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How do we know where to look to

discover new types of reactions, mole-

cules, and reactivity in chemistry?

Chemistry is a practical subject, and

most of our knowledge originates

from laboratory experiments. The

fundamental building blocks of chemis-

try, described by the periodic table,

allow us to draw general conclusions

regarding the reactivity of a given com-

pound as a function of its elemental

composition.1 However, the notion of
reactivity has been refined over

the years within this framework and is

supported by theories of bonding and

chemical structure. But how can we go

beyond our current knowledge? Is it

possible to develop an abstraction of

chemistry beyond the current rules of

reactivity—a new meta-chemical real-

ity? Could we use this new abstraction

to discover entirely new knowledge

that can be translated back to chemical

space so that chemists can then apply it

to build new molecules and engineer

new reactions? We would suggest that

we might need to develop the meta-

physics of chemistry before jumping

on the big-data and artificial-intelli-

gence bandwagon.

Metaphysics is a branch of philosophy

concerned with the nature of existence

and reality, according to which the

application of logic alone should allow

the construction of the reality around

you in a virtual metaphysical box giving

the laws of the universe, including

chemistry. This approach is important

because it accepts that there is a reality

(causation), and it forces the observer or

experimentalist to strip away assump-

tions of cause and effect as opposed

to real observations. In many sciences

(chemistry is not immune), the assump-

tion of correlation and causation cor-

rupts what knowledge we have and

can be a source of bias.2 This bias has

been incorporated into our models

and theories over time and thus dis-

tracts the observer from challenging

the models because we are told that

things won’t work outside the walled

garden. Typically, these assumptions

go unchallenged until a mistake is

made—a chance event or serendipi-

tous discovery—or the basis for the

model is found to be incorrect.

The current optimism and excitement

surrounding the hope that develop-

ments in algorithm development,

machine learning, and artificial intelli-
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gence will have a profound impact on

the world are also affecting chemical

and materials science.3 From exploring

databases to developing rule-based

retrosynthesis,4 the application of these

approaches to chemistry is promising,

but it is not without problems.5 First,

finding the correct way to represent

chemical knowledge is hard.6 Most ap-

proaches use structural representations

or an encoding of these representa-

tions, such as SMILES or InChI. Second,

chemical space (we define this here as

being some function of molecular

weight and elemental composition) is

very large and sparse, and although

vast areas contain only a few molecules,

some parts are highly populated with

molecules. Third, chemistry costs both

time and physical resources, resulting

in a limit on the number of experiments

that can be done. Fourth and finally,

many of the chemical databases that

hold reaction data are incomplete,

and much of the data are not validated.

In some cases, the data are erroneous,

and many of these databases are not

freely available. Perhaps most frustrat-

ingly, only positive results are reported.

This is an important problem given that

many machine-learning techniques,

e.g., neural networks, require a very

large amount of data for training, and

the quality of the resulting model criti-

cally depends upon the quality of the

input data.7 So how can we develop in-

sights when our data are limited and

the quality is variable? To address

the issue of poor-quality data, we

have been developing closed-loop ap-

proaches with autonomous robots that

are able to decide which experiments

to do, collect the data, and then make

a decision about what experiment to

do next.8,9 These are likely to be much

more efficient than current approaches

because they will improve as the exper-

iments are done, thereby reducing the

amount of resources required. This is

because the budget of the total number

of reactions can be better utilized on
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Scheme 1. Exploring Chemical Space

This scheme shows well-defined chemical language (top) and the reactions of molecules, and the

resulting mechanism can be expressed with process variables (bottom) to react the reagents

together, detect the outcome, infer reactivity, and translate to chemical knowledge.
the reactions that are more likely to

match the search goal. With this in

mind, instance-based algorithms, such

as simulated annealing or genetic

algorithms, can be used for choosing

the next experiments with data ob-

tained from previous experiments.

These approaches rely on successive

experiments aiming for improvement

in the overall trend by selecting each

subsequent experiment in a statistical

approach.

Model-based approaches also use

feedback from previous experiments

with the goal of improving the outcome

of the ongoing search, but the data are

also used for constructing a model of

the world. Such models are dependent

upon the previous data.

Linking experimental generation and

model development can improve

knowledge of the space and dramati-

cally increase the insights gained as a

function of the experiments. This is

analogous to how a good human exper-

imenter will work, and even though hu-

mans are normally superior because of

their depth of knowledge, they also

can be limited by assumptions or bias

about what experiments should not

be done.10 This means that a well-

designed exploration system can chal-

lenge the assumptions built into the
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model and update them. Therefore, hu-

man experimenters, if they are willing,

can also update their own bias and

knowledge with regard to an agnostic

model.

Discovery in chemistry falls mainly into

one of four areas: new molecules, new

reactions, new reactivity, and finally

new physical properties of the resulting

compounds or materials. Establishing

new reactivity leads to new reactions,

which also leads to new molecules.

This is therefore the order of impact

for discoveries in terms of the amount

of chemical knowledge that they

contribute. Such findings must, by defi-

nition, belong outside the known or

predictable; they are outliers and as

such can oppose conventions, assump-

tions, and biases. We can use the idea

of an outlier to define a novel discovery

in practical terms as any information

about the chemical space that exhibits

sufficiently different outcomes from

prediction. By taking this approach,

we can reformulate the problem of

chemical discovery. In this way, we set

up a series of experiments, predict

the outcomes with current knowledge,

and flag those instances that diverge

from the prediction. Of course, novelty

in chemistry has been hard to argue

for because the assertion of novelty is

only as good as the knowledge held
by the person or expert system that as-

serts that the observation is novel. This

is only a practical and not a theoretical

problem. We define an observation as

novel if it cannot be predicted with prior

knowledge. In chemistry, we have to

add practical filters so we don’t confuse

novelty with issues of reaction sensi-

tivity to initial conditions, issues with re-

agent quality, fine control over reaction

processing, and so on.

A significant change to discovery in

chemistry could be made possible if

automation and/or ‘‘smart’’ algorithms

could help with the design of experi-

ments to focus on the areas of chemi-

cal space that have been poorly

explored, found to be unreliable, or

aiming for previously inaccessible

areas (reactions that are too sensitive

to initial conditions or give stochastic

outcomes). The key issue is that we

don’t currently report failed experi-

ments, yet ironically, mapping failure

is crucial in increasing the chance of

discovery. This means that there is a

massive opportunity for chemists to

not only record failure but also find a

way to uniformly present it in a stan-

dard way to aid in the design of exper-

iments and the input experiment list. In

addition, the development of new ma-

terial-handling systems and sensor ar-

rays will be crucial so that the robotic

system doing the chemistry could be

more efficiently directed.

By developing the meta-physics of

chemistry and chemical reactivity, we

should be able to establish a new set

of chemical ontologies that relate back

to the practical core operations but

that also can be translated into molecu-

lar structures and the discovery of func-

tion. The truth of chemistry lies with

finding the intrinsic reactivity of the

input chemicals and then encouraging

or enabling reactivity by process con-

trol (Scheme 1). This could be control-

ling temperature, adding a catalyst,

changing solvent, and so on. Although

the new discovery and reaction should



be translatable to chemical bonding

theory, chemists need to grapple with

the fact that the application of the cur-

rent rules will not allow discovery;

instead, it will act to restrict rules to

those that are known. So, chemical dis-

covery requires that the current rules be

updated or broken or that new ones be

made. The discovery of Diels-Alder or

cross-coupling reactions is an excellent

example of a new rule that was discov-

ered without any prior warning.

The conclusion is that without a deeper

development of a meta-physics of chem-

istry, theuseofbigdataandartificial intel-

ligence will just tell us what we already

know we know, and maybe predictable

extensions, rather than enable discovery.

The challenge for the chemist is not the

use of artificial intelligence but the intelli-

gent use of algorithms and automation

for novel discoveries rather than just

new molecules that are predictable. This

development is crucial if chemical tech-

nologies are to shake the perceived fail-

ure of the combinatorial synthesis revolu-

tion. Ultimately, the development of such
tools should build on the creativity of

the chemist and allowdiscoveries andde-

velopments that would not have been

possible in isolation. With such ap-

proaches, the chemist will be able to

boldly go into the unknown and actively

seek chemical novelty.
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