Unveiling the Transient Template in the Self-Assembly of a Molecular Oxide Nanowheel
Haralampos N. Miras, et al.
Science 327, 72 (2010);
DOI: 10.1126/science.1181735

This copy is for your personal, non-commercial use only.

If you wish to distribute this article to others, you can order high-quality copies for your colleagues, clients, or customers by clicking here.

Permission to republish or repurpose articles or portions of articles can be obtained by following the guidelines here.

The following resources related to this article are available online at www.sciencemag.org (this information is current as of November 18, 2010):

Updated information and services, including high-resolution figures, can be found in the online version of this article at:
http://www.sciencemag.org/content/327/5961/72.full.html

Supporting Online Material can be found at:
http://www.sciencemag.org/content/suppl/2009/12/29/327.5961.72.DC1.html

A list of selected additional articles on the Science Web sites related to this article can be found at:
http://www.sciencemag.org/content/327/5961/72.full.html#related

This article cites 17 articles, 4 of which can be accessed free:
http://www.sciencemag.org/content/327/5961/72.full.html#ref-list-1

This article has been cited by 3 article(s) on the ISI Web of Science

This article has been cited by 1 articles hosted by HighWire Press; see:
http://www.sciencemag.org/content/327/5961/72.full.html#related-urls

This article appears in the following subject collections:
Chemistry
http://www.sciencemag.org/cgi/collection/chemistry

Copyright American Association for the Advancement of Science, 1200 New York Avenue NW, Washington, DC 20005. Copyright 2010 by the American Association for the Advancement of Science; all rights reserved. The title Science is a registered trademark of AAAS.
still contain oxygen, and the only way to completely deoxygenate them is by using a second reactor operating in the organic phase or a high-temperature vapor phase hydrotreatment.

With solid-stabilized emulsions, a continuous process could be designed in which the two homogeneous phases coexist with the emulsion in a layered configuration: oil/emulsion/water. One can achieve full conversion on both sides of the emulsion followed by constant removal of oil-soluble products from the top layer and water-soluble products from the bottom layer while the reaction keeps occurring in the emulsion.

Our results highlight the preliminary applications of solid catalysts localized at the interface between two liquid phases. We anticipate that tailoring such emulsion-stabilizing solids with additional catalytic functional groups will facilitate a broad range of reactions.

References and Notes

Unveiling the Transient Template in the Self-Assembly of a Molecular Oxide Nanowheel

Haralampus N. Miras, Geoffrey J. T. Cooper, De-Liang Long, Hartmut Bögge, Achim Müller, Carsten Streb, Leroy Cronin*

Self-assembly has proven a powerful means of preparing structurally intricate nanomaterials, but the mechanism is often masked by the common one-pot mixing procedure. We employed a flow system to study the steps underlying assembly of a previously characterized molybdenum oxide wheel 3.6 nanometers in diameter. We observed crystallization of an intermediate structure in a layered configuration: oil/emulsion/water. One can achieve full conversion on both sides of the emulsion followed by constant removal of oil-soluble products from the top layer and water-soluble products from the bottom layer while the reaction keeps occurring in the emulsion.

Our results highlight the preliminary applications of solid catalysts localized at the interface between two liquid phases. We anticipate that tailoring such emulsion-stabilizing solids with additional catalytic functional groups will facilitate a broad range of reactions.

Fig. 1. A photograph of the flow-reactor system showing the blue reduction wavefront gradient formed within the vessel during the assembly of compound 1 (the reduced region is blue, and the more oxidized region is pale to clear). The structure of the \(\text{Mo}_{36} \) wheel present in compound 1 is shown in space-filling ball-and-stick mode. Mo ions are green spheres; O ligands are red spheres.

The bottom-up self-assembly of large inorganic architectures is a key synthetic route for the preparation of a whole range of systems from cages (1–3) to metal organic frameworks (4, 5) and the formation of macrocycles (6) from comparatively simple small molecule building blocks. In these systems the building blocks, and the underlying self-assembly processes, are understood to such a high degree that many complex and intricate structures can be designed from first principles, and the resulting architectures can even be postsynthetically modified (7). However, when nanostructures in the 2- to 10-nm range are targeted (e.g., metallic nanoparticles and quantum dots), the self-assembly can be critically limited by the high number of degrees of freedom, and it is not trivial to target narrow size distributions. In contrast, in supramolecular chemistry, molecular templates have been successfully employed as external directors in the design of receptors (3, 8–10) and can facilitate the assembly of molecular nanostructures that are intrinsically monodisperse. Spectacular assembly control has been demonstrated by deliberate targeting and synthesis of templates that by design enable the formation of a predetermined structure, yet it is difficult to design large structures (2). The discovery of a similar templating strategy for the reliable fabrication of 2- to 10-nm molecular nanoparticles would revolutionize the synthesis and applications of molecular materials in the same way that templated synthesis has revolutionized the field of organic macrocyclic synthesis over the past 40 years.

In recent years, Müller and co-workers reported the solution-phase assembly of a family

*To whom correspondence should be addressed. E-mail: L.Cronin@chem.gla.ac.uk

**WestCHEM, Department of Chemistry, The University of Glasgow, Glasgow, G12 8QQ, UK. †Fakultät für Chemie, Universität Bielefeld, Postfach 100131, 33501 Bielefeld, Germany.

28. This research was supported by the Oklahoma Secretary of Energy and the Oklahoma Bioenergy Center. Partial support from the U.S. Department of Energy is gratefully acknowledged.

Supporting Online Material
www.sciencemag.org/cgi/content/full/327/5961/68/DC1
Materials and Methods
SOM Text
Figs. S1 to S16

19 August 2009; accepted 6 November 2009
10.1126/science.1180769

72
1 JANUARY 2010 VOL 327 SCIENCE www.sciencemag.org
of nanoscale metal-oxide rings composed of 140 to 154 molybdenum centers by reduction of an acidic (pH = 1 to 3) molybdate solution, which have a range of interesting physical and chemical properties arising from their molecular nature, nanoscale size, and electronic distribution (17–19). These rings crystallized either as ordered chain/layer assemblies or discrete molecules. Diffraction analysis revealed that each individual ring appeared to have assembled from several classes of discrete [Mo₆O₁₈] building blocks, most commonly {Mo₂}, {Mo₃}, and {Mo₄} bonded together through oxo-bridges to form {Mo₁₅₄–x} (x = 0 to 14) rings 3.6 nm in diameter. We hypothesized that some sort of internal templating must have played a role in such an intricate assembly process, but the deceptively simple reaction conditions have so far effectively concealed the enormous complexity involved in this self-assembly process. We probed the self-assembly of the molybdenum blue (MB) nanoparticles using a dynamic synthetic procedure in a flow system that enabled real-time adjustment of the three input variables (pH, concentration of molybdate, and reducing agent) controlling the synthesis of the molecular nanosized-wheels (Fig. 1).

By using a flow system, rather than combining all reagents at once in a single flask (“one pot”), we were able to maintain an off-equilibrium reaction system in which we carefully controlled the degree of reduction of the polyoxomolybdate clusters. To achieve this reaction state, screening of the synthetic parameters—for example, the concentration of molybdate, reducing agent, pH, and ionic strength—was required to determine the correct flow rate. If the flow rate was too low, then the reduced molybdate would be produced in such low concentration that crystallization would not occur and the reduced molybdate within the system would be reoxidized by oxygen over a period of days (i.e., the solution would become colorless). If the flow rate was too high, then the whole system would become over-reduced and no gradient between the reduced and oxidized regions would be set up on a time scale that would allow crystallization (i.e., the solution would become uniformly dark blue).

However, after optimizing the flow system, we were also able to isolate and trap, by crystallization, a key intermediate in the assembly of wheel-type MB nanocluster whereby single crystals were formed in the flow reactor and isolated by halting the flow and filtering the product after a given run time of 2 to 3 days. Specifically, we characterized a hollow {Mo₁₅₀} wheel that hosts a {Mo₂₆} cluster that is bound to the central cavity of the ring species by charge-balancing sodium cations, and in the solid state the wheel itself is weakly covalently linked through 5 oxo-bridges to chains (16). This host-guest complex shows features indicative of an intermediate electronic and structural state, and we postulate that the {Mo₂₆} cluster acts as the key template in the formation of the MB ring.

We isolated the host-guest complex as the crystalline compound I, Na₂₂[Mo₁₅₄(VI₂₋₃O₁₈₋₁₃)(H₂O)₁₆] ∼ [Mo₁₃₁0O₂₄(OH)₁₀(H₂O)₁₀]180H₂O = Na₂₂Ia 1a 180H₂O in a gram yield of 4.5 g, 17.4% by the reduction of an aqueous acidic solution of Na₂MoO₄·2H₂O with Na₂S₂O₄ under continuous addition of HNO₃, and we were able to determine the formula of the host-guest compound unambiguously using many lines of investigation (16). The key to this discovery was the use of nitric acid in the flow system in a dual role as a proton source and an oxidant leading to incomplete reduction of the wheel. The archetypal wheel {Mo₁₅₄} has 14 two-electron reduced compartments (i.e., a total of 28 4d electrons), but in the present case, only 10 of the 14 compartments are two-electron reduced, rendering the overall intermediate wheel 20-electron reduced (as confirmed by a combination of structural studies, chemical analysis, redox titration, and solution UV-VIS spectroscopy). Compound I crystallizes in the space group Cm and has a large unit cell with a volume of 41,734 Å³. The corresponding formula was determined by elemental analyses, single-crystal x-ray structure analysis, bond valence sum calculations, redox titrations, and thermogravimetry (16). Structural analysis revealed that the {Mo₁₅₀} wheel features an ellipsoidal central cavity of ~2.6 × 1.8 nm in which a {Mo₂₆} unit resides. The principal axis of the {Mo₂₆} template is tilted by 38.5° with respect to the main wheel plane and is linked to the {Mo₁₅₀} wheel through sodium cation bridges that reduce the electrostatic repulsion between the two negatively charged constituents (Fig. 2), and the binding of the guest is also stabilized by hydrogen-bonded interactions to the host. The {Mo₁₅₀} wheel in 1a consists of 14 {Mo₂₆} pentagonal building units (blue, Fig. 2) which are linked along the inner rim of the wheel by 12 {Mo₂} linker units (red, Fig. 2), as opposed to the 14 {Mo₂} units present in the archetypal wheel (4, 15), and connected by 14 {Mo₁} groups along the central equatorial region of the structure (yellow, Fig. 2), so that the wheel-type cluster in 1a can be formulated as [Mo₁₅₀] = ([Mo₁]₁₄[Mo₂]₁₂[Mo₃]₄); the decrease in the number of the {Mo₂} building blocks in MB...
wheels has been previously documented as the formation of "defect" sites (17–19). The \(\text{Mo}_{150}\) wheel in 1a can be geometrically related to the ring-shaped \(\text{Mo}_{154}\) wheel in \(\text{Mo}_{36}\) (which are assigned on the basis of structural considerations) that form the template complex. The \(\text{Mo}_{150}\) wheel in \(\text{Mo}_{154}\) can be geometrically related to the ring-shaped \(\text{Mo}_{154}\) wheel in \(\text{Mo}_{36}\) (which are assigned on the basis of structural considerations) that form the template complex. The \(\text{Mo}_{36}\), \(\text{Mo}_{150}\), and \(\text{Mo}_{154}\) complexes have each been isolated separately. Continuous flow-reaction conditions, along with a finely tuned reducing environment, are required to trap the template complex. Color scheme as in Fig. 2.

The transient nature of the wheel-template complex is supported by comparative reactivity studies and is reflected in its geometric and electronic structure. In contrast to the archetypal, highly symmetrical \(D_{5d}\) \(\text{Mo}_{154}\) MB wheel, the \(\text{Mo}_{150}\) wheel in 1a is elliptical with maximum outer and inner ring diameters of \(\sim 3.6\) and \(2.6\) nm, and minimum outer and inner ring diameters of \(\sim 3.5\) and \(1.8\) nm (Fig. 3). This ellipsoidal structure appears to be a result of the central \(\text{Mo}_{36}\) template: Comparison of the ratio between the maximum and minimum cluster dimensions for both the wheel and the template \(R_{w}\) shows a close match between \(\text{Mo}_{150}\) \(R_{w} = 1.42\) and the inner ring of \(\text{Mo}_{150}\) \(R_{w} = 1.44\). Another striking feature of the \(\text{Mo}_{36}\) template-wheel assembly is the nonuniform delocalization of 20 4d electrons over the molybdenum centers. Bond valence sum calculations (16) for the \(\text{Mo}\) centers of the \(\text{Mo}_{150}\) wheel show that the \(\text{Mo}\) centers close to the two defect sites at the most compressed sections of the wheel are fully oxidized (+6), whereas those in the least compressed region are reduced to +5. This electronic anisotropy stands in contrast to the 28-electron reduced \(\text{Mo}_{154,X}\) rings, where the electrons are delocalized more symmetrically over the cluster surface (14, 15, 16). The intermediate-20-electron reduced MB wheel clearly favors the inclusion of the anionic \(\text{Mo}_{36}\) template more than the 28-electron reduced \(\text{Mo}_{154,X}\) systems. This observation is confirmed by its further reduction in solution upon replacing nitric acid with HCl in the flow reactor, which results in the expulsion of the template and the crystallization of two separate crystalline phases, including the empty, fully symmetric, and 28-fold reduced \(\text{Mo}_{150}\) wheel and the \(\text{Mo}_{36}\) template (Fig. 3).

On the basis of these data, we postulate that the overall mechanism underpinning the formation of the \(\text{Mo}_{154,X}\) family involves the \(\text{Mo}_{36}\) cluster as a structure-directing template. In keeping with this hypothesis, the \(\text{Mo}_{36}\) cluster is well known to form spontaneously in acidified molybdate solutions in the absence of reducing agent. As a result, we can formulate the mechanism (Fig. 4).

To test this hypothesis, we compared the time necessary to synthesize the wheel nanoparticles under static conditions, where the molybdate, reducing agent, and acid were added simultane-