The importance of $\pi-\pi, \pi-\mathrm{CH}$ and $\mathrm{N}-\mathrm{CH}$ interactions in the crystal packing of Schiff-base derivatives of cis,cis- and cis,trans-1,3,5triaminocyclohexane

Alexandra L. Pickering, Georg Seeber, De-Liang Long and Leroy Cronin*

Received 12th May 2005, Accepted 15th July 2005
First published as an Advance Article on the web 26th July 2005
DOI: 10.1039/b506718a

Abstract

The crystal structures of cis,trans-1,3,5-tris-benzaldimino-cyclohexane (trans-tbc, 1), cis, trans-1,3,5-tris-(pyridine-2-carboxaldimino)-cyclohexane (trans-ttop, 2), cis, cis-1,3,5-tris-(pyridine-3-carboxaldimino)-cyclohexane (cis-mttop, 3) and cis,trans-1,3,5-tris-(pyridine-4-carboxaldimino)-cyclohexane (trans-pttop, 4) are reported. The arrangements of the molecules forming the packed arrays are controlled by the interplay of several different weak intermolecular interactions: $\pi-\pi$ stacking, $\mathrm{C}-\mathrm{H} \cdots \pi$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{N}$ interactions, and these are in turn related to differences in the stereochemistry around the cyclohexane backbone, as well as the positioning of the pyridyl-nitrogen to determine the overall supramolecular arrangement of these molecules in the solid state.

Introduction

The supramolecular arrangement in molecular crystals is determined by a range of different intermolecular interactions that vary widely in directionality, strength and specificity. ${ }^{1}$ As such, the structural importance of such interactions has been a topic of considerable interest in crystal engineering, molecular recognition, supramolecular assemblies, as well as crystal structure prediction and determination. ${ }^{2}$ The role of conventional hydrogen-bonded interactions is broadly accepted, ${ }^{3}$ and the impact of weaker forces such as $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{C}-\mathrm{H}^{\cdots} \mathrm{N}$ hydrogen bonds on crystal packing, in particular in the absence of stronger hydrogen bond donors/acceptors, has also been subject to investigation. ${ }^{4,5}$ This has precipitated interest in all weak intermolecular interactions, including π-stacking interactions, whose importance has been reported in many areas of chemistry, biology and material science. ${ }^{6}$ Aromatic rings can interact in different geometrical arrangements, for example face-to-face, edge-to-face and offset, ${ }^{7}$ and have been found to be a useful tool in the manipulation of molecular components in the crystalline state. ${ }^{8}$ Furthermore, the existence of $\mathrm{X}-\mathrm{H}^{\cdots} \pi$ interactions ($\mathrm{X}=\mathrm{C}, \mathrm{N}, \mathrm{O} ; \pi=$ aromatic system) is important in structures deficient of strong hydrogenbond acceptors, ${ }^{5,9}$ and play a role in the crystal structures of both small molecules and larger assemblies such as proteins. ${ }^{10}$ Studies into $\mathrm{X}-\mathrm{H} \cdots \pi$ interactions show that the T-shaped geometry occurs preferentially at short distances $\left(d_{\mathrm{H}-\pi} 3.0 \AA\right.$), whereas at longer distances interaction takes place between the H -atom and a ring carbon atom $\left(d_{\mathrm{H}-\pi} 4.0 \AA\right.$). ${ }^{9}$

The isomerically related molecules cis,cis-1,3,5-triaminocyclohexane (cis-tach) and cis,trans-1,3,5-triaminocyclohexane (trans-tach) have been investigated as ligands for the formation of both discrete ${ }^{11}$ and extended coordination compounds. ${ }^{12}$

[^0]The derivatisation of these building blocks via Schiff-base extensions facilitates the development of the framework in terms of increased numbers of coordinating and possibly chelating moieties. Furthermore, despite being rigid, the cyclohexane backbone has a large degree of conformational flexibility (i.e, ability to ring flip) in addition to the rigid aromatic systems, and the cis- and trans-stereochemical motifs generate a mixture of identical and non-identical substituted arms. Substitution of the primary amino groups by reaction with benzaldehyde or pyridine- n-carboxaldehyde (where $n=2$, 3 or 4) of these two molecules yields a family of aromatic imines (Scheme 1). These molecules are fundamentally rigid, due to the nature of the aromatic groups and the cyclohexane backbone, and contain the potential for forming multiple supramolecular interactions through $\mathrm{C}-\mathrm{H} \cdots \mathrm{N}, \mathrm{C}-\mathrm{H} \cdots \pi$ and $\pi \cdots \pi$ interactions.

Results and discussion

The structures of trans-tbc, $\mathbf{1}$ trans-ttop, $\mathbf{2}$ cis-mttop, $\mathbf{3}$ transpttop, 4 have been investigated crystallographically (see Table 1) and herein we compare and contrast these structures in terms of molecular conformation and supramolecular interactions that determine the crystal packing. The molecule trans-mttop has also been synthesised but it proved challenging to grow single crystals. For the sake of comparison of the ability of a meta-nitrogen to form interactions, we have included the cis-isomer in this study. There are two possible motifs that can be adopted by the cyclohexane ring in the energetically favorable chair conformation: the more stable 'non-flipped' conformation (Scheme 2, LHS) and the 'ringflipped' conformation (Scheme 2, RHS), which has higher energy due to unfavorable di- or triaxial interactions. This energy barrier can be overcome by the formation of favorable interactions, exemplified by the formation of a variety of coordination compounds by the non-substituted core triamines cis-tach ${ }^{11}$ and trans-tach. ${ }^{12}$ The steric interactions of the

2

Scheme 1 Depictions of the molecular structures of cis,trans-1,3,5-tris-benzaldimino-cyclohexane (trans-tbe, 1), cis,trans-1,3,5-tris-(pyridine-2-carboxaldimino)-cyclohexane (trans-ttop, 2), cis,cis-1,3,5-tris-(pyridine-3-carboxaldimino)-cyclohexane (cis-mttop, 3) and cis,trans-1,3,5-tris-(pyridine-4-carboxaldimino)-cyclohexane (trans-pttop, 4)
pyridyl substituents in the ring-flipped conformation, however, make the ring-flipped conformer yet more unfavorable. The difference in the stereochemistry inherited from the
triaminocyclohexane precursor, as well as the positioning of the pyridyl nitrogen in compounds $\mathbf{2 - 4}$, is reflected in the formation of different packing motifs facilitated by the ability

Table 1 Crystallographic data for 1,2,3 and 4

Structure	trans-tbc, 1	trans-ttop, 2	cis-mttop, 3	trans-pttop, 4
Empirical formula	$\mathrm{C}_{27} \mathrm{H}_{27} \mathrm{~N}_{3}$	$\mathrm{C}_{24} \mathrm{H}_{24} \mathrm{~N}_{6}$	$\mathrm{C}_{25} \mathrm{H}_{25} \mathrm{Cl}_{3} \mathrm{~N}_{6}$	$\mathrm{C}_{24} \mathrm{H}_{24} \mathrm{~N}_{6}$
M	393.52	396.49	515.86	396.49
Crystal system	Monoclinic	Monoclinic	Trigonal	Triclinic
Space group	I2/a	$P 2_{1} / n$	$P \overline{3}$	$P \overline{1}$
a/̊	18.1262(2)	10.1277(3)	12.6138(7)	6.3273(3)
b/A	10.4041(1)	19.5020(9)	12.6138(7)	$9.5865(5)$
clA	25.3348(4)	11.3284(5)	9.7434(8)	17.9474(8)
$\alpha /{ }^{\circ}$	90	90	90	88.359(3)
$\beta 1^{\circ}$	105.974(1)	100.439(2)	90	81.561(3)
$\gamma /{ }^{\circ}$	90	90	120	89.492(3)
V / \AA^{3}	4593.32(14)	2200.44(15)	1342.6(2)	1076.39(9)
Z	8	4	2	2
$D / \mathrm{Mg} \mathrm{m}^{3}$	0.01138	0.01197	0.01276	0.01223
μ / mm^{-1}	0.516	0.074	0.366	0.076
θ Range $/{ }^{\circ}$	3.63 to 59.98	2.09 to 26.00	2.09 to 24.99	2.13 to 25.40
Range of $h k l$	$-20 \leqslant h \leqslant 20$	$-12 \leqslant h \leqslant 12$	$-14 \leqslant h \leqslant 0$	$-7 \leqslant h \leqslant 7$
	$-9 \leqslant k \leqslant 11$	$0 \leqslant k \leqslant 24$	$0 \leqslant k \leqslant 14$	$-11 \leqslant k \leqslant 11$
	$-27 \leqslant l \leqslant 28$	$0 \leqslant l \leqslant 13$	$0 \leqslant l \leqslant 11$	$0 \leqslant l \leqslant 21$
$F(100)$	1680	840	536	420
Parameters	272	271	124	271
Temperature/K	293(2)	150(2)	150(2)	150(2)
Reflections collected	7826	12819	4281	3949
$R_{\text {int }}$	0.0469	0.0457	0.0457	-
Unique reflections	3306	4305	1576	3949
$R_{1}[I>2 \sigma(I)]$	0.0715	0.0447	0.0541	0.0462
$w R_{2}$ (all data)	0.1927	0.1016	0.1413	0.1069

\qquad

Scheme 2 Schematic representation of the two possible conformers of the cyclohexane chair conformation showing low-energy 'non-flipped' (LHS) and high-energy 'ring-flipped' (RHS).
to form weak interactions involving both the aromatic π-system and the constitute nitrogen atoms.

CCDC reference numbers 271673-271676. See http:// dx.doi.org/10.1039/b506718a for crystallographic data in CIF or other electronic format.

Framework 1, cis, trans-1,3,5-tris-benzaldimino-cyclohexane (trans-tbc) has three benzyl substituted imino arms that inherit the cis,trans-stereochemistry of the original triamine. Each imine moiety adopts the sterically favoured E-conformation with expected bond length $\left[d_{\mathrm{C}=\mathrm{N}}=1.258(2) \AA\right.$. In the crystal structure, the cyclohexane backbone is found in the energetically most favorable bis-equatorial mono-axial ring conformation, where the phenyl ring in the axial position is nearly perpendicular to the two phenyl rings in equatorial position with an angle of $82.7(1)^{\circ}$ between the aromatic planes. The equatorial phenyl substituents are twisted by $28.4(1)^{\circ}$ from coplanarity. The packing motif is dominated by geometrically offset π-stacked interactions between axial phenyl substituents ($d_{\pi-\pi}=3.4 \AA$) and $\mathrm{CH}-\pi$ interactions between equatorial

Fig. 1 Dimer of 1: RHS: representation highlighting π-stacking (3.6 \AA) and $\mathrm{CH}-\pi(3.0 \AA)$ interactions (with relevant hydrogen atoms shown as white spheres); and LHS: stick representation showing molecular dimer (hydrogens omitted).
phenyl substituents $\left[d \mathrm{H}-\pi_{\text {(centroid) }}=3.2 \AA\right.$], which form weakly associated dimers of two trans-tbe molecules (Fig. 1).

Additional $\mathrm{CH}-\pi$ interactions between equatorial-equator-$\operatorname{ial}\left(d_{\mathrm{H}-\pi}=2.8 \AA\right)$ and equatorial-axial $\left(d_{\mathrm{H}-\pi}=3.0 \AA\right)$ phenyl groups connect the dimers into chains along the crystallographic c-axis (Fig. 2), which form 2-D layers within the crystallographic $b c$-plane. The layers are arranged in ABABAB fashion along the a-axis.

The framework, cis,trans-1,3,5-tris(pyridine-2-carboxal-dimino)-cyclohexane (trans-ttop, 2) has three heterocyclic substituents, with each aromatic nitrogen in the ortho-position. The crystal structure shows that $\mathbf{2}$ has adopted the lowest energy conformer to minimise the unfavorable 1,3-diaxial interactions by positioning one substituted arm in axial position and two arms in equatorial positions. The aromatic nitrogen is arranged anti with respect to the imine nitrogen, most probably due to the interplay of electronic and crystal packing forces [imine nitrogen $\left.\left(d_{\mathrm{C}=\mathrm{N}}=1.2645(18)-1.2673(19) \AA\right)\right]$. In the crystal packing array, layers within the crystallographic ac-plane are facilitated by

Fig. 2 View of $\mathbf{1}$ down the crystallographic b-axis (RHS) showing chains formed by $\mathrm{CH}-\pi$ interactions $\left[d \mathrm{H}-\pi_{(\text {eq-eq })}=2.8 \AA\right.$, $d \mathrm{H}-\pi_{\text {(eq-ax) }}=3.0 \AA$] and down the crystallographic c-axis (LHS) showing the 2-D layers of weakly interacting molecules. Click here for a rotatable 3-D view of Fig. 2.

Fig. 3 View of 2 along the crystallographic b-axis showing layers of interacting trans-ttop ligands within the crystallographic ac-plane $(\mathbf{L}=$ layer; inter-layer distance $=8.04 \AA)$. Click here for a rotatable 3-D view of Fig. 3.
trans-ttop molecules interlocking through edge-to-edge aro-matic-aromatic interactions and $\mathrm{C}-\mathrm{H} \cdots \mathrm{N}$ hydrogen-bonded interactions (Fig. 3).

Each of the three imine 'arms' attached to the cyclohexane core interacts with adjacent molecules via a slightly different combination of inteactions:
(i) The trans-axial arm (dark red in Fig. 4) interacts with two cis-equatorial arms of two other molecules of $\mathbf{2}$ forming
$\mathrm{CH} \cdots \mathrm{N}$ hydrogen-bonded interactions with the imine nitrogen $\left[\mathrm{N}_{\text {(imine) }} \cdots \mathrm{CH}_{\text {(aromatic) }}=2.572(8) \AA\right]$ with the first and $\pi_{\text {aromatic }} \cdots \pi_{\text {imine }}$ interactions between the imine moiety and an adjacent aromatic ring of the second molecule of $\mathbf{2}$ $[\pi \cdots \pi=3.398(4) \AA]$.
(ii) A cis-equatorial arm (blue in Fig. 4) interacts with trans and cis arm from two different molecules of 2 through a CH hydrogen-bonded interactions with the imine carbon $\left[\mathrm{N}_{\text {(imine) }} \cdots \mathrm{CH}_{\text {(aromatic) }}=2.572(8) \AA\right]$ and a $\mathrm{C}-\mathrm{H} \cdots \pi$ interaction $[\mathrm{C}-\mathrm{H} \cdots \pi=2.656(9) \AA]$.
(iii) The second cis-equatorial arm (yellow in Fig. 4) interacts with another molecule of 2 through a $\mathrm{C}-\mathrm{H} \cdots \pi$ interaction $[\mathrm{C}-\mathrm{H} \cdots \pi=2.656(9) \AA$].

The framework, cis,cis-1,3,5-tris(pyridine-3-carboxaldimi-no)-cyclohexane (cis-mttop, 3) has three crystallographically identical meta-pyridyl substituted groups (this symmetry is imposed crystallographically). The crystal structure shows each cis arm to be in the energetically favorable equatorial position, with the aromatic nitrogen positioned anti with respect to the imine nitrogen $\left[d_{\mathrm{C}=\mathrm{N}}=1.267(3) \AA\right]$. The ligands pack in isolated layers within the crystallographic $a b$-plane (Fig. 5).

Interestingly, the building blocks do not pack so as to optimise $\pi-\pi$ stacking interactions between aromatic systems, but rather position the meta-pyridyl groups interstitially between parallel arms of two different cis-mttop molecules so as to facilitate $\mathrm{C}-\mathrm{H} \cdots \mathrm{N}$ hydrogen-bonded interactions via the aromatic nitrogen atom $\left[\mathrm{C}_{(\text {imine })}-\mathrm{H} \cdots \mathrm{N} \quad 3.593(3) \AA\right.$. This forms channels along the crystallographic c-axis (Fig. 6), in which the disordered chloroform solvent molecules lie (in-plane with the isolated layers) without forming hydrogenbonded interactions with the component building blocks. The

Fig. 4 View of 2 shows how each of the three imine 'arms' connected to the cyclohexane core interacts with adjacent molecules of 2 (the arrows depict the arms connected to the core by the dashed line). The trans arm (shown in red) takes part in a CH hydrogen-bonded $\left[\mathrm{N}_{\text {(imine) }}-\mathrm{H} \cdots \mathrm{CH}_{\text {(aromatic) }}=2.572(8) \AA\right]$ and a $\pi_{\text {aromatic }} \cdots \pi_{\text {imine }}$ interaction $[\pi \cdots \pi=3.398(4) \AA]$. The cis-equatorial arm shown in blue interacts with a trans and cis arm from two different molecules of 2 through a CH hydrogen-bonded interactions with the imine carbon $\left[\mathrm{N}_{(\text {imine })}-\mathrm{H} \cdots \mathrm{CH}_{\text {(aromatic) }}=2.572(8) \AA\right]$ and a $\mathrm{C}-\mathrm{H} \cdots \pi$ interaction $[\mathrm{C}-\mathrm{H} \cdots \pi=2.656(9) \AA$. The second cis-equatorial arm shown in yellow interacts with another molecule of 2 through a $\mathrm{C}-\mathrm{H}^{\cdots} \pi$ interaction $[\mathrm{C}-\mathrm{H} \cdots \pi=2.656(9) \AA$. The interactions are depicted by the dotted lines.

Fig. 5 View of $\mathbf{3}$ along the crystallographic a-axis showing layers of cis-mttop ligands within the crystallographic ab-plane. Hydrogen atoms and disordered chloroform solvent molecules are omitted for clarity. Click here for a rotatable 3-D view of Fig. 5.
positioning of the pyridyl nitrogen para with respect to the imine group in 4, cis, trans-1,3,5-tris(pyridine-4-carboxaldimi-no)-cyclohexane (trans-pttop), has a marked effect on the crystal packing array. As is seen in the previous cases, the molecule is found in the non-flipped, bis-equatorial monoaxial chair conformation and forms a 2-D π-stacked network by interaction between crystallographically identical parapyridyl groups. Along the crystallographic b-axis, the transttop molecules are aligned as a layer divided into rows of two molecules, the difference between which arises from the orientation of the trans-axial pyridyl groups along the crystallographic c-axis. The cis-equatorial pyridyl groups are aligned along the crystallographic b-axis (Fig. 7) and form inter-layer

Fig. 6 View of 3 along the crystallographic c-axis showing the packing array of cis-mttop ligands to form channels that contain disordered chloroform solvent molecules. Carbon atoms are shown as grey sticks, nitrogen atoms in blue and chlorine atoms in green. Hydrogen atoms are omitted for clarity. Click here for a rotatable 3-D view of Fig. 6.

Fig. 7 View of $\mathbf{4}$ along the crystallographic a-axis showing π-stacked interactions between cis-equatorial pyridyl groups along the crystallographic b-axis (interactions highlighted as dashed lines). Click here for a rotatable 3-D view of Fig. 7.
face-to-face π-stacked interactions with identical pyridyl groups $\left(d_{\pi-\pi}=3.7 \AA\right)$.

Additional $\mathrm{CH}-\pi$ interactions formed upon insertion of the trans-axial arms between the second cis-equatorial pyridyl substituents $\left[d_{\mathrm{H}-\pi(\text { centroid })}=3.6 \AA\right.$] facilitate layers of transpttop molecules within the crystallographic $b c$-axis (Fig. 8).

Conclusions

The use of the triamino building blocks cis- and trans-tach in the formation of coordination clusters and arrays is well established, ${ }^{11,12}$ however there is still a lot to gain from study of the uncomplexed frameworks because the weaker interactions dominate and dictate the overall packing in the crystalline state. As such, these investigations have provided valuable insight into the relationship between the various conformational isomers that can be derived from the rigid 1,3,5 tri-substituted cyclohexane backbone. Further, the role of the extended frameworks in transferring conformational information from the cyclohexane backbone to an extended aromatic system has been shown to be of importance in the crystal packing of a family of substituted imines, via the

Fig. 8 View along the crystallographic b-axis showing layers of interacting molecules. Click here for a rotatable 3-D view of Fig. 8.
formation of supramolecular interactions. Each of the molecules 1-4 packs in a unique array, the formation of which is dependent upon an interplay of weak intermolecular interactions. The absence of a pyridyl nitrogen in trans-tbc (1) facilitates discrete, offset π stacking interactions that are instrumental in the formation of weakly bound dimers. The addition of a pyridyl nitrogen in ortho position has a marked effect on the crystal packing of trans-ttop (2), which is dominated by the formation of weak $\mathrm{C}-\mathrm{H}^{\cdots} \mathrm{N}$ hydrogenbonding and the absence of the potential π stacking (aromatic-aromatic) interactions is important in classifying the significance of such $\mathrm{C}-\mathrm{H} \cdots \mathrm{A}$ interactions (where $\mathrm{A}=$ weak hydrogen bond acceptor). This is further highlighted in the crystal packing of $\mathbf{3}$, whereby layers of cis-mttop molecules are arranged by the formation of $\mathrm{C}-\mathrm{H} \cdots \mathrm{N}$ hydrogen-bonded interactions via the pyridyl nitrogen in meta position. Interestingly, positioning the substitued imine para to the pyridyl nitrogen faciltates the formation of a 2-D π-stacked network that also contains $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions. The results reported show that small changes in the structural makeup of a family of related building blocks can have a significant impact on their crystal packing. This is due to its dependence on a variety of weak intermolecular interactions, whose directionality and flexibility play an integral role in the crystal engineering of molecular assemblies.

Experimental

cis,trans-1,3,5-tris-Benzaldimino-cyclohexane (trans-tbc, 1)

A solution of cis,trans-1,3,5-triaminocyclohexane trihydrochloride ($487 \mathrm{mg}, 2.04 \mathrm{mmol}$) and sodium hydroxide (263 mg , 6.58 mmol) in water (15 ml) was stirred for 15 min . Benzaldehyde ($58,706 \mathrm{mg}, 6.65 \mathrm{mmol}$) was added and the resulting mixture ultrasonicated for 4 h . Ether extraction ($3 \times$ $60 \mathrm{ml})$, drying of the combined organic layers $\left(\mathrm{MgSO}_{4}\right)$ and removal of solvent in vacuo resulted in an oily residue (2 ml), from which analytically pure $\mathbf{1}$ crystallised overnight. Addition of hexane (20 ml) and vacuum filtration yielded $\mathbf{1}$ as a crystalline white solid. Colourless crystals of $\mathbf{1}$ suitable for single crystal X-ray analysis were obtained by slow evaporation from a concentrated chloroform solution. Yield: 453 mg ($1.15 \mathrm{mmol}, 56 \%$). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta / \mathrm{ppm} 8.41$ (s, $2 \mathrm{H}), 8.38(\mathrm{~s}, 1 \mathrm{H}), 7.82(2 \mathrm{H}), 7.73(4 \mathrm{H}), 7.45(3 \mathrm{H}), 7.40(6 \mathrm{H})$, $4.11(\mathrm{tt}, 2 \mathrm{H}, J 11.2,3.5 \mathrm{~Hz}), 3.95(\mathrm{t}, 1 \mathrm{H}, J 2.8 \mathrm{~Hz}), 2.10(\mathrm{~m}$, $3 \mathrm{H}), 1.96(\mathrm{bd}, 1 \mathrm{H}, J 11.7 \mathrm{~Hz}), 1.82(\mathrm{bd}, 2 \mathrm{H}, J 11.7 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta / \mathrm{ppm} 159.74$ (CH), 158.84 (CH), $136.56(\mathrm{C}), 130.48(\mathrm{CH}), 128.59(\mathrm{CH}), 128.14(\mathrm{CH}), 65.39$ $(\mathrm{CH}), 63.58(\mathrm{CH}), 41.91(\mathrm{CH}), 40.63(\mathrm{CH})$; FTIR (Golden Gate) $\mathrm{v} / \mathrm{cm}^{-1} 3063(\mathrm{w})$, 3032(w), 2932(m), 2862(m), 1636(s), 1582(m), 1450(w), 1381(s), 1296(m), 1211(m), 1134(w), 1065(m), 1026(m), 972(w), 849(m), 756(vs), 687(s); MS (EI+): m / z 393; elemental analysis for $\mathrm{C}_{27} \mathrm{H}_{27} \mathrm{~N}_{3}$, found (exp): $\% \mathrm{C}$ 82.51 (82.41), H 7.14 (6.92), N 10.67 (10.68).

General procedure for synthesis of pyridyl-based derivatives

A methanolic solution (2 ml) of pyridine- n-carboxaldehyde ($n=2,3$ or $4,302 \mathrm{mg}, 3.66 \mathrm{mmol}$) was added to a solution of 1,3,5-triaminocyclohexane ($154 \mathrm{mg}, 1.19 \mathrm{mmol}$) and
triethylamine ($60 \mathrm{mg}, 0.59 \mathrm{mmol}$) in methanol (30 ml). The mixture was refluxed under nitrogen overnight and the volume reduced to 5 ml . Extraction with dichloromethane ($3 \times 20 \mathrm{ml}$), drying of the combined organic layers $\left(\mathrm{MgSO}_{4}\right)$ and removal of solvent in vacuo yielded 2-4 as a light-brown solid. Crystals of compounds 2-4 suitable for single crystal X-ray analysis were grown by evaporation of concentrated chloroform solutions.

Analysis for cis,trans-1,3,5-tris(pyridine-2-carboxaldimino)cyclohexane (trans-ttop, 2)

Yield: $82 \% .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta / \mathrm{ppm} 8.56(1 \mathrm{H}, 8.53$ $(2 \mathrm{H}, J 4.5 \mathrm{~Hz}), 8.40(\mathrm{~s}, 2 \mathrm{H}), 8.38(\mathrm{~s}, 1 \mathrm{H}), 8.02(1 \mathrm{H}, J 8.0 \mathrm{~Hz})$, $7.90(2 \mathrm{H}, J 8.0 \mathrm{~Hz}), 7.68(1 \mathrm{H}, J 8.0,7.5 \mathrm{~Hz}), 7.62(2 \mathrm{H}, J 8.0$, $7.5 \mathrm{~Hz}), 7.23(1 \mathrm{H}, J 6.5,6.0 \mathrm{~Hz}), 7.12(2 \mathrm{H}, J 6.5,6.0 \mathrm{~Hz}), 4.11$ (pt, 2H, J 11.3 Hz), 3.97 (bs, 1H), 2.07 (m, 3H), 1.95 (bd, 1H, $J 12.5 \mathrm{~Hz}$), $1.80(\mathrm{bd}, 2 \mathrm{H}, J 12.5 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}(75 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta / \mathrm{ppm} 159.16(\mathrm{CH}), 158.83(\mathrm{CH}), 153.38(\mathrm{C}), 153.33$ (C), $147.95(\mathrm{CH}), 147.84(\mathrm{CH}), 135.00(\mathrm{CH}), 123.20(\mathrm{CH})$, $123.10(\mathrm{CH}), 119.99(\mathrm{CH}), 119.75(\mathrm{CH}) 63.48(\mathrm{CH}), 61.68$ $(\mathrm{CH}), 39.90(\mathrm{CH}), 38.68(\mathrm{CH})$; FTIR (Golden Gate) $1 / \mathrm{cm}-1$ 3059(w), 2928(m), 2858(m), 1643(s), 1585(s), 1566(s), 1466(s), 1435(s), 1373(m), 1319(w), 1288(w), 1227(w), 1134(m), 1080(m), 1042(m), 1018(w), 991(s), 972(s), 860(s), 772(vs), 741(s), 664(m), 650(m), 617(s), 662(m), 517(s); MS (ES+): m/z 419; elemental analysis for $\mathrm{C}_{24} \mathrm{H}_{24} \mathrm{~N}_{6}$, found (exp): \% C 72.53 (72.70), H 6.31 (6.10), N 20.90 (21.20).

Analysis for cis,cis-1,3,5-tris(pyridine-3-carboxaldimino)cyclohexane (cis-mttop, 3)

Yield: $72 \% . \mathrm{C}_{21} \mathrm{H}_{24} \mathrm{~N}_{6}$ (396); $\mathrm{C}_{24} \mathrm{H}_{24} \mathrm{~N}_{6}$ (396.49): ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta / \mathrm{ppm} 1.82(\mathrm{~d}, 3 \mathrm{H}, J 11.5 \mathrm{~Hz}), 2.03(\mathrm{q}, 3 \mathrm{H}, J 11.5 \mathrm{~Hz})$, $3.56(\mathrm{tt}, 3 \mathrm{H}, J 3.5,11.5 \mathrm{~Hz}), 7.28(\mathrm{dd}, 3 \mathrm{H}, J 4.9,8.1 \mathrm{~Hz}), 8.18$ (dt, $3 \mathrm{H}, J 1.5,8.1 \mathrm{~Hz}$), $8.56(\mathrm{dd}, 3 \mathrm{H}, J 1.5,8.1 \mathrm{~Hz}), 8.31(\mathrm{~s}, 3 \mathrm{H})$, $8.78(\mathrm{bs}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta / \mathrm{ppm} 40.234\left(\mathrm{CH}_{2}\right), 65.896$ $(\mathrm{CH}), 123.368(\mathrm{CH}), 142.623(\mathrm{C}), 150.732(\mathrm{CH}), 151.367(\mathrm{CH})$, $158.871(\mathrm{CH}), 159.126(\mathrm{CH})$; FTIR (Golden Gate): v / cm^{-1} 3036 (w), 2952 (m), 1723 (m), 1635 (s), 1597 (s), 1436 (m), 1358 (m), 1307 (s), 1268 (m), 1134 (m), 1060 (m), 978 (s), 916 (w), 813 (s), $630(\mathrm{~m})$; MS (EI+): m / z 396.2; elemental analysis for $\mathrm{C}_{24} \mathrm{H}_{24} \mathrm{~N}_{6}\left(\mathrm{CHCl}_{3}\right)_{0.5}$, found (exp): \% C 64.66 (64.59), H 5.47 (5.42), N 18.62 (18.45).

Analysis for cis,trans-1,3,5-tris(pyridine-4-carboxaldimino)cyclohexane (trans-pttop, 4)

Yield: 92%. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta / \mathrm{ppm} 1.82(\mathrm{~d}, 2 \mathrm{H}, J 12.1 \mathrm{~Hz})$, $1.99(\mathrm{~d}, 1 \mathrm{H}, J 11.8 \mathrm{~Hz}), 2.17(\mathrm{~m}, 3 \mathrm{H}), 4.02(\mathrm{~m}, 1 \mathrm{H}), 4.16(\mathrm{tt}$, $2 \mathrm{H}, J 4.1,11.4 \mathrm{~Hz}), 7.59(\mathrm{~d}, 4 \mathrm{H}, J 5.8 \mathrm{~Hz}), 7.68(\mathrm{~d}, 2 \mathrm{H}, J$ $5.8 \mathrm{~Hz}), 8.38(\mathrm{~s}, 1 \mathrm{H}), 8.39(\mathrm{~s}, 2 \mathrm{H}), 8.68(\mathrm{~d}, 4 \mathrm{H}, J 5.8 \mathrm{~Hz}), 8.74$ (d, 2H, $J 5.8) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta / \mathrm{ppm} 40.426\left(\mathrm{CH}_{2}\right), 41.561$ $\left(\mathrm{CH}_{2}\right), 63.828(\mathrm{CH}), 65.838(\mathrm{CH}), 122.307(\mathrm{CH}), 122.423$ $(\mathrm{CH}), 143.413(\mathrm{C}), 143.472(\mathrm{C}), 150.802(\mathrm{CH}), 150.839(\mathrm{CH})$, $157.885(\mathrm{CH}), 158.342(\mathrm{CH})$; FTIR (KBr): v/cm ${ }^{-1} 3025(\mathrm{w})$, 2925 (m), 2856 (m), 1712 (m), 1641 (s), 1594 (s), 1556 (s), 1457 (m), 1409 (s), 1384 (m), 1313 (s), 1228 (m), 1133 (m), 1060 (m), 989 (s), 869 (m), 811 (s), 730 (s); MS (EI+): 396.2; elemental analysis for $\mathrm{C}_{24} \mathrm{H}_{24} \mathrm{~N}_{6}$, found (exp): \% C: 73.05 (72.70), H: 6.62 (6.10), N: 20.86 (21.19).

Single crystal X-ray diffraction

Suitable single crystals of $\mathbf{1 - 4}$ were grown from evaporation of chloroform and mounted onto the end of a thin glass fiber using Fomblin oil. X-ray diffraction intensity data were measured at 150 K on a Nonius Kappa-CCD diffractometer $[\lambda(\mathrm{Mo} \mathrm{K} \alpha)=0.7107 \AA$ A $]$. Structure solution and refinement for 1-4 was carried out with SHELXS-97 7^{13} and SHELXL-97 ${ }^{14}$ via WinGX. ${ }^{15}$ Corrections for incident and diffracted beam absorption effects were applied using empirical ${ }^{16}$ or numerical methods. ${ }^{17}$ Compound 1 crystallized in the space group I2/a, compound $\mathbf{2}$ in $P 2_{1} / n$, compound $\mathbf{3}$ in $P \overline{3}$ and compound $\mathbf{4}$ in $P \overline{1}$, as determined by systematic absences in the intensity data, intensity statistics and the successful solution and refinement of the structures. All structures were solved by a combination of direct methods and difference Fourier syntheses and refined against F^{2} by the full-matrix least-squares technique. See Table 1 for a summary of the crystallographic parameters.

Acknowledgements

We would like to thank the University of Glasgow and the EPSRC for funding.

References

1 J. M. Lehn, Science, 1985, 227, 849; J. W. Steed, Cryst. Eng. Comm., 2003, 5, 169.
2 G. R. Desiraju, Perspectives in Supramolecular Chemistry Vol. 2, John Wiley \& Sons, Chichester, UK, 1996.
3 S. D. Lawrence, T. Jiang and M. Levitt, Chem. Rev., 1995, 95, 2229; D. C. Sherrington and K. A. Taskinen, Chem. Soc. Rev., 2001, 30, 83.

4 R. Taylor and O. Kennard, J. Am. Chem. Soc., 1982, 104, 5063; M. Sigalov, A. Vashchenko and V. Khodorkovsky, J. Org. Chem., 2005, 70, 92.
5 G. R. Desiraju, Science, 1997, 278, 404.
6 S. K. Burley and G. A. Petsko, Science, 1985, 229, 23; G. B. McGaughey, M. Gagne and A. K. Rappe, J. Biol. Chem., 1998, 273, 15458; S. Bommarito, N. Peyret and J. SantaLucia, Nucleic Acids Res., 2000, 28, 1929; P. R. Ashton, R. Ballardini, V. Balzani, I. Baxter, A. Credi, M. C. T. Fyfe, M. T. Gandolfi, M. GomezLopez, M. V. Martinez-Diaz, A. Piersanti, N. Spencer, J. F. Stoddart, M. Venturi, A. J. P. White and D. J. Williams, J. Am. Chem. Soc., 1998, 120, 11932.
7 E. C. Lee, B. H. Hong, J. Y. Lee, J. C. Kim, D. Kim, Y. Kim, P. Tarakeshwar and K. S. Kim, J. Am. Chem. Soc., 2005, 127, 4530; C. A. Hunter, K. R. Lawson, J. Perkins and C. J. Urch, J. Chem. Soc., Perkin Trans. 2, 2001, 651.

8 I. Dance, CrystEngComm, 2003, 5, 37, 208.
9 G. R. Desiraju and T. Steiner, The Weak Hydrogen Bond in Structural Chemistry and Biology, Oxford University Press, Oxford, UK, 1999.
10 T. Steiner and G. Koellner, J. Mol. Biol., 2001, 305, 535; M. Nishio, CrystEngComm, 2004, 6, 27, 130; F. J. Malone, C. M. Murray, M. H. Charlton, R. Docherty and A. J. Lavery, J. Chem. Soc., Faraday Trans., 1997, 93, 19, 3429; P. Hobza and Z. Havlas, Chem. Rev., 2000, 100, 4253 and references therein.
11 J. Y. Yang, M. P. Shores, J. J. Sokol and J. R. Long, Inorg. Chem., 2003, 42, 1403; U. Brand and H. Vahrenkamp, Inorg. Chim. Acta, 1992, 198, 663.
12 A. L. Pickering, G. Seeber, D.-L. Long and L. Cronin, Chem. Commun., 2004, 136; A. L. Pickering, D.-L. Long and L. Cronin, Inorg. Chem., 2004, 43, 4953.
13 G. M. Sheldrick, Acta Crystallogr., Sect. A, 1998, A46, 467.

14 G. M. Sheldrick, SHELXL-97, Program for Crystal structure analysis, University of Göttingen, Germany, 1997.
15 L. J. Farrugia, J. Appl. Crystallogr., 1999, 32, 837.
16 R. H. Blessing, Acta Crstallogr., Sect. A, 1995, 51, 33.
17 P. Coppens, L. Leiserowitz and D. Rabinovich, Acta Crystallogr., 1965, 18, 1035.

[^0]: Joseph Black Building, University of Glasgow, Glasgow, UK, G12 $8 Q Q$. E-mail: L.Cronin@chem.gla.ac.uk; Fax: 44 (0)141 330 4888;
 Tel: 44 (0) 1413306661

