Preparations and structures of two *cis,cis-*1,3,5-triaminocyclohexane-based complexes containing hydrogen-bonded solvent molecules

Leroy Cronin, Bryan Greener, Madeleine H. Moore and Paul H. Walton*

Department of Chemistry, University of York, Heslington, York YO1 5DD, UK

Reactions of *cis.cis*-1,3,5-tri-(*E,E*)-cinnamylideneamino-cyclohexane and the new molecule *cis.cis*-1,3,5-tri-(*E,E*)-3-(2-furyl)prop-2-en-1-ylideneaminocyclohexane with diacetatonickel(II) hydrate and bis(tetrafluoroborato)cobalt(II) hydrate respectively afforded two novel metal complexes, the crystal structures of which showed chains of hydrogen-bonded solvent molecules within a rigid hydrophobic cavity.

It is well established that, in solution, metal ions can be coordinated by solvent molecules (e.g. H₂O, alcohols), where a primary co-ordination sphere is connected via hydrogen bonds to a secondary co-ordination sphere, and so on to further layers. Analogous solvation layers are observed within the active sites of metalloproteins (e.g. carbonic anhydrase) often in the form of a small network or chain of hydrogen-bonded water molecules. Usually, these chains are important in the catalytic function of the enzyme. Similar chains are also observed in the solid-state structures of small molecule metal complexes;² however, their formation is inconsistent and appears to be by chance.

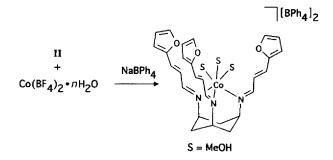
We present here the synthesis, characterisation and crystal structures of two transition-metal complexes, which were designed specifically to promote the formation of chains of hydrogen-bonded solvent molecules. With such complexes we aim to model more consistently and more accurately the active sites of metalloenzymes that contain chains of hydrogen-bonded solvent molecules.

The ligand design is such that upon complexation to a metal, a face-capping N_3 -co-ordination geometry is enforced on one face of the metal atom and the remaining co-ordination sites are surrounded by a rigid, hydrophobic cavity. The cavity is large enough to encapsulate several small solvent molecules.

cis,cis-1,3,5-Tri-(E,E)-cinnamylideneaminocyclohexane I was prepared from the condensation of cis,cis-1,3,5-triaminocyclohexane (tach) and cinnamaldehyde as previously reported.³ cis,cis-1,3,5-Tri-(E,E)-3-(2-furyl)prop-2-en-1-ylideneaminocyclohexane II is a new molecule, and was synthesised in 77% yield † from the condensation of 3-(2-furyl)acrolein and tach in a similar manner to I, see Scheme I. Addition of I to diacetatonickel(II) tetrahydrate in the presence of sodium

† cis, cis-1,3,5-Triaminocyclohexane-trihydrochloride (1.00 g, 4.2 mmol) was dissolved in an aqueous 1.25 mol dm⁻³ NaOH solution (10 cm³) which was added to a solution of 3-(2-furyl)acrolein (1.54 g, 12.6 mmol) in diethyl ether (25 cm³). The mixture was stirred at room temperature for 5 h. The precipitate was isolated and dried in air to give **H** as a cream powder (1.42 g, 3.2 mmol, 77%), m.p. 147–148 °C (decomp.) (Found: C, 72.00; H, 6.00; N, 9.25. Calc. for $C_{27}H_{27}N_3O_3$ -0.5H₂O; C, 72.00; H, 6.25; N, 9.35%). ¹H NMR (CD₃OD, 270 MHz): δ 8.16 (d, 3 H, ${}^3J_{\rm HH}$ 9.2, N=CH). 7.66 (d, 3 H, ${}^3J_{\rm HH}$ 1.7, OCH), 7.01 (d, 3 H, ${}^3J_{\rm HH}$ 16.0, N=CHCH=CH), 6.75 (dd, 3 H, ${}^3J_{\rm HH}$ 16.0, ${}^3J_{\rm HH}$ 9.2, =NCH=CH), 6.68 (d, 3 H, ${}^3J_{\rm HH}$ 3.4 Hz, CCH), 6.56 [dd, 3 H, ${}^3J_{\rm HH}$ 3.4, ${}^3J_{\rm HH}$ 1.7 Hz, CH(CH)CH], 4.93 (s, H₂O), 3.52 (m, 3 H, CR₂H) and 1.85 (m, 6 H, CH).

CH₂). IR (cm⁻¹, KBr pressed pellet): 3454s, 2928m, 2856m, 1633s, 1622s, 1479m, 1382m, 1290m, 1150m, 1026m, 1012m, 983m, 925m, 884m, 743m, 734m, 595m and 564m. FAB positive ion mass spectrum (nitrobenzyl alcohol matrix): $m/z = 442 (M + H)^{+}$.


tetraphenylborate in methanolic solution at room temperature afforded the new complex (acetato- κO) [cis,cis-1,3,5-tri-(Z,E)-cinnamylideneamino- $\kappa^3 N,N',N''$ -cyclohexane]nickel(Π) tetraphenylborate 1 in 68% yield,‡ see Scheme 2. Addition of II to bis(tetrafluoroborato)cobalt(Π) hexahydrate in the presence of sodium tetraphenylborate in methanolic solution at room temperature afforded the new complex tris(methanol- κO) [cis,cis-1,3,5-tri-(Z,E)-3-(2-furyl)prop-2-en-1-ylideneamino- $\kappa^3 N,N',N''$ -cyclohexane]cobalt(Π) bis(tetraphenylborate) 2 in 64% yield,§ see Scheme 3. The crystal structures of both

$$H_2N \longrightarrow NH_2 + 3 RCHO$$
 $H_2N \longrightarrow NH_2 + 3 RCHO$
 $R = \bigcirc I$
 $R = \bigcirc I$
 $R = \bigcirc I$
 $R = \bigcirc I$
 $R = \bigcirc I$

Scheme 1 Synthesis of compounds I and II

Scheme 2 Synthesis of complex 1-2MeOH

‡ A solution of diacetatonickel(II) tetrahydrate (0.05 g, 0.21 mmol) and sodium tetraphenylborate (0.07 g, 0.21 mmol) in methanol (3 cm³) was mixed with a solution of I (0.10 g, 0.21 mmol) in methanol (5 cm³) and stirred for 5 min. Pale green crystals of 1-4MeOH were obtained by evaporation (0.13 g, 0.14 mmol, 68%), m.p. 217-217.5 °C (Found: C, 77.85; H, 5.95; N, 5.05. Calc. for C₅₉H₅₆BN₃NiO₂: C, 78.00; H, 6.20; N, 4.65%). IR (cm⁻¹, KBr pressed pellet): 3852m, 3748m, 3743s, 3674s, 1634s, 1539s, 1265m, 1177m, 996m, 748m, 706s, 688s, 612m, 559m and 515m. FAB positive ion mass spectrum (nitrobenzyl alcohol matrix): $m/z = 588 (M^+ - BPh_4^-)$. Measured density = 1.17(1) g cm⁻³ § A solution of bis(tetrafluoroborato)cobalt(II) hexahydrate (0.039 g, 0.11 mmol) and sodium tetraphenylborate (0.04 g. 0.11 mmol) in methanol (5 cm³) was mixed with a solution of II (0.05 g, 0.11 mmol) in methanol (5 cm³) and stirred for 5 min. Addition of water (1 cm³) and standing for 48 h precipitated blood red crystals of 2.5MeOH (0.09 g, 0.07 mmol, 64%), m.p. 89-91 °C (decomp.) (Found: C, 75.45; H, 6.15; N, 3.65. Calc. for $C_{78}H_{79}B_2CoN_3O_6$: C, 75.85; H, 6.45; N, 3.40%). IR (cm⁻¹, KBr pressed pellet): 3438m, 3054m, 1625s, 1602s, 1476m, 1425m, 1388m, 1267m, 1118m, 1019m, 735s, 708s and 613m. Measured density = 1.15(1) g cm⁻³.

Scheme 3 Synthesis of complex 2

1-4MeOH and 2-5MeOH have been determined at room temperature.

The structure of 1-4MeOH (Fig. 1) shows the nickel atom in a near octahedral co-ordination geometry with I co-ordinated in the expected face-capping fashion. The cinnamylidene 'arms' of the ligand form a rigid cavity around the metal's remaining co-ordination sites, which are occupied by a monodentate acetate anion and two methanol molecules. The cavity has an internal diameter of approximately 7 Å and a depth of approximately 6 Å. The unco-ordinated oxygen of the monodentate acetate can hydrogen bond with a nickel bound methanol O(3) ··· O(2) 2.52(7) Å, O(3)-H(3) ··· O(2) 178(6)°. The hydrogen atom of O(4) (oxygen of the other nickel bound methanol) was located

¶ All data were collected on a Rigaku AFC6S diffractometer, 296(2) and 294(2) K for 1-4MeOH and 2-5MeOH respectively, ω -2 θ scan mode with graphite-monochromated Mo-K α radiation. Unit cell indexed by least-squares refinement on diffractometer angles for 20 automatically centred reflections, $\lambda=0.710$ 69 Å. Solutions by direct methods with SHELXS 86 and expanded using Fourier techniques with DIRDIF. Full-matrix least-squares refinement on F^2 with SHELXL 93 with all non-hydrogen atoms anisotropic and hydrogens refined using a rigid model. Programs used are given in ref. 4.

Crystal data: **2·**5MeOH: $C_{83}H_{99}B_2CoN_3O_{11}$, M=1395.26, monoclinic, space group $P2_1/n$ (no. 14), a=19.220(18), b=15.417(8), c=27.713(18) Å, $\beta=103.79(6)^\circ$, U=7975(10) Å³, Z=4, $D_m=1.15(1)$ g cm⁻³, $D_c=1.16$ g cm⁻³, F(000)=2972. Blood red blocks, crystal dimensions $0.7 \times 0.6 \times 0.4$ mm. A crystal of **2·**5MeOH was mounted in a sealed Lindemann tube with methanol–glycerol. $\mu(Mo-K\alpha)=2.74$ cm⁻¹, ω scan width =0.84+0.30 tan θ , ω scan speed 4° min⁻¹; 15 383 reflections measured $(5.02 \le 2\theta \le 50.00^\circ)$ (h, +k, +l), 14 035 unique [absorption correction (max., min. transmission factors =1.00, 0.79)]. The weighting scheme $w=1/[\sigma^2(F_o^2)+(0.0805P)^2]$, $P=[\max(I_o,0)+2F_c^2]/3$ gave satisfactory agreement analysis. Final R_F , wR_I values on all data were 0.217, 0.203 and R_F , wR_I values on $[I_o>2\sigma(I_o)]$ data were 0.068, 0.145; goodness of fit on $F^2=1.002$. The hydrogen atoms of O(4), O(5) and O(6) (the oxygen atoms of the co-ordinated methanol molecules) were located in a Fourier-difference map.

Atomic coordinates, thermal parameters, and bond lengths and angles have been deposited at the Cambridge Crystallographic Data Centre (CCDC). See Instructions for Authors, *J. Chem. Soc.*, *Dalton Trans.*, 1996, Issue 1. Any request to the CCDC for this material should quote the full literature citation and the reference number 186/178.

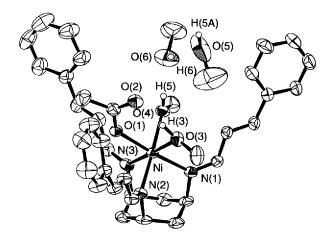


Fig. 1 ORTEP⁵ diagram (30% probability thermal ellipsoids) showing the structure of 1-4MeOH. Only hydroxyl hydrogens are shown, carbons are unshaded, the tetraphenylborate anion is omitted for clarity. Selected bond distances (Å) are as follows: N(1)–Ni 2.106(5), N(2)–Ni 2.105(4), N(3)–Ni 2.117(5), O(1)–Ni 2.076(4), O(3)–Ni 2.084(4), O(4)–Ni 2.148(4)

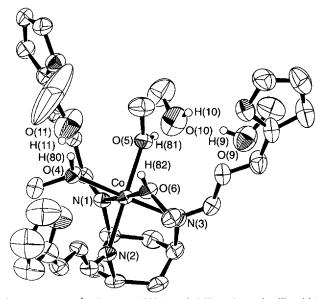


Fig. 2 ORTEP⁵ diagram (30% probability thermal ellipsoids) showing the structure of 2-5MeOH. Only hydroxyl hydrogens are shown, carbons are unshaded, the two tetraphenylborate anions and the two external methanol molecules are omitted for clarity. Selected bond distances (Å) are as follows: N(1)-Co 2.124(4), N(2)-Co 2.130(4), N(3)-Co 2.148(5), O(4)-Co 2.139(4), O(5)-Co 2.129(4), O(6)-Co 2.157(4)

in a Fourier-difference map in the direction of O(6), which is the oxygen atom of a free methanol molecule within the cavity, with O(4) ··· O(6) 2.70(7) Å, O(4)–H(5) ··· O(6) 171(7)°. The O(6) methanol is, in turn, hydrogen bonded to a further free methanol at the 'top' of the cavity, O(6) ··· O(5) 2.81(7) Å, O(6)–H(6) ··· O(5) 148(12)°. The cavity holds four methanol molecules in total, with three as part of a hydrogen-bonded chain extending from the metal to the 'top' of the cavity. Large Ni–N=C angles, averaging 129.6(3)°, indicate substantial steric strain between the cinnamylidene groups and the contents of the crowded cavity. A tetraphenylborate anion completes the structure.

The structure of 2.5MeOH (Fig. 2) shows the cobalt atom in a near octahedral co-ordination geometry with II co-ordinated in a face-capping fashion. The furylpropen-3-ylidene 'arms' of the ligand, with large Co-N=C angles averaging 129.3(4)°, form a rigid cavity around the metal's remaining co-ordination sites which are occupied by three methanol molecules. The cavity has an internal diameter of approximately 8 Å and a depth

of approximately 6 Å. Of the three co-ordinated methanols, two are involved in hydrogen bonding with other methanol molecules. The oxygen, O(4), of a co-ordinated methanol is hydrogen bonded to the oxygen, O(11), of a free methanol, O(4) ··· O(11) 2.64(6) Å, O(4)-H(80) ··· O(11) 170(6)°. The oxygen, O(5) of another co-ordinated methanol is hydrogen bonded to the oxygen, O(10) of a free methanol, O(5) ··· O(10) 2.54(6) Å and O(5)-H(81) ··· O(10) 174(6)° which is, in turn, hydrogen bonded to the oxygen, O(9), of another free methanol, with O(10) ··· O(9) 2.69(4) Å, O(9)-H(9) ··· O(10) 160(10)°. The cavity encapsulates six methanol molecules in total (including the three co-ordinated methanol molecules), with five participating in two hydrogen-bonded solvent chains. Two tetraphenylborate anions and two further methanol molecules complete the structure.

The complexes 1 and 2 demonstrate that a rigid, protective cavity surrounding metal co-ordination sites creates an environment that promotes the formation of chains of hydrogen-bonded solvent molecules. Future work will investigate the properties of these complexes by studying their reactions with particular attention to processes that require proton transfer.

Acknowledgements

L. C. and B. G. thank the EPSRC for maintenance grants.

References

- A. Eriksson, T. A. Jones and A. Liljas, *Proteins*, 1988, 4, 274;
 K. Håkansson, M. Carlsson, L. A. Svensson and A. Liljas, *J. Mol. Biol.*, 1992, 227, 1192;
 D. N. Silverman and S. Lindskog, *Acc. Chem. Res.*, 1988, 21, 30.
- 2 For example, see K. M. Barkigia, M. D. Berber, J. Fajer, C. J. Medforth, M. W. Renner and K. M. Smith, J. Am. Chem. Soc., 1990, 112, 8851; D. M. L. Goodgame, S. P. W. Hill, A. M. Smith and D. J. Williams, J. Chem. Soc., Dalton Trans., 1994, 859; S. Schindler and D. J. Szalda, Inorg. Chim. Acta, 1995, 228, 93.
- 3 B. Greener, M. H. Moore and P. H. Walton, J. Chem. Soc., Chem. Commun., 1996, 27.
- 4 G. M. Sheldrick, SHELXS 86, program for crystal structure determination, University of Göttingen, 1986; P. T. Beurskens, G. Admiraal, G. Beurskens, G. Bosman, W. P. Garcia-Granda, R. O. Gould, J. M. M. Smits and C. Smykalla, the DIRDIF program system, technical report of the crystallographic laboratory, University of Nijmegen, 1992; G. M. Sheldrick, SHELXL 93, program for crystal structure refinement, University of Göttingen, 1993
- 5 C. K. Johnson, ORTEP, Report ORNL-5138, Oak Ridge National Laboratory, Oak Ridge, TN, 1976.

Received 8th May 1996; Communication 6/03212E