
Article
A Crystallization Robot for Generating True
Random Numbers Based on Stochastic
Chemical Processes
Edward C. Lee, Juan M.

Parrilla-Gutierrez, Alon Henson,

Euan K. Brechin, Leroy Cronin

lee.cronin@glasgow.ac.uk

HIGHLIGHTS

Automated system for obtaining

statistical data on crystal

formation

First example of generation of

true random numbers using

stochasticity of chemistry

Encryption capability better than

Mersenne Twister pseudorandom

number generator

Analysis of entropy in different

crystallizing compounds
Crystallization of compounds can be used as an entropy pool in the generation of

random numbers, which have applications in data encryption, and to investigate

stochastic chemical processes. Automation of chemical reactions and crystal

detection has enabled the collection and processing of the required large amounts

of data on crystal growth and formation to allow production of such numbers and

investigations.
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A Crystallization Robot
for Generating True Random Numbers
Based on Stochastic Chemical Processes
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Progress and Potential

As chemistry and materials

synthesis is starting to embrace an

era of automation and the use of

machine learning, it is becoming

vital that the quality and reliability

of that data is assessed. By

automating and parallelizing

batch chemical reactions, enough

samples may be run that statistical

data can be obtained on the

reaction system. We monitored

the crystallization for hundreds of

parallel reactions using a webcam

and found that crystal features in
SUMMARY

Chemistry inherently involves a wide range of stochastic processes, yet chemists

do not typically explore stochastic processes at the macroscale due to the diffi-

culty in gathering data. We wondered whether it was possible to explore such

processes, in this case crystallization, in a systematic way using an autonomous

robotic platform. By performing inorganic reactions in an automated system,

and observing the resultant occupied macrostate (crystallization images), we

developed a powerful entropy source for generation of true random numbers.

Randomness was confirmed using tests described by the National Institute for

Standards and Technology (puniformity >> 0.0001). Deficit from maximum

approximate entropy was found be different between compounds (pANOVA <<

0.01), and encryption security of these numbers was found to be greater than

that of a frequently used pseudorandom number generator. This means that

we can now use random number generation as a probe of the stochastic process,

as well as explore potential real-world applications.
the images obtained could be

used to generate true random

numbers. We also found that the

approximate entropy of these

numbers was different for

different types of chemical

reaction, and that the encryption

capability of these numbers was

greater than a commonly used

pseudorandom number

generator. This is the first time

that stochasticity of chemistry has

been investigated in large

datasets from experimental data.
INTRODUCTION

Recently the reproducibility and bias in chemical reaction data have been dis-

cussed.1 This is because machine learning in chemical and materials synthesis will

require large amounts of reliable data, but also so that algorithms can be vali-

dated.2 The recent development of automated platforms for chemistry are not

only transformative for chemical synthesis3,4 and discovery,5,6 but also for explora-

tion of data reliability. Another important aspect of exploring the extent to which

experimental data are reproducible is the fact that many processes are intrinsically

stochastic. Such stochasticity can also be useful, such as in the generation of

random numbers.

Random numbers are used extensively in many applications, such as cryptog-

raphy7 and scientific modeling,8 where their non-deterministic properties and

unpredictability are essential. The source of randomness (i.e., the entropy source)

is a crucial factor for whether correlations between generated numbers are pre-

sent, and this has a great impact on the randomness and utility of the output.9

As such, random number generation not only can help us understand the repro-

ducibility of a process, but also are more desirable than computational methods

of number generation (e.g., pseudorandom number generators). This is because

they extract their randomness from a physical system with a large available pool

of entropy.10,11 Importantly, the generation of random outcomes is of profound

importance as a source of noise, and potentially allows the generation of unantic-

ipated data.
Matter 2, 1–9, March 4, 2020 ª 2020 The Author(s). Published by Elsevier Inc.
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Figure 1. Schematic of Procedure for Generating Random Numbers Using Crystallization

(A) Images are acquired using a mobile tracking camera attached to the underside of the platform.

(B) Feature-detection and image-segmentation algorithms locate the pixels corresponding to

crystals and the crystallization vial.

(C) Application of a binarization algorithm converts the feature-detection data in (B) to a sequence

of 0s and 1s.

(D) Sequences from subsequent binarization applications are joined to form a longer sequence,

suitable for randomness testing.
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In a chemical system, each time a reaction is performed there is an almost infinite

number of energetically equivalent ways for particular reagents to combine, result-

ing in both high uncertainty and entropy, and the exact pathway undertaken will

never be repeated. The overall outcome of such a reaction is therefore an example

of one specific state out of an almost infinite number of possible macrostates.12 In

chemistry, the energies of different configurations of molecules under thermody-

namic control can be considered as part of a canonical ensemble, in which an almost

infinite number of energetically degenerate states can be accessed, and of which

only one macrostate will be occupied during a particular observation.13 As such,

the entropy of such a chemical system is extraordinarily high,14 and may therefore

serve as a very good entropy pool for application of random number generation.

In this regard, we hypothesized that one such systemwith a large entropy pool is that

of compound formation and subsequent crystallization, where the detectable

ensemble macrostates considered are the locations and morphologies of each crys-

tal that has grown in a period of time as a result of these processes. To explore this

idea, we set out to develop a fully automated system to not only do the chemical re-

actions but also grow crystals of the products using a camera as a detector. The plat-

form was designed so that it converts these data into binary sequences, as shown

schematically in Figure 1, which are assessed for randomness using the methods

specified in National Institute for Standards and Technology (NIST) special publica-

tion 800-22a.15 We find that the numbers generated in this way are random,
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Figure 2. Setup of the Robotic System

Photograph showing the crystallization array inside the CNC framework and its relative position to

the input stock solutions, pumps, camera, and controlling computer.
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demonstrating the possibility to investigate and use crystallization as an entropy

pool for random numbers, and we show that this is possible by encrypting a word

and validating the difficulty in breaking the code.
RESULTS

A robotic platform (Figure 2) was designed to generate images of fresh crystalliza-

tions for random number generation from chemistry, based on a Computer Numer-

ical Control (CNC) machine. Using rapid prototyping techniques described previ-

ously,16 an additional set of motorized linear axes were attached to the underside

of the device to support a camera on a mobile gantry. The mobility in the main

CNC framework and auxiliary framework were controlled using technology originally

designed for the open source ‘‘RepRap’’ 3D printer.17 Reagent stock solutions were

located adjacent to the platform, and could be transferred to vials in the crystalliza-

tion array using a combination of tubing and pumps.

Additional 3D-printed components were incorporated to direct the reagent outlets,

fix the positions of the vials in a 10 3 10 array, and support the camera (Figures S1–

S8). Experiments consisted of pre-set volumes of stock solutions being pumped into

each 14-mL vial in a vial array, sequentially. The subsequent growth of crystals in

each of the vials was recorded by a mobile camera at regular 10-min intervals at a

resolution of 1,280 3 800 pixels. Image analysis using an object-detection and im-

age-segmentation algorithm (Mask R-CNN)18,19 was employed to locate the crystals

in the vial. The full methodology for platform construction and operation is

described in Supplemental Experimental Procedures, with supporting software

found in the repository linked below.

Chemical inputs were chosen primarily such that they would produce macroscopi-

cally observable crystals in a time scale of minutes to hours without the formation

of precipitate.20 The location, size, shape, orientation, and color of crystal formation

within the vial were detected and taken as the entropy source for this system (see

Supplemental Information for details). We performed reactions that involved

different chemical processes, namely (1) crystallization alone, (2) cluster formation,

and (3) ligand attachment to cluster, and hypothesized that by increasing the num-

ber of chemical processes prior to observation of crystallization a larger number of

microstates would be accessible, increasing the system’s entropy, and therefore in-

crease the randomness of the number generated (Figure 3A).14 The three investi-

gated reactions were: recrystallization of the inorganic salt CuSO4$5H2O; the
Matter 2, 1–9, March 4, 2020 3



Figure 3. Chemical Schemes for Process Investigation

(A) Chemical schemes for process investigation. CuSO4 requires the stochastic process of

crystallization alone, whereas {W19} and {Co4} require cluster formation in addition, and {Co4}

requires the further step of ligand attachment.

(B) Reactions to form crystals of CuSO4, W19, and Co4. Top: initial reaction solutions (time = 0 min).

middle: partially complete crystallization (time = 40 min). Bottom: crystallizations at the end of the

experiment (time = 150 min).
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synthesis and crystallization of the polyoxometalate salt (C2H8N)8Na3[W19Mn2O61Cl

(SeO3)2(H2O)2]Cl2$6H2O,21 hereafter referred to as {W19}; and the synthesis and crys-

tallization of the coordination cluster [Co4(2-pyridinemethanol)4(MeOH)4Cl4],
22

hereafter referred to as {Co4}. Images of these crystallizations at different times

are shown in Figure 3B and their chemical structures are shown in Figures S9–S11.

These reactions involve the chemical processes of (1), (1 and 2), and (1, 2, and 3),

respectively. The synthetic procedure files are included in the online repository

and were used to perform the experiments in a fully automated manner. Compound

confirmation was obtained by performing single-crystal X-ray diffraction.

Images of each vial were obtained at 10-min intervals for each reaction. The crystals

in each image were isolated using an object-detection and image-segmentation al-

gorithm (Mask R-CNN) and their locations within the vial were determined using

computer vision techniques (see Figures S12 and S13 for details). A raw binary

sequence was then generated by assigning 5 bytes per crystal pixel based on size,

orientation, and color, with crystals ordered from top left to bottom right in the
4 Matter 2, 1–9, March 4, 2020



Figure 4. Results of NIST Testing for a Sequence Generated by {CuSO4} at a Time of 2 h

The histogram consists of p values obtained by running the first-level testing on a single sequence

of binary integers divided into 200 blocks of length 1,120,378.
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vial region (see Supplemental Information for details). These bytes were concate-

nated with those of adjacent crystal pixels and of subsequent crystals to generate

a long binary sequence. This sequence was then split into sections of 64 bytes,

and the sha512 algorithm was applied to each of these sections. The resulting binary

sequences were concatenated to form a larger-output binary sequence.

The output binary sequences were evaluated for randomness using the tests for

randomness recommended by NIST and published in NIST special publication

800-22a.15 We assessed the randomness of each experiment in different reaction

vials at the same time. The p value histogram of each test for {CuSO4} is shown in Fig-

ure 4 and confirm that each in each case the numbers generated were random, due

to the pass rates and uniformity of p values. Similar results for {W19} and {Co4}, along
Matter 2, 1–9, March 4, 2020 5



Figure 5. Deficit from Total Maximum Approximate Entropy for Reactions with CuSO4, W19, and

Co4 across 30 Different Reactions in an Experiment

Results of the one-way ANOVA show that the samples are statistically different, while Dunn’s test

shows that all compounds are different from each other with order of increasing DEF3 being

{W19}, > CuSO4, {Co4}.
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with figures showing bar charts of p value uniformity and pass rates, are presented in

Figures S14–S16. It is worth noting that assessment of only one feature produced

strings that were too short to be reliably assessed using the entire NIST package,

and as such randomness of features individually were not assessed.

We also wanted to assess the entropy content of each random sequence. To do so,

we calculated the deficit from maximum entropy for each sequence as described in

Pincus and Singer.23 Results were obtained by calculating deficit from maximum

approximate entropy (DEFm) for independent reactions in an experiment for

different values of m for one compound, and comparing these against DEFm values

from other compound reactions at an equal time index. The results from a one-way

ANOVA test show that there are statistically significant differences between the

three samples for m = 1,2,3 (F values = 20.2, 31.8, 75.7; p values << 0.001), and re-

sults from application of Dunn’s test indicate that each of the compounds are

different from each other. Box plots showing this information for DEF3 for each reac-

tion are shown in Figure 5, while other values of m are shown in Figure S17.

Finally, since random numbers are commonly used to encrypt data, we considered

the encryption capability of this random number generator versus that of a

frequently used pseudorandom number generator, the Mersenne Twister (MT).24

Since the MT output is determined based on its internal state, knowledge of this

state allows accurate prediction of future output. However, this is not possible in

the case of the true random number generator, whose internal state is either (seem-

ingly) non-existent25 or unknowable due to the amount of uncertainty/entropy of the

physical process.

To do so, we encrypted the ASCII string ‘‘crystal!’’ using numbers generated from

both the chemical random number generator and the MT, and compared the

average time taken to obtain the correct key to decrypt the message. In both
6 Matter 2, 1–9, March 4, 2020



Figure 6. Box Plots of Times for the Message ‘‘Crystal!’’ to be Decrypted after Encryption Using

2,496 16-Bit Keys Generated by Different Methods

Keys generated using the compound random number generator on average take as long to crack as

those produced using the uncracked Mersenne Twister (MT); however, once the state of the MT is

determined, the average decryption time for this method is negligible when compared with the

crystallization method.
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instances, brute-force decryption was used; however in the MT case, knowledge of

previous successful keys allowed determination of the MT state, and hence allowed

prediction of all future output. Box plots for the decryption of 5,000 8-bit keys are

presented in Figure 6, and show that while the average times to decrypt keys gener-

ated by each compound and the uncracked MT are similar (�5 ms), average decryp-

tion time for the cracked MT is reduced to almost zero seconds.
DISCUSSION

We have shown that the large entropy pool present during compound formation and

crystallization is able to be accessed and utilized in the creation of a random number

generator. We also found that the deficit from maximum entropy of the strings

generated by each chemical reaction is not identical, suggesting that this may be

a useful means of comparing entropy created during different chemical reactions.

However, the order predicted, which supposed that the entropy would correlate

with the number of pre-crystallization processes, was not observed, indicating that

other factors may be having a greater influence. Finally, we were able to show that

numbers generated in this manner could produce sequences of encryption keys

with better cryptographic properties than those of the MT.

Although the bit-generation rate is significantly lower than that in other methods (up

to�25 kB/s), this method represents the first time that sampling from the compound

formation and crystallization entropy pools has been approached, and future optimi-

zation of this process will likely permit much greater bit-production rates. On the

other hand, using chemistry to generate random numbers may enhance the output’s

cryptographic security, as factors such as concentration, temperature, and chemical

composition may affect the output number. An attacker would need to know which

type of chemistry had been used in order to create the number, and this becomes

increasingly infeasible as more types of chemistry and conditions are used to

generate random numbers. Additionally, measurement of the entropy from these re-

actions may be a useful means to assess the chemical complexity of these systems.

For instance, it may be possible to distinguish between multivariate metal-organic
Matter 2, 1–9, March 4, 2020 7
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frameworks with different internal ordering26 using this method, since a change in

entropy of the crystal structure may influence the entropy of the random number

output.

In practice, this feature may be miniaturized and incorporated into computer hard-

ware as a monolithic sealed device in which crystallization is temperature controlled,

allowing for repeated cycles of random number generation. Such a sealed device

could be embedded in conventional electronic computers, allowing access to

a powerful and convenient random number generator powered by chemical

processes.

EXPERIMENTAL PROCEDURES

Full experimental procedures are provided in Supplemental Information.

DATA AND CODE AVAILABILITY

All experimental data are available from the authors upon request. Code for the bi-

narization of images, sequence randomness testing, and figure preparation is

located at https://github.com/croningp/xtl-rng.

SUPPLEMENTAL INFORMATION

Supplemental Information can be found online at https://doi.org/10.1016/j.matt.

2020.01.024.
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