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Time-programmable drug dosing allows the
manipulation, suppression and reversal of antibiotic
drug resistance in vitro
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Multi-drug strategies have been attempted to prolong the efficacy of existing antibiotics, but

with limited success. Here we show that the evolution of multi-drug-resistant Escherichia coli

can be manipulated in vitro by administering pairs of antibiotics and switching between them

in ON/OFF manner. Using a multiplexed cell culture system, we find that switching between

certain combinations of antibiotics completely suppresses the development of resistance to

one of the antibiotics. Using this data, we develop a simple deterministic model, which allows

us to predict the fate of multi-drug evolution in this system. Furthermore, we are able to

reverse established drug resistance based on the model prediction by modulating antibiotic

selection stresses. Our results support the idea that the development of antibiotic resistance

may be potentially controlled via continuous switching of drugs.
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T
he emergence of multi-drug-resistant bacteria, or
‘superbugs’, poses an imminent threat to our society and
has been accelerated by a number of factors, such as the

overuse and misuse of existing antibiotics as well as diminishing
antibiotic pipelines1,2. The use of a combination of drugs as a
multi-drug strategy, such as combination therapy and antibiotic
cycling, has been proposed and used to cope with the current
situation. To date, a wide range of studies have been conducted to
elucidate the effects of single as well as multiple drugs on bacterial
evolution. In vitro pharmacokinetic/pharmacodynamic studies
have identified optimal dosing regimens using multiple drugs
that can effectively suppress bacterial growth and prevent the
emergence of drug-resistant mutants3–6. Laboratory evolution
studies utilising whole-genome sequencing7–12 and transcriptome
analysis13,14 have been applied to investigate longer-term
dynamics of bacterial adaptation to stressful drug environ-
ments, and provide insight to the complex relationships between
drug resistance, and genetic alterations and gene expression
changes. Theoretical modelling has been employed to understand
bacterial evolution from a systems perspective. Various models
including phamacodynamics15,16, population genetics17,18 and
population dynamics19,20 models have been developed to
examine results obtained from experimental studies. Antibiotic
cycling has also been studied in clinical settings for over 30 years,
particularly cycling of aminoglycosides was widely studied due to
increasing drug resistance mediated by plasmids carrying
aminoglycoside enzymes21,22. Cycling in the intensive care
unit was also actively investigated because infections with
drug-resistant bacteria can be lethal if treatment fails23.

Despite a number of clinical, laboratory and theoretical studies
with various antibiotic combinations20,24–28, they showed
mixed results partly because of a lack of standard procedures to
perform experiments. However, recent studies suggest that
exploitation of collateral sensitivity, in which bacterial strains
resistant to an antibiotic exhibit increased susceptibility to other
antibiotics12,13,29, may be key to the suppression or reversal of the
evolution of bacterial drug resistance30. Thus temporally
modulated use of different antibiotics is a promising candidate
method for effective multi-drug dosing because switching of
antibiotics can selectively perish resistant strains due to fitness
costs associated with drug resistance while allowing susceptible
strains to overgrow. So far several laboratory evolution studies
based on collateral sensitivity have demonstrated the effectiveness
of antibiotic cycling with certain drug combinations and
dosing regimens9,10,31,32. However, an exhaustive experimental
investigation of effective antibiotic cycling combinations
for suppressing the emergence of bacterial drug resistance is
yet to be conducted.

In this work, we investigate effective combinations of antibiotics
that suppress the development of drug resistance under cycled stress
and how the multi-drug evolution can be related to evolution under
single antibiotic condition. We find unique evolutionary patterns
(that is, temporal development of bacterial drug resistance) in
which the emergence of drug resistance to one of the cycled
antibiotics is completely suppressed. A simple mathematical model
is derived from the obtained data, which allows us to predict the
fate of multi-drug evolution from evolutionary patterns under single
drug conditions. By combining the experimental data and model
predictions, we then demonstrate that reversing evolved multi-drug
resistance is possible by temporally modulating antibiotic stresses.

Results
Experiment design and platform. This study aims to gain
insights into bacterial evolution under fluctuating antibiotic stress
by the design of a series of long-term (24 days) laboratory

evolution experiments. Experiments were designed to expose
bacterial cultures to single antibiotic stress and a range of
configurable alternating antibiotic stresses. The drug type and the
concentration of the drug applied were either switched (on/off) or
oscillated over a range of variable time periods (Fig. 1a).
To achieve this type of programmable environmental drug
condition we designed and constructed an automated morbido-
stat platform7, application of which enabled assessment of
the development of antibiotic resistance (measured as changes
in susceptibility) as a function of multi-drug composition,
relative concentrations and time (Supplementary Fig. 1). In
the morbidostat, the antibiotic concentration was automatically
controlled by a custom algorithm7; when a bacterial culture
reaches a certain density, 1 ml of a growth medium containing an
antibiotic was administered into 12 ml of a bacterial culture, while
a medium containing no antibiotic was added at low cell density
(Methods). The antibiotic concentration in the administered
growth medium was at least 10 times higher than the minimum
inhibitory concentration (MIC) of a wild-type strain. Typically,
antibiotics were added at least a few times once the cell density
exceeds a threshold level, and thus the antibiotic concentration
was increased to the range of drug concentrations that select for
drug-resistant mutants (so-called ‘mutant-selection window’33).
The use of the automated cell culture system was important not
only in delivering programmable dosing, but the morbidostat
system enabled maintenance of bacterial populations in
exponential growth phase. Thus the platform was expected to
provide good phenotypic reproducibility between parallel
experiments7 whilst enabling genetically diverse populations to
co-exist34,35. Note that we here defined a wild-type Escherichia
coli MG1655 strain as a susceptible strain, in contrast to the
clinical definition in which a strain can be treated with an
antibiotic at the recommended dosage. Resistant strains were
defined as any (evolved) bacterial samples whose MICs exceed
that of the wild-type strain.

Bacterial evolution under alternating antibiotic stresses.
Starting with an isogenic E. coli strain, a series of 24-day
experiments in the morbidostat system was performed using
two alternating antibiotic stresses (Fig. 1a), as well as 12-day
experiments under a single antibiotic stress. Antibiotics were
chosen from different classes so that they have different targets
(Table 1), which minimize the risk of developing potential cross
resistance between antibiotics12,13,29. To assess the reproducibility
of the evolutionary trajectories, experiments were duplicated for
each antibiotic cycling pair and triplicated for each single
antibiotic. Experiments with reversed order of antibiotic cycling
were also performed in duplicate to evaluate the effect of order of
cycling. These experiments revealed that the bacterial populations
exhibited two evolutionary patterns in the development of drug
resistance under the cycled conditions as shown in Fig. 1. The
first group developed the resistance to only one of the cycled
antibiotics, whereas the second group became resistant to both
antibiotics. We refer to these antibiotic-resistant conditions of the
bacterial populations as a ‘single drug’ and ‘multi-drug’ resistant
state, respectively. Within the second category, two different
patterns were observed: An oscillation30 with a gradual increase
of baseline (Fig. 1g) and a lowered maximum resistance (Fig. 1i).
In the former case, the rates of adaptation to chloramphenicol
(CHL) and nitrofurantoin (NIT) were both delayed (the steepness
of fitted logistic curves k¼ 0.4±0.03 and 0.19±0.01 day� 1,
mean±s.e.m., respectively) compared to the case of single
antibiotic stress (Fig. 1f, k¼ 0.79±0.13 and 0.55±0.05 day� 1,
respectively). In the latter case, the drug resistance was developed
rapidly and at a similar rate to the single antibiotic case
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k¼ 1.7±0.12 and 31.9±3.12 day� 1 for kanamycin (KAN) and
nalidixic acid (NAL), respectively, for cycling case and
k¼ 7.11±6.01 and 5.06±1.65 day� 1 for single antibiotic case.
However, the maximum level of NAL resistance was significantly
lowered (Po0.001, Welch’s two sample t-test. Supplementary
Fig. 4a), while that of KAN resistance was comparable to the
single antibiotic case. Evolutionary trajectories were reproducible
between parallel experiments and the evolution experiments with
reversed cycling order of antibiotics showed similar evolutionary
patterns (Supplementary Fig. 2a).

While the development of multi-drug resistance was expected,
the results of cycling with polymyxin B (POL) shown in Fig. 1c,e
were surprising. This is because, depending on the antibiotic
combinations, either the development of POL resistance or the
counteracting antibiotic was suppressed. As a result, the bacterial
population was resistant to only one antibiotic. In contrast, the
resistance was developed in all cases when cultured under single
antibiotic stress (Fig. 1b,d,f,h). To gain a better understanding of
this behaviour, the bacterial population was challenged with
various antibiotic combinations (Supplementary Fig. 3). Here, the
antibiotics were cycled over an interval of 1 day because shorter
intervals tended to delay the development of the antibiotic
resistance (Supplementary Fig. 4b–i). The results showed that
cycling with POL often drove the bacterial population to a single
drug-resistant state, or kept the population in that state for a long
period (Supplementary Fig. 3a). In contrast, cycling with the
other antibiotics ended up in a multi-drug-resistant state in all the
cases (Supplementary Fig. 3b).

Bacterial evolution under single antibiotic stress. We
hypothesized that the single drug-resistant state with POL might
be related to the evolutionary patterns of resistance under single
antibiotic condition. Indeed, the development of POL resistance
under single antibiotic stress exhibited a unique evolutionary
pattern with a relatively long ‘silent phase’ where the population
does not develop drug resistance (up to 6 days) followed by sharp
increase as shown in Fig. 1b and Supplementary Fig. 5. As such,
the evolutionary patterns of the other antibiotic resistance profiles
can be categorized into two types: (1) The rapid development of
NAL, KAN and rifampicin resistance increasing to the maximum
level with little or no silent phase, and (2) a gradual increase in
resistance for CHL, NIT, ampicillin and tetracycline over time7,8.
Cycling POL with the antibiotics in the former category tends
to suppress the resistance to POL, while populations developed
POL resistance at a relatively early stage when cycled with the
antibiotics in the latter category.

Collateral sensitivity profile. We also investigated the cross
resistance and collateral sensitivity profiles12,13,29 using the
final day samples from the evolution experiments under
a single antibiotic condition (Fig. 2). This showed that POL
resistant strains showed collateral sensitivity to many antibiotics,
indicating that having POL resistance tends to make bacterial
cells more susceptible to other antibiotics than wild-type strains.
On the other hand, strains that have already evolved resistance
to the other antibiotics often developed cross resistance to the
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Figure 1 | Evolution of antibiotic resistance under antibiotic cycling condition. (a) Experimental design for bacterial evolution under cyclic exposure to

two antibiotics. Wild-type E. coli was cultured in the morbidostat system with dynamic antibiotic concentrations. The Every t days (where t¼ 1, 3 and 6),

the drugs were switched in an alternating manner and the cell cultures were sampled daily and stored at �80 �C. After a total of 12 or 24 days the MICs of

the collected samples were determined. (b) Evolutionary trajectories of KAN and POL resistance (green and yellow curves, respectively) under single

antibiotic condition. Trajectories of parallel experiments were shown as pale lines and the average of parallel experiments was in solid line with empty

circles. The resistance levels were measured as MIC fold change relative to the wild-type, calculated by log2(MICi/MICWT), where MICi and MICWT are the

MICs of the i-th day sample and wild-type E. coli, respectively. (c) Trajectories of KAN and POL resistance when cycled with 3 day interval. Pale lines

indicate trajectories of parallel experiments and the average was shown as solid line with filled circles. The pale coloured background indicates the

antibiotics used. (d,e) evolutionary trajectories of CHL and POL resistance (blue and yellow) under single antibiotic condition and cycling with 3 day

interval, respectively. Similarly, for (f,g) CHL and NIT resistance (blue and purple), and (h) and (i) KAN and NAL resistance (green and orange). Samples

sizes are n¼ 3 for single antibiotic condition and n¼ 2 for antibiotic cycling (biological duplicates).
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other antibiotics or remained neutral. While these results were in
general consistent with previous studies on collateral sensitivity
(Supplementary Fig. 12)29,36, some collateral sensitivity profiles
(for example, KAN) were less evident compared to previous
cases. This may be due to different selection strengths during
evolution between previous and our cases because the collateral
sensitivity/cross resistance profile is known to be dependent on
the selection strength36.

Possible mechanisms of drug resistance suppression. The
multi-drug and single drug evolution experiments demonstrated
various evolutionary patterns depending on the types and
combinations of antibiotics. While antibiotic cycling strategies
that eliminated bacteria with sublethal antibiotic dosages
have been reported10, our case maintained exponential growth yet
suppressed the emergence of antibiotic resistance (Fig. 1c,e).
These various patterns of evolutionary trajectories make a stark
contrast with a previous laboratory evolution study on antibiotic
cycling where monotonic increase in drug resistance was
consistently observed9. To provide possible explanations for the
diverse evolutionary patterns, we first consider the growth
conditions in the previous and our studies.

With the serial transfer method used in the previous study9, a
bacterial population experiences exponential and stationary
phases during overnight culture. While the growth rate is a
main factor for resistance evolution in exponential phase, other
factors such as cell–cell interaction and resource competition
would come into play in stationary phase. Evolution using the
serial transfer method would thus be slower than the case when

the exponential phase was maintained (that is, morbidostat)
because the bacteria need to adapt to both conditions in
exponential and stationary phases. Antibiotic cycling would
further slow the adaptation process because of collateral
sensitivity, additional fitness costs by resistance to a second
antibiotic and other factors9.

In contrast, the rate of resistance evolution in the morbidostat
is primarily determined by the growth rate, in particular the
growth rate of a new mutant relative to that of the population8.
This would explain the evolutionary patterns under single
antibiotic stress as the growth rate (that is, fitness) of an
antibiotic-resistant mutant may vary depending on the antibiotics
used. For example, if only one single mutation is required to
become strongly resistant to an antibiotic, such resistant mutant
will quickly sweep through the population in the presence of the
antibiotic and resistance at the population level rises sharply. On
the other hand, if a fitness gain by a mutation is relatively
small, the evolution will slowly increase. These mechanisms may
explain the rapidly or gradually increasing evolutionary patterns
(for example, KAN or CHL, respectively, Supplementary Fig. 5).

The evolution under single POL stress showed a unique
pattern with a relatively long silent phase that was not observed
in the other antibiotics tested. A simple explanation for the
pattern could be to assume that multiple mutations are required
for POL resistance. However, it seems implausible because
the reproducible evolutionary trajectories of POL resistance
(for example, Fig. 1e) cannot be explained considering the
inherent stochasticity of genetic mutation. In addition, as
described below, the whole-genome sequence data did not
support the explanation (Supplementary Table 1). Instead, we
speculate a two-step adaptation mechanism of POL resistance
because it has been known that there are non-genetic resistance
mechanisms to POL, such as Lipid A modification37 and
heteroresistance38. Recent studies indicated that heteroresistance
to POL was achieved by upregulations of putrescine synthesis and
YceI protein without any genetic mutations. In addition, release
of the molecules from highly resistant subpopulations of
heteroresistant bacteria protects less resistant bacteria from
POL and other antibiotic stresses39,40. This evidence suggests
that the E.coli populations in this study might have used the
non-genetic mechanisms to cope with POL stress at the initial
stage of evolution when the drug concentration was low. This
could then have switched to genetic mechanisms, that is,
beneficial mutations conferring POL resistance as the drug
concentration increased, which may explain the step-like
evolutionary pattern of POL resistance.

Based on the single drug evolutionary patterns, we then
consider the evolutionary patterns of the antibiotic cycling, in
particular KAN-POL (Fig. 1c) and POL-CHL (Fig. 1e) cycling. In
the former case, a bacterial population may first acquire resistance
to KAN as it was demonstrated to occur rapidly during the initial

Table 1 | List of antibiotics used in this study.

Name Abbreviation Class Target Type Solvent

Polymyxin B POL Polymyxin Lipopolysaccharide Bactericidal Ethanol
Chloramphenicol CHL Amphenicol Protein synthesis, 50S Bacteriostatic Water
Nitrofurantoin NIT Nitrofuran Multiple mechanisms Bactericidal DMF
Nalidixic acid NAL Quinolone DNA gyrase Bactericidal Water
Kanamycin KAN Aminoglycoside Protein synthesis, 30S Bactericidal Water
Ampicillin AMP b-Lactam Cell wall synthesis Bactericidal Water
Rifampicin RIF Rifamycin RNA polymerase Bactericidal DMF
Tetracycline TET Tetracycline Protein synthesis, 30S Bacteriostatic Ethanol

DMF, dimethylformamide.
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stage of evolution experiments (Fig. 1b). Considering that having
KAN resistance generally incur fitness costs, this may then have
significantly delayed evolution to acquire additional resistance
to POL by extending the silent phase, especially because POL
resistance comes with large fitness costs37. Indeed, in a similar
case with NAL-POL cycling (Supplementary Fig. 3a), the
emergence of POL resistance was largely delayed, suggesting
that POL resistance appeared after fitness cost of NAL resistance
was compensated by secondary adaptations41,42. This would also
suggest that, if the KAN-POL cycling was continued for a longer
period, POL resistance may appear at a later stage of the
experiment. The latter case of CHL-POL cycling, in which
CHL resistance was completely suppressed, can be explained by
the reversible nature of CHL resistance (which was also observed
with POL resistance, as described below). In Supplementary
Fig. 2, it was observed that developed CHL resistance was
reversed back to the susceptible level when the antibiotic stress
was switched to POL. This indicates that CHL resistant mutants
appeared during a period of CHL stress were perished when the
antibiotic was switched to POL. If the cycling rate was more
frequent, it would keep the CHL resistance level low because
CHL resistant mutants would be removed before they become
a majority in the population.

Mathematical model of bacterial multi-drug evolution. From
above results, we suspected that three factors were involved
in the evolutionary patterns under cycled antibiotic stress, that is,
(1) the duration of silent phase, (2) the rate of adaptation and
(3) cross resistance and collateral sensitivity profiles. To study
the obtained results from a broader perspective, we derived
a simple model incorporating the three factors to describe the
evolutionary patterns (Supplementary Methods). It should be
noted that we employed a phenomenological model rather than
commonly adopted population genetics models8,42,43. This is
because previous studies revealed that, despite diverse underlying
genetic alterations, bacterial evolution for stress resistance
can exhibit remarkably similar phenotypic trajectories7,8,44–46.
Additionally, from a prediction point of view, it would be helpful
if a model is based on experimental parameters that can be
measured relatively easily. Thus, we here developed a theoretical
model relying only on relative MIC levels.

The model was based on two assumptions: (1) The develop-
ment of bacterial resistance to an antibiotic A, termed as RA, is
constantly promoted during exposure to antibiotic A. However,
the resistance level eventually saturates due to fitness costs47, as
we observed above. (2) Increased RA negatively affects resistance
to another antibiotic B, or RB largely if the antibiotics are a
collateral sensitive pair12,13,29. Otherwise it has small effect
(neutral or cross resistant pair). Conceptually, the model can be
described as a system with positive autoregulation and double
negative feedback loops (Fig. 3a). The model has three key
parameters, the duration of silent phase y, the rate of adaptation
a and the collateral sensitivity/cross resistance coefficient b. These
model parameters were determined based on the fitting
parameters of experimental results under single antibiotic stress.

The geometric structure of the model shown in Fig. 3b,c
explains the origin of the unique evolution patterns of POL
resistance. The nullclines for POL resistance (yellow curve in
Fig. 3b) and KAN resistance (green) intersect at three points, two
of which are stable steady states (indicated as solid circles). Thus,
in theory, the evolution of bacterial resistance to POL and
KAN can result in either a multi-drug-resistant or single
drug-resistant state. However, in the case of cycling with KAN,
the bacterial population developed resistance to KAN first due to
the rapid adaptation rate (determined by a) and POL resistance

did not develop at all despite antibiotic cycling (Fig. 3d,g). In
contrast, when POL was cycled with an antibiotic with
slow adaptation rate, such as NIT, the evolution ends up in the
multi-resistant state (Fig. 3e,h). This is because POL resistance
rapidly increased before the system reached a single antibiotic
state due to the slow adaptation rate of NIT. The geometric
structure is unique to the case with POL which has a large
silent phase (determined by y). In contrast, the nullclines have
only one intersection when the antibiotics other than POL
were cycled (Fig. 3c). This means that the evolution under
antibiotic cycling always results in a multi-drug-resistant state
in this system (Fig. 3f,i). Indeed, the cycling experiments
using antibiotics other than POL always resulted in a multi-
drug-resistant state so far as we tested (Supplementary Fig. 3b).

Evolutionary trajectories simulated by the model were in
good agreement with experimental results in terms of the final
drug-resistant states (Fig. 4) as well as the evolutionary patterns
(Supplementary Fig. 6). In Fig. 4a,b, the normalized drug
resistance level for one of the cycled antibiotics was plotted
against that for another antibiotic. For example, KAN-POL
cycling where KAN and POL are represented as drug #1 and #2,
respectively, was mapped on the x axis because only KAN
resistance was developed while POL resistance was completely
suppressed. In general, the results can be categorized into two
groups, that is, the single and multi-drug-resistant states, as
observed above. The former cases (for example, KAN-POL)
were plotted on the axes, while the latter ones (for example,
NAL-KAN) were in the upper right part of the plot. To illustrate
the predictability of the theoretical model, the normalized
predicted MIC values were plotted against the normalized
observed MIC values (Fig. 4c,d). Overall, the model predictions
showed good correlations with the experimental results (r2¼ 0.44
and 0.64, respectively). We also constructed a null model of the
mathematical model as a comparison. In the null model, all the
collateral sensitivity/cross resistance coefficient term b were set to
zero. Comparison of predictions by the null model and
experimental results showed poor correlations (r2¼ 0.03 and
0.20. Supplementary Fig. 9). As the null model has no interaction
between antibiotic resistance due to b¼ 0, both drug resistance
levels approached to the maximum at the rate determined by a.
This result illustrates that the interaction between a and b is
crucial for diverse evolutionary patterns and hence demonstrates
the predictability of the mathematical model.

It should be also noted that there were some cases in which the
model and experiments did not match. For example, CHL-POL
cycling resulted in a single drug resistance (POL resistance only)
while the model predicted that the bacterial population would
result in multi-drug-resistant states (Supplementary Figs 3a and
7a). As discussed in the previous section, an additional effect of
bacterial resistance, such as the reversible CHL resistance, might
be involved in the experimental pattern of antibiotic cycling and
need to be incorporated in the model to reproduce the behaviour
accurately. In the case of cycling using NAL and POL,
experimental results showed that POL resistance appeared at a
later stage of the experiment. However, the theoretical model
predicted a single drug-resistant state (NAL resistance only). This
suggests that there was some additional adaptation process that
alleviated the fitness costs for NAL resistance occurred during the
cycling experiment (for example, compensatory mutations41,42).
Indeed, the model reproduced the experimental results when
such effect was taken into account by reducing the collateral
sensitivity/cross resistance coefficient b to zero at a certain point
during the experiment (Supplementary Fig. 6b and Suppleme-
ntary Methods).

We derived an approximate analytical solution of the model,
which describes that the normalized maximum resistance to
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antibiotic A is determined as R0A ¼ a=ðaþbÞ in the simplest form
(Supplementary Methods). This means that the maximum
resistance level is determined by the ratio of cross resistance/
collateral sensitivity profile and the rate of adaptation. Such effect
of a and b was indeed seen in the experimental results
(Supplementary Fig. 3): Antibiotic cycling with collateral sensitive
pair (that is, large b) lowered the maximum resistance level
compared to that with cross resistant pair (small b), for instance,
CHL and KAN, and CHL and NAL pairs, respectively. The
equation also indicates that if antibiotic A with large a is cycled
with antibiotic B with small a, the evolution results in R0A4R0B on
the final day, which can be confirmed in the experimental results.

Reversing drug resistance by modulating antibiotic stresses.
One of the important implications in the model is that the
evolution of bacterial drug resistance can be viewed as a
dynamical system because the model proposed here is a simple
deterministic system. Such dynamical systems view of biological
systems was previously proposed in the context of stem cell
differentiation and drug resistance evolution of caner cells48,49. In
the current context, this view suggests that drug-resistant states of
bacterial population can be directed from one state to another if

antibiotic stresses are modulated externally. In fact, it was
theoretically indicated that antibiotic cycling with a pair of
synergistic drugs can select susceptible bacteria while eliminating
drug-resistant ones from a population20. To verify this experi-
mentally, we examined the reversibility of evolved antibiotic
resistance as it can be considered as a state transition between
resistant states. In particular, we here mainly focused on POL
resistance because the cycling with this antibiotic has
two resistant states (Fig. 3b) and also because it is one of the
‘last-resort’ antibiotics37. The model predicted that an evolved
resistance can be removed from a bacterial population if
antibiotic cycling is switched to a single antibiotic stress (Supple-
mentary Fig. 7a). To confirm this experimentally, we challenged
bacterial populations from the cycling experiments with conse-
cutive exposure to counteracting antibiotics. Results showed that
the resistance can be indeed reversed even from the last day of
antibiotic cycling at the expense of increased resistance to the
counteracting antibiotic (Fig. 5a). It should be also noted that, not
only single, but also multi-drug resistance in a bacterial
population can be reversed by exposing to a counteracting
antibiotic (POL-NIT case in Supplementary Fig. 7b). The
reversibility did not depend on the evolved resistance or counter-
acting antibiotics used (Supplementary Figs 2b and 7b). However,
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there were also the cases when an antibiotic resistance was not
reversed, especially the cases when a population was evolved
under a single antibiotic stress (Supplementary Fig. 7c).

We examined the mechanism behind the evolved resistance
and reversibility, and identified conditions that contributed to this
phenomenon: Genetic and phenotypic heterogeneity in a bacterial
population. First, we sequenced the whole-genome of POL
resistant mutants evolved under single or cycling POL stress.
While a number of mutations were found in the evolved strains
(Supplementary Table 1), we identified mutations in basS and
secD genes as key mutations that confer POL resistance (Fig. 5b
and Supplementary Fig. 8). BasSR (also called PmrAB) two
component system regulates the lipopolysaccharide modification
pathways and is known to confer POL resistance37. SecD, a part
of the Sec protein translocase complex, belongs to the resistance-
nodulation-cell division family of multi-drug exporters50 and is
known to play an auxiliary role in antimicrobial peptide
resistance51. The sequencing results indicated that the reversal
of an antibiotic resistance was possible when there were genetic
variations in basS or secD gene within a population (Fig. 5b and
Supplementary Fig. 8). In contrast, the reversal was not observed
in the genetically homogeneous population in terms of basS or

secD allele (Supplementary Fig. 8). This result suggests that the
cycling of antibiotics prevented selective sweep and thus
maintained the genetic heterogeneity in the population even
after 24 day of antibiotic exposure. This result was supported by
the fact that the populations evolved under a single antibiotic
stress did not show the reversal of drug resistance as the
population was genetically homogeneous. This genetic diversity
was also reflected at the phenotype level. We observed MICs of
individual isolates were diverse and differ from MIC of a whole
population (black circles and a cross in Fig. 5c)34,35. These genetic
and phenotypic diversities would partly account for the reversal
of evolved resistance because the exposure to a counteracting
antibiotic selects less POL resistant and more CHL resistant cells
due to collateral sensitivity.

Discussion
Although antibiotic cycling has previously been considered less
effective than combination treatment of antibiotics26,27, recent
theoretical and experimental studies suggest that to the contrary,
exploitation of the collateral sensitivity of various antibiotics is
key to the design of effective treatment methods that can suppress
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or reverse drug resistance9,10,20. Recent studies indicate that it is
possible to revert bacterial resistance to a single antibiotic by
using antibiotics in a temporally segregated manner10,29,52.
Although collateral sensitivity has been known for more than
60 years53, the importance of this phenomenon for suppressing
the development of drug resistance was not well recognized
until recently54, which may account for failed clinical or animal
studies on antibiotic cycling. In this study, we performed a series
of laboratory evolution experiments for an experimental
investigation into the effect of alternating antibiotic treatments.
Our results show that several drug combinations can inhibit
evolutionary pathways to multi-drug resistance by completely
suppressing the development of bacterial resistance to one of the
drugs cycled. Further, the theoretical model we developed
indicated that the evolution of bacterial populations against
multi-drug resistance could be not only predicted but also
reversed by modulating the environmental selection stress, and,
this was successfully demonstrated experimentally. The model
presented here is a general model of multi-drug evolution
therefore is not limited to specific drug combinations. As the
model predictions of multi-drug resistance are based on
evolutionary patterns under single drug stress, the model could
potentially be used to predict other multi-drug evolutions where
the data of single drug evolution are available. Thus, as single
drug evolution experiments require fewer trials than combinatory
trials, application of the model may offer a way to search for
effective antibiotic combinations for cycling based on a small
number of experiments.

Our findings indicate that the decreased efficacy of an
antibiotic can be restored by modulating antibiotic stress.
However, care must be taken when translating these results to
clinical settings given that our experiments here considered
de novo chromosomal mutations only. Further experiments, such
as evolution experiments with plasmid-mediated antibiotic
resistance, would be required to elucidate the feasibility of
resistance suppression by antibiotic cycling in more practical
situations. Evolution experiments with different modes of dosing
with antibiotic cycling would be another possible route to better
understand bacterial antibiotic resistance. In contrast to the
morbidostat system where mutant selection is the main focus,

in vitro dynamic model simulates pharmacokinetic profiles of
antibiotics55, which can provide useful insights into the effect
of antibiotic cycling, particularly collateral sensitive pairs,
and how drug resistance may develop in vivo. Furthermore,
antibiotic cycling experiments exploiting collateral sensitivity
can also be extended to animal models. Tissue cage model56,
for example, would allow constant sampling of bacterial
populations as well as drug concentration during alternating
antibiotics treatments. In parallel with these possible further
experiments, we foresee that deeper understanding of population
dynamics under multi-drug conditions and improved theoretical
modelling would potentially eliminate labour-intensive combina-
torial experiments with multiple drugs. Taken together, they may
lead to novel therapies that reverse bacterial multi-drug
resistance.

Methods
Bacterial strains, culture conditions and antibiotics. Escherichia coli strain
MG1655 was purchased from DSMZ (Germany) and streaked to single colonies.
One single colony was selected and used throughout this study. Bacterial cells were
grown in 30 ml flat-bottomed glass vials (VWR, 548-0155) in a shaking incubator
(Grant Instruments, ES-20) for 18 h at 30 �C before experiments in the
morbidostat. Miller Lysogeny Broth (LB. 10 g l� 1 Tryptone, 5 g l� 1 Yeast Extract,
10 g l� 1 NaCl) was used as culture medium for all the experiments. All the
antibiotics and culture media used in this study were purchased from
Sigma-Aldrich unless otherwise noted. Antibiotic solutions were prepared from
powder stocks. They are dissolved in solvents (Table 1), filter sterilized and kept
at 4 �C in centrifuge tubes. They were periodically tested by measuring the MIC of
E. coli (MG1655)57. All drug solutions were renewed before degradation.

Construction of morbidostat system. A morbidostat system was built based on
instructions (Supplementary Fig. 1a)58. A morbidostat vial was constructed using a
30 ml flat-bottom with polypropylene screw cap (Supplementary Fig. 1e). The
screw cap was equipped with four holes, three of which were fitted with
custom-made tube adaptors consisting of needle, syringe and
polytetrafluoroethylene (PTFE) sealing tape, to add or remove liquids. Two tube
adaptors with short needles were used to add fresh LB medium (referred to as
‘fresh medium’) and fresh LB medium containing a high concentration of
antibiotic (‘drug medium’), respectively. A tube adaptor with long needle was used
to remove excess liquid from a morbidostat vial to keep the volume of bacterial
culture constant. The last fourth hole on the cap is used for filtered air intake. The
entire culture tube assembly was made out of autoclavable materials.

Fresh and drug media were pumped into a vial using 12V DC peristaltic pumps
(Watson Marlow, 400FD/A1) at the flow rate of 1.2 ml min� 1. A 16-channel
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parallel peristaltic pump (Watson Marlow, 205U) was used as waste pump to
remove excess liquid from morbidostat vials. Vials and pumps are connected with
silicone tubing and PTFE tubing. All the pumps are computer-controlled by
Arduino MEGA board (Arduino) with a custom-made mountable printed circuit
board (Supplementary Fig. 1g). The custom circuit board accommodates four IC
chips of eight Darlington transistor array (Texas Instruments, ULN2803A), which
control up to 32 peristaltic pumps.

The optical density (OD) of bacterial cells was measured via a matched pair of
an infrared LED (OSRAM, SFH4550) and a phototransistor (Vishay
Semiconductor, BPW96B). Tube holder assemblies that accommodates infrared
light source and photodiode were made by three-dimensional printer (Stratasys,
Connex 500) using VeroBlack material (Supplementary Fig. 1f). The infrared light
source and detector were positioned at 135� angle to maximize the detector
sensitivity. The light-induced voltage changes on the detector are measured from
analogue inputs of another Arduino MEGA board. The illumination and detection
circuits are shown in Supplementary Fig. 1h. The voltage values are later converted
to OD based on a calibration curve (Supplementary Fig. 1i).

The final assembled apparatus accommodates 16 morbidostat vials in a
temperature controlled incubator (Lucky Reptile, HN-2UK, Supplementary
Fig. 1c,d). Cell cultures in the morbidostat vials are continuously stirred by small
stir bars during operation. Magnetic stirrers installed directly under the
morbidostat vials are made with computer fans (SUNON, KD0504PFS2.11.GN),
three-dimensional printed magnet holders and neodymium magnets
(COMUS, M1219-4).

Operation of morbidostat system. Glass vials, tubing and bottles used for
experiments were autoclaved before use. After autoclaving, silicone and PTFE
tubing for morbidostat were sterilized with Virkon (Fisher Scientific) and ethanol
individually, then rinsed with sterile water twice. Bacterial cells stored at � 80 �C
were thawed and transferred into autoclaved morbidostat vials with 12 ml of LB
medium, in which bacterial cells were diluted 60-fold. The assembled vials
containing cell cultures were then placed into the morbidostat vial holders.

A custom software that monitors bacterial growth in the vials and controls
pumps via Arduino boards was written in Python. This software implements the
morbidostat algorithm as specified (Supplementary Fig. 1b)50, which was operated
as follows: the turbidity of each cell culture was continuously measured every 2 s,
then averaged over 30 samples (that is, average over 1 min). Every 12 min, bacterial
culture in a vial was diluted by 1 ml of either fresh or drug media. No medium was
introduced if the OD of cell culture is below 0.15 to avoid washing out bacterial
cells from the culture. At the time of dilution, two conditions were checked:
(1) If the current averaged OD is above a threshold OD (ODTHRB0.4), and
(2) if the current OD is larger than the OD at the time of previous dilution. If both
conditions are met, 1 ml of drug medium is added to the cell culture. Otherwise
fresh medium is added. Note that we used a higher OD threshold than the
previous study (ODTHR¼ 0.15)7. This is because some antibiotics show abrupt
changes in the dose response curve (for example, ampicillin and KAN,
Supplementary Fig. 13), which makes the control of growth inhibition
difficult in morbidostat if a ODTHR is low.

The concentration of antibiotic in the drug medium was started from 10 times
of the MIC at the beginning of the long-term experiment. If the bacterial
population gains antibiotic resistance and the drug concentration inside the
morbidostat vial is more than 60% of the concentration of drug medium, then the
antibiotic concentration in the drug media was increased to twofold of that of the
previous concentration (Supplementary Fig. 14).

A single morbidostat experiment was run for 22 h. No apparent formation
of biofilms on the inner wall of morbidostat vial was observed at the end of
experiment. Cell cultures were sampled from all the 16 vials in the morbidostat and
stored as glycerol stocks at � 80 �C.

Morbidostat data analysis. Morbidostat operation log data were analysed
by custom Matlab scripts. The growth rate m (unit: h� 1) was calculated

as m ¼ log ODE
n=ODS

nð Þ
Dt �3600 where ODE

n is an OD value of cell culture at the
n-th dilution and ODS

n is that of the same cell culture 10 min before the n-th
dilution. Dt is 600 s. The concentration of an antibiotic A at n-th dilution [A]n was
calculated by the following equation.

A½ �n¼
V A½ �n� 1 þ A½ �stock
� �

= V þDVð Þ if drug media is added

V A½ �n� 1
�

V þDVð Þ if fresh media is added

8<
:

Where V is the volume of cell culture in the morbidostat vial (that is, 12 ml),
DV the volume of fresh or drug media added at each dilution (1 ml), [A]stock is the
concentration of the antibiotic A in the stock drug medium (varies). Statistical tests,
that is, s.e.m. and P-value by Welch’s two sample t-test, were performed using R.

MIC measurement. The MIC of samples collected during evolution experiments
was measured by growing the samples on a set of LB agar plates with varying
antibiotic concentrations (

ffiffiffi
2
p

-fold serial dilution). The evolved strains from
the morbidostat experiments stored at � 80 �C were thawed and transferred
to 384-well microplates (Fisher) with 65 ml of LB medium. The dilution rate here

was 1:50. The microplates were incubated at 30 �C for 18 h with shaking at
1,000 r.p.m. before the MIC agar plate assay. LB agar plates were prepared in omni
plates (Fisher). The LB agar medium were autoclaved and antibiotics were added
after the agar was cooled down. Cells grown in the 384-well plates were transferred
to agar plates using the pin replicator (V&P Scientific)59. The agar plates were
incubated at 30 �C for 18 h. After the incubation, cell growth was evaluated by
presence or absence of visible colonies. The minimum antibiotic concentration
without a visible colony was determined as the MIC. Four replicated experiments
were performed for each measurement and averaged values were calculated. The
antibiotic resistance of an evolved mutant was calculated as log2-transformed fold

changes in MIC relative to wild-type strains, that is, log2
MIC A½ �EVO
MIC A½ �WT

� �
where

MIC[A]WT and re MIC[A]EVO indicate the MICs of wild-type (ancestral) and
evolved mutant against antibiotic A, respectively.

When comparing experimental results with theoretical model simulations, both
data were normalized to one. For experimental data, relative antibiotic resistance
values were normalized by dividing a MIC value with the maximum MIC value of
averaged data from single antibiotic stress evolution.

Logistic fitting of experimental data. The evolutionary trajectories of bacterial
resistance to an antibiotic was fitted with a logistic function where L indicates the
maximum relative MIC level, k the steepness of the curve (Hill slope), and m the
midpoint of the curve. Fitting was performed using a custom-made Python script
using SciPy package. The duration of the silent phase y was calculated as the time
point when f(x)Z0.1, that is, y ¼ m� log 10L� 1ð Þ

k .

Single clone profiling. The evolved strains from the morbidostat experiments
stored at � 80 �C were streaked on LB agar plates to pick individual colonies for
MIC assay. After 15 h of incubation at 30 �C, at least 25 colonies from each sample
were chosen at random and dissolved into 180 ml of LB in 96-well plate indivi-
dually. After overnight incubation of the 96-well plate at 30 �C, we remove 65 ml of
those cell samples into empty 384-well plate for MIC assay as described in 2.5.

Genome extraction and whole-genome resequencing. Total 40 samples were
sequenced using Illumina MiSeq desktop sequencer: The ancestor, day 12 samples
of all 19 populations of single antibiotic conditions, and day 24 samples of 20
populations of antibiotic cycling conditions and control. Each evolved strain was
diluted 1:100 in 5 ml of LB with no drug and grown overnight (18 h) at 30 �C before
DNA extraction. We confirmed that the overnight growth without antibiotics does
not change the antibiotic resistance level by two methods. First, the resistant
samples evolved under single antibiotic conditions (Supplementary Fig. 5, the final
day samples) were grown overnight with and without antibiotics. MIC values were
the same regardless of antibiotic stress (Supplementary Fig. 10). Second, the colony
forming unit of a resistant strain was measured to see if the resistance level changes
during overnight incubation without antibiotics. The final day sample of POL and
CHL cycling (Fig. 5a, day 24) was used and the frequency of survivors was
compared between a frozen stock and overnight culture of the stock grown
without antibiotics. However, no significant difference was observed between the
two conditions (Supplementary Fig. 11). Genome DNA was extracted from
1-ml cultures using Wizard Genomic Purification Kit (Promega #9FB022). RNase
digestion step was added after the genome extraction process. Sequencing libraries
were prepared using Nextera XT DNA Library Preparation Kit.

Bioinformatic analysis of genome sequencing. The obtained sequences were
aligned to the MG1655 reference data (NC_000913.2). Alignment was performed
using Bowtie2. SNPs and indels were identified using SAMtools. Identification of
mutations were analysed using breseq (ref. 60). A minimum coverage of 100-fold
was accomplished with each strain. Selected putative variants (SNPs and indels)
detected by whole-genome resequencing were verified by PCR followed by Sanger
sequencing. Primers used for Sanger sequencing were designed using Primer3web.

Determination of allele frequency. Allele frequencies were determined from
fluorescent signal intensities of Sanger sequencing data, that is, the ratio of a signal
intensity of a mutant SNP and total signal. Sequences were aligned by DNA Baser
(www.dnabaser.com/). Although this is not an accurate way to determine allele
frequencies, the analysis was used to determine whether an evolved population is
genetically homogeneous or heterogeneous.

Mathematical model. Numerical solutions for the theoretical model were
calculated in Matlab (Mathworks, USA) and in Julia (http://julialang.org/) using
Sundials package. Further details of the model can be found in Supplementary
Methods.

Data availability. Whole-genome sequencing data have been deposited in the
National Center for Biotechnology Information (NCBI) Sequence Read Archive
(SRA) with the following sample accession codes: SRS1749080 (CHL), SRS1749079
(POL), SRS1749078 (POL-CHL), SRS1749077 (CHL-POL_D6), SRS1749084
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(CHL-POL_D10), SRS1749083 (CHL-POL_D18), SRS1749082 (CHL-POL_D24),
SRS1749081 (MG1655 wild type) and SRS1749076 (Control). Custom software
used in this study is available from http://www.chem.gla.ac.uk/cronin/e_media/.
The authors declare that all other relevant data supporting the findings of the study
are included in this published article and its Supplementary Information, or are
available from the corresponding authors upon request.
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