Oxometalates (POMs) are a class of anionic molecular metal oxide clusters existing between monomers and bulk infinite oxides based upon Mo, W, and V.[1] Although POM clusters can be well defined, there is a vast library of architectures varying in size and charge, and their assembly under far from equilibrium reaction conditions can even be compared to that of proteins in terms of primary, secondary, tertiary, and quaternary building blocks.[2,3] This is because the acidic condensation reactions of metal oxide polyhedra [MO_4]_x, leading to oligomeric [MO_4]_y units (with x = 4 to 7), can be related to the assembly of the primary structure of a protein.[4] These building units are then able to undergo extended assembly processes, resulting in a variety of high nuclearity clusters that differ not only in terms of size and charge,[5] but also in shape and conformation, forming a range of supramolecular aggregates.[6]

This structural flexibility is tantalizing in terms of the potential for real design but, given the plethora of species in solution, understanding and hence controlling self-assembly is extremely demanding. In this respect we have recently been employing electrospray ionization mass spectrometry (ESI-MS) in the characterization of the primary, secondary, and tertiary structures of POM clusters.[7,8] Additionally, mechanistic studies revealed self-assembly processes involved at the secondary building block level.[9,10] Conventional MS allows for the separation of the anionic clusters by their mass and charge, that is, their m/z ratio, but the supramolecular quaternary structure, or isomers with the same size and charge, cannot be resolved by this method.[11] This is a major limitation since the libraries of POM building blocks not only cover a wide range of masses and charges,[12] but they also show a high level of diversity by their size and conformational flexibility.[13]

Herein, we describe the use of ion-mobility mass spectrometry (IMS/MS)[14] recently used to examine protein structure and dynamics as well as some preliminary studies on coordination compounds,[15] as a new tool to probe metal oxide systems, allowing size separation and investigation of supramolecular assemblies as well as the conformation or folding of the cluster architectures. We are also able to show how the conformation of the clusters can be probed directly by engineering photoswitchable oxometalate hybrids that switch their conformation thereby changing their cross-sectional areas. To achieve these goals we chose to examine polyoxometalate aggregations of organic–inorganic hybrid Mn-Anderson clusters, [MnMo_6O_{18}((OCH_2)₃CR)_2]³⁻ (Scheme 1), and show the conformational change of photoswitchable molecules using IMS/MS. The Anderson clusters were chosen as model compounds for the primary investigative studies since they are a well-characterized class of compounds.[16] Also, the organo-derivatives of these clusters represent a well-defined library allowing the physical or chemical properties of the hybrid to be influenced by choice of the tethered organic group.[17,18] This means, by using the [MnMo_6O_{18}] as the core, easy derivatization allows a wide diversity of hybrid cluster-organic complexes with respect to their overall charge, mass, size, and shape.[13,19]
The IMS/MS studies were performed on an ion-mobility mass spectrometer that combines travelling wave IMS (TWIMS) with a quadrupole/time-of-flight (Q/ToF) mass spectrometer. Six differently substituted Mn-Anderson clusters (Scheme 1) were investigated in both positive-ion and negative-ion mode, in the \(m/z \) range between 500 Da and 5000 Da. To perform these experiments, single crystals of compounds 1 to 6 were dissolved in acetonitrile and transferred to the gas phase by ESI. The IMS/MS spectrum analysis of compound 1 will be described herein in detail as an example, since this compound has a high affinity to form supramolecular assemblies in negative-ion mode. Additionally, the photoswitching of symmetric Mn-Anderson compounds substituted with azobenzene ligands, compounds 7, 8, and 9 results in a conformational shape change and we demonstrate how the two different conformers of each compound can be identified and characterized using the IMS/MS technique.

MS experiments of compounds 1 to 6, without the use of ion-mobility separation, show complex overlapping envelopes of species which indicate the presence of supramolecular assemblies, possessing different charge states but the same \(m/z \) ratio. To deconvolute these envelopes, IMS was performed for the size separation of the polynuclear aggregations, allowing for the assignment of their overall composition (Figure 1).

Figure 1 shows a 2D spectrum of compound 1 where the \(x \) axis shows the \(m/z \) range and the \(y \) axis shows the drift time; the peak intensity is displayed according to a color code on a logarithmic scale.\(^{[14]}\) To determine the compositions of identified peaks a combination of mass and drift time, that is, size fitting, was employed. First, this required analyzing the spectra to determine the formulae and the charges of the easily identifiable peaks. High intensity and sufficient resolution are crucial to identify the charge and hence the number of clusters and tetra-n-butylammonium (TBA) counterions that constitute the assembly represented in the peak envelope. A good starting point is the main peak consisting of one cluster plus two TBA cations and a charge of minus one, as well as multiples of that. For compound 1, the peak envelope around \(m/z = 1872 \) Da has been assigned as \([\{(1)\text{TBA}\}_n\] and has been separated into five peaks with the formula \([\{(1)\text{TBA}\}_n\], (with \(n = 1, 2, 3, 4, 5 \); see Figure 2). After deconvolution of a number of envelopes, the diagonal lines of the peak envelopes with the same charge can be identified (Figure 1). Extrapolation of the trajectories defined by these lines towards higher \(m/z \) ratios, where resolution of the envelopes becomes insufficient, and taking neighboring lines into account, a determination of nearly all the peak assemblies was made.\(^{[14]}\) This was confirmed by comparing the calculated cross-sections to the amount of clusters and TBAs assigned to the peaks.

All of the spectra were recorded under identical conditions for ease of comparison. In positive-ion as well as in negative-ion mode, compounds 1–6 have shown to form quaternary structures consisting of several clusters and TBA counterions. In general, compounds 1, 2, and 3 show a much higher tendency for aggregation than compounds 4, 5, and 6. A full list of identified peaks is provided in the Supporting Information. When forming cationic assemblies in the MS, all Mn-Anderson clusters act in a similar fashion. One striking feature is that they tend to exchange TBA cations for protons, and occasionally, sodium cations, during the ionization process. The studies showed that the compounds can form assemblies of up to six clusters and 22 TBA cations resulting in \([\{X\}_n\{\text{TBA}\}_n\] and nearly any smaller assembly that results in a maximum charge of +4. Even larger supramolecular assemblies with higher charges might be possible, but we decided to limit our experiments to the \(m/z \) range up to 5000 Da, as obtaining sufficient intensity becomes difficult at higher mass values.

The IMS/MS-spectra in negative-ion mode are somewhat more complex with much larger quaternary structures and even higher charge states. Assignments of these supramolecular assemblies tend to be difficult with resolution and intensity being relatively low. Only peak envelopes of sufficient intensity that have been clearly assigned using the aforementioned procedure will be considered for further discussion. The highest assembly was found for compound 3, consisting of 20 clusters and 51 TBA cations, resulting in a charge of −9: \([\{3\}_n\text{TBA}\}_n\] . It is also the only investigated system where such a high charge has been observed for the
quaternary structure. Compounds 1 and 2 have also shown large assemblies with up to 17 clusters and 43 counterions: [(1)$_2$TBA$_3$]$^-$ and [(2)$_2$TBA$_3$]$^-$ The tendency to form larger aggregates is not very high for the Mn-Anderson cluster with long aliphatic chains (4, 5, and 6). While compounds 5 and 6 can arrange in configurations with a charge down to \ldots 6: [(6)$_2$TBA$_{13}$]$^-$ and [(5)$_2$TBA$_{30}$]$^-$. The lowest charge found for compound 4 is \ldots 5 with [(4)$_2$TBA$_{13}$]$^-$. The tendency for the formation of quaternary structures is highly dependant on the length and type of ligand at the molecular level, that is, in the tertiary structure. The strong electrostatic forces between clusters and counterions govern the formation of the assemblies, but with those compounds with more extended π systems it seems that the π–π interactions between ligands contribute considerably to the overall stability and determine the maximal size of the arrangements. Furthermore, preliminary studies using more polar solvents appeared to result in the transmission of smaller aggregates, and this is consistent with our previous work on the formation of supramolecular architectures in nonpolar solvents. [21,22]

To show the conformational change of a POM using IMS/MS, photoresponsive ligands in conjunction with the Mn-Anderson cluster have been used (compounds 7, 8, and 9). These ligands consisted of two phenyl units bridged by an azo bond, which can either be in trans or cis conformation. One phenyl ring was attached to the cluster while the other unit carried alkoxo groups of different sizes (Scheme 2). Upon UV irradiation at 365 nm for about 30 minutes, a conformational change of the azo bond from trans to cis occurred. If the sample was exposed to visible light for about 30 minutes, the process was reversed, resulting in the native trans conformation (Scheme 2). This process was repeated three times and was followed by IMS/MS and UV/Vis spectroscopy (see the Supporting Information). To prevent the reverse reaction as much as possible, the samples were handled under exclusion of light, and IMS/MS measurements were conducted within 5 minutes after UV irradiation.

IMS/MS has been employed to follow the conformational change. Surprisingly, it has not been possible to observe peak envelopes for assemblies of only one Mn-Anderson cluster with two TBA cations. Applying the same conditions that were utilized for compounds 1 to 6, only quaternary structures of two clusters and four TBA cations or more were found for compounds 7–9. This indicates a very high interaction between the molecules, which is most likely due to strong π–π interactions between the ligands.

The conformational change itself resulted in a significant difference in the collision cross-section of the dimeric compounds, ranging from 13 Å2 for the largest compound to 26 Å2 for the ligand with the shortest aliphatic chain (Scheme 3). This fact manifests itself in the drift time spectra for the main peaks of the azo compounds (see Figure 3 and also the Supporting Information) where the equilibria for the formation of quaternary structures have clearly shifted. Figure 3 shows the drift time spectra for compound 7 in the m/z range of 2305–2320 Da before and after UV irradiation.

While the native compound (blue spectrum) exhibits only low intensity for the peak of a dimeric assembly centered around a drift time of 15.33 ms, the compound after UV irradiation shows a high intensity peak at 14.22 ms. This
indicates a higher stability of the two-cluster assembly in cis conformation compared to that with a trans conformation. The spectra after UV and after visible light irradiation were consistent through all three repetitions of the isomerization cycle for compounds 7, 8, and 9, showing the reproducibility of this result.

In conclusion, we have shown how IMS/MS can be used to investigate polyoxometalates with the ability to form extra- and vesicle formation. Furthermore, we have shown that clusters with photoisomorphous conformations can be separated and investigated unambiguously for the first time upon transmission into the mass spectrometer. Such investigations have potential for aiding in the design of new cluster systems, including photoisomorphous POM materials as well as elucidating the composition of new or unknown cluster systems, for example, the recently discovered uranyl peroxide cluster systems. Finally, ion-mobility mass spectrometry opens up a crucial new dimension allowing the characterization of clusters according to both their size and charge, and therefore their charge density. This means this technique can be applied to cluster libraries, as well as investigating the supramolecular chemistry and structures of the clusters in solution and the gas phase.

Experimental Section

1. A mixture of \([N\text{e}(\text{C}_6\text{H}_4\text{ONa})_2](\text{C}_6\text{H}_4\text{Na}_2\text{O}_3)_2\) (2.2 g, 1.0 mmol), Mn(OAc)_2·2H_2O (0.39 g, 1.5 mmol), vinylbenzyl-TRIS (0.80 g, 3.4 mmol; \(M_n = 2523.66\)), C_42H_30O_2MnMnNaO_4 (\(M_r = 2523.66\)). C_42H_30O_2MnMnNaO_4 (\(M_r = 12728.77\)).

2. Anion-exchange resin, silicon dioxide, 50–200 mesh, and ethyl alcohol.

3. The solution was refluxed for at least 4 days. Yield: 1.7 g (1.04 mmol, 62%). Elemental analysis for C_74H_140MnMo_6N_5O_24 (\(M_r = 1767.02\)): C_74H_140MnMo_6N_5O_24 (\(M_r = 3410.23\)).

4. A mixture of 5-(4-octyloxy-phenylazo)-benzaldehyde (0.89 g, 1.5 mmol) and TRIS-Mn-Anderson cluster with the molecular formula of \([N\text{e}(\text{C}_6\text{H}_4\text{ONa})_2](\text{C}_6\text{H}_4\text{Na}_2\text{O}_3)_2\) (1.38 g, 0.1 mmol) was heated to reflux for 6 h. The solvent was evaporated under reduced pressure, resulting in the formation of an orange product, which was further purified by recrystallization from EtOH/McCN (1:1). Yield: 1.28 g (0.50 mmol, 50%). Elemental analysis for C_98H_172MnMo_6N_9O_28 (\(M_r = 2555.04\)): C_98H_172MnMo_6N_9O_28 (\(M_r = 3438.26\)).

Keywords: ion-mobility mass spectrometry - organic-inorganic hybrids - photoisomerism - polyoxometalates - supramolecular chemistry

References

[15] Crystal data and structure refinement for [N(n-C4H9)4]-[MnMo6O18(C13H23O3)2]·(CH3CN)2 (5): C96H204MnMo6N9O30, Ms = 2595.26; colorless, block crystal, 0.44 × 0.24 × 0.16 mm3; T = 150(2) K; monoclinic, space group C2/c, a = 49.3644(10), b = 28.2598(5), c = 25.5045(4) Å, β = 99.785(2°) V = 35061.9(11) Å³, Z = 12, μ = 1.475 g cm⁻³, μ(CuKα) = 6.559 mm⁻¹, F(000) = 16320, 75954 reflections measured, of which 26802 are independent (Rint = 0.2191, all data). Crystal data were measured on a Gemini Oxford diffractometer using CuKα radiation (λ = 1.54184 Å) at 150(2) K. CCDC 819994 (5) contain the supplementary crystallographic data for this paper. These data can be obtained free of charge from the Fachinformationszentrum Karlsruhe, 76344 Eggenstein-Leopoldshafen, Germany (fax: +49 7247–808–666; e-mail: crysdata@fiz-karlsruhe.de).

