the possible conduction carriers present in $1a$ and $1b$ are H^+, Li^+, and/or Na^+, while in 3 they H^+ or Na^+ ions, it could be postulated therefore that the liquid-like disordered environments surrounded by the rigid {Mo$_{176}$}-wheels are essential to achieve solid state ionic conduction. As such, the presence of CoII and FeIII-based coordination compounds in the void space decreases the carrier mobility in 3 relative to compounds $1a$ and $1b$.

In conclusion, the dehydration condensation of Na$_{0.6}$Co$_{0.4}$Mo$_6O$_{18}$·$1.5H_2$O using iron powder as a reducing agent yielded single crystals of Na$_{15}$Fe$_3$Co$_{16}$[Mo$_{176}$O$_{528}$H$_3$(H$_2$O)$_{80}$]Cl$_{27}$$\cdot$45OH$_2$O. The Coi ion with a spin state of high-spin $S = \frac{3}{2}$ was introduced into the single crystals of [Mo$_{176}$]-wheel assembly spectator counter cations. The ionic conductivity of a single crystal at 300 K was 3×10^{-6} S cm$^{-1}$ with an activation energy of 0.43 eV; the ionic conduction pathway was constructed from the rigid framework of the [Mo$_{176}$]-wheels filled with disordered Na$^+$, FeIII, CoIII, and H$_2$O species. In further work we will aim to exploit this new found conductivity phenomenon and attempt to engineer polyoxometalate-based structures with tunable conductivities, e.g., by the design of intrinsically magnetic gigantic POM.

Acknowledgment. This work was partly supported by a Grant-in-Aid for Science Research from the Ministry of Education, Culture, Sports, Science, and Technology of Japan.

Supporting Information Available: The atomic numbering scheme of [Mo$_{176}$]-wheel, UV-vis-NIR-IR spectra, TG diagram, and M-H curve at 2 K. These materials are available free of charge via the Internet at http://pubs.acs.org.

References

5. Crystal data: Monoclinic, P2$_1$/n, $a = 31.1199(1)$ Å, $b = 66.5281(6)$ Å, $c = 31.0020(1)$ Å, $\beta = 120.280(1)^\circ$, γ = 118.085(5), V = 55784.5(6) Å3, Z = 2. The structure was solved with the program SHELX-97 and refined using SHELX97 to $R = 0.0858$ for 108 942 reflections with $I > 2$os/I.

JA9048042