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Abstract 

One thing that discriminates living things from inanimate matter is their ability to generate 

similarly complex or non-random architectures in a large abundance. From DNA sequences to 

folded protein structures, living cells, microbial communities and multicellular structures, the 

material configurations in biology can easily be distinguished from non-living material 

assemblies. This is also true of the products of complex organisms that can themselves 

construct complex tools, machines, and artefacts. Whilst these objects are not living, they 

cannot randomly form, as they are the product of a biological organism and hence are either 

technological or cultural biosignatures. The problem is that it is not obvious how it might be 

possible to generalise an approach that aims to evaluate complex objects as possible 

biosignatures. However, if it was possible such a self-contained approach could be useful to 

explore the cosmos for new life forms. This would require us to prove rigorously that a given 

artefact is too complex to have formed by chance. In this paper, we present a new type of 

complexity measure, Pathway Complexity, that allows us to not only threshold the abiotic-

biotic divide, but to demonstrate a probabilistic approach based upon object abundance and 

complexity which can be used to unambiguously assign complex objects as biosignatures. We 

hope that this approach not only opens up the search for biosignatures beyond earth, but 

allow us to explore earth for new types of biology, as well as observing when a complex 

chemical system discovered in the laboratory could be considered alive. 
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Introduction 

Biosignatures 

There have been many proposals for finding effective biosignatures, that is, unambiguous 

indicators of the influence of life in an environment. These include searching for atmospheric 

gases such as methane [1], looking for signs of a distinctive 56/54Fe isotope ratio [2], searching 

for biological impact on minerals and mineral assemblages [3], for fossils [4], or for distinctive 

patterns in the distribution of monomer abundance [5]. It has also been suggested that life 

on exoplanets could be detected by searching for a variant of the distinctive “red-edge” 

spectral feature of the Earth [6], where there is a strong increase in reflectance in the 700 to 

750 nm region of the spectrum due to vegetation. In this case, we cannot necessarily expect 

alien vegetation to share the spectral characteristics of terrestrial vegetation, but perhaps a 

spectroscopic signature could be observed at another wavelength. Additionally, extreme care 

should be taken to avoid misidentifying this effect with similar effects that can be caused by 

certain mineral formations. These two caveats highlight particular difficulties in trying to 

classify phenomena as biosignatures. The first difficulty is in ensuring that we cast the net 

wide enough to include biologies that may well differ fundamentally from our own. By 

remaining too tied to the details of terrestrial biology, we risk missing biosignatures presented 

to us due to our assumptions about what life must be like. The second difficulty is in avoiding 

false positives by ensuring abiotic causes are ruled out. For example, shortly after the 56/54Fe 

ratio was suggested as a biosignature in 1999 [2], Bullen et al published in 2001 evidence that 

the same isotopic fragmentation could have abiotic origin [7]. In another example, a 2002 

paper declared that magnetite crystals within Martian meteorite ALH84001 were “A Robust 

Biosignature”[8], however potential abiotic processes to create such crystals have also since 

been proposed [9][10]. 

 

Complexity Measures 

The concept of complexity is itself curious since even discussion about its nature is 

complicated. This is because there is currently no consensus on a single unambiguous 

definition [11]. In addition, descriptions of complexity and randomness are intrinsically 

related and many definitions of complexity are specific to certain fields or applications, as well 

as needing an often-biased observer which can end up comparing intrinsically different 
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things. This is a problem since it can result in misleading notions about which object is more 

complex. We will describe below some existing measures of complexity, although as there 

are a great many such measures the list is far from exhaustive. Several complexity measures 

find utility in the realms of computation and information. In information theory, the “Shannon 

Entropy” [12] of a string of unknown characters, which can be used as a complexity measure,  

is a measure of how predictable the outcome of the string is, or equivalently how much 

information it contains, based on the probability of each possible character in the string. The 

Kolmogorov complexity of a known object [13] is the minimum length of program that 

outputs the object, where for example strings containing many repetitions would have lower 

complexity than those that are random. Logical depth [14] is a complexity measure somewhat 

similar to Kolmogorov complexity, but looking at the time required to generate the object 

from a random input, rather than the size of the program. Effective complexity [15] looks for 

a compressed description of the regularities of an object. One can also examine the 

computational complexity [16] of an algorithm, which gives a measure of how the resources 

required increase with the size of the input. Stochastic complexity is another similar measure, 

but which looks at the shortest encoding of the object taking advantage of probabilistic 

models [17]. Measures such as Shannon entropy and Kolmogorov complexity are maximum 

for random structures, although one can argue that randomness is not necessarily complexity, 

and that maximum complexity lies somewhere between completely ordered and random 

structures [11]. 

 

There have been a number of suggestions for complexity measures on molecules [18], or 

crystal structures [19]. These range from those based on information theoretic measures, to 

specific features of the chemical graph such as vertex degrees, [20] and the number of 

subgraphs of the molecular graph [21]. In other applications, measures for complexity in 

graph theory [22], in tile self-assembly [23], and in biology in relation to genes and their 

environment have been proposed [24]. Here we present the concept of Pathway Complexity 

which identifies the shortest pathway to assemble a given object by allowing the object to be 

dissected into a set of basic building units, and rebuilding the object using those units.  Thus 

the Pathway Complexity can be seen as a way to rank the relative complexity of objects made 
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up of the same building units on the basis of the pathway, exploiting the combinatorial nature 

of these combinations, see Figure 1. 

 

Figure 1: Illustration of a complexity pathway in blocks, with the target shown by the yellow 

box. A combinatorial explosion in structures is illustrated by the other faded structures shown, 

which are just a small set of the many alternative structures that could be constructed. 

 

Results and Discussion 

Pathway Complexity as a Biosignature 

We propose a measure of complexity based on the construction of an object through joining 

operations, starting with a set of connected substructures, where structures already built in 

the process can be used in subsequent joining operations. The sequence of joining operations 

that constructs the objects can be defined as a complexity pathway, and the number of 

associated joining operations is defined as the complexity of that pathway.  The complexity 

of the object in relation to the set of substructures is defined as the lowest complexity of any 

pathway. We call this complexity measure ‘Pathway Complexity’ and it is illustrated in Figure 

2.  
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Figure 2: Complexity pathways for a text string and a simple block shape giving the Pathway 

Complexity to construct the word Banana from its basic building blocks as 4. 

The motivation for the formulation of Pathway Complexity is to place a lower bound on the 

likelihood that a population of identical objects could have formed abiotically from an initial 

pool of starting materials, i.e. without the influence of any biological system or biologically 

derived agent. An object of sufficient complexity, if formed naturally, would have its 

formation competing against a combinatorial explosion of all other possible structures. If that 

any given object was found in abundance, it would be a clear indication that life-like processes 

were required to navigate in the state space to that particular structure, rather than diffusing 

the starting materials through the state space and ending up with a diverse mixture of 

structures that may or may not contain the structure in question. This non-trivial trajectory in 

the state space is, we propose, a characteristic unique to living systems. Therefore, if we can 

use Pathway Complexity to place a lower bound on the threshold where a trajectory becomes 

non-trivial, we can then establish whether an object is undoubtedly of biological origin. By 

following this reasoning it can be proposed that living systems themselves are self-sustaining 

non-trivial trajectories in a state space. This means that the biosignatures produced by living 

systems are themselves non-trivial trajectories [25]. As such, Pathway Complexity bounds the 

likelihood of natural occurrence by modelling a naïve synthesis of the object from populations 

of its basic parts, where at any time pairs of existing objects can join in a single step. In 

establishing the Pathway Complexity we are asking, in this idealised world, if the number of 

joins required would be low enough that we could have some population of the desired object 
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rather than being overwhelmed by instances of all the other structures that could be created. 

Of course, some pathways may be more favoured than others (such as in chemical synthesis), 

but unless we have special pathways with 100% yield of each substructure on the pathway, 

then that fact merely pushes back the threshold. If we find anything significantly above the 

threshold then this, we propose, is a general biosignature. By searching for complexity alone, 

whether of molecules, objects, or signals, we don’t have to make any assumptions about the 

details of the biology or its relation to our own biology.  This approach therefore offers a new 

approach, and we show below that a rigorous framework can be developed to search for 

agnostic biosignatures. 

 

Pathway Complexity: Basic Approach 

The basic approach for determining the Pathway Complexity of an object is applicable when 

we are considering the construction of an object in its entirety from defined, basic subunits. 

The Pathway Complexity is calculated in the context of any possible objects that could be 

constructed from the same subunits. Later we will extend this approach to assessing the 

complexity of a class of objects that are not necessarily identical. We represent subunits of 

the object as vertices, and connections as edges, in a graph 𝐺𝐺. The vertices of  𝐺𝐺 are grouped 

into equivalence classes, which in the basic approach would mean that subunits in the same 

equivalence class are identical. There may be multiple types of edges if there are different 

types of connection in the object. We then construct complexity pathways for 𝐺𝐺 and establish 

their complexities using the following process. We start with a sequence containing only 

trivial “fundamental” graphs representing each unique subunit in the object. A pair of graphs 

in the sequence is joined by adding one or more edges between vertices of one graph and the 

other, see Figure 3. A pathway is complete when the sequence contains 𝐺𝐺, i.e. when the graph 

of the object has been constructed. The complexity of the pathway is the number of joining 

operations required to complete the pathway. The Pathway Complexity of 𝐺𝐺, and of the 

object with respect to the given substructures, is the smallest number of joining operations 

of any pathway. 𝐺𝐺 may be a directed graph, if the direction of a connection is important. For 

example, in a text string, different structures will result in connections left-to-right and right-

to-left. 
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Figure 3: Illustration of a single complexity pathway, with the set of objects on the left and the 

joining operations on the right. At each step, the structure created by the operation is added 

to the set of objects and available for subsequent joining operations. 

 

We can describe a search tree representing all different pathways, as at each point allowable 

combinations of different graphs in the set, with different edge types, joined at different 

combinations of vertices, would follow a pathway down a different branch of the tree, 

provided the graph resulting from the join is an induced subgraph of 𝐺𝐺. It should be noted 

that while we are conceptually exploring the entire search tree, in practice it is not necessary 

to explore every pathway as described above, as algorithmic implementations including 

branch and bound, and other techniques, can reduce the computational burden. 



8 
 

Choice of substructures 

The choice of the basic substructures depends on the context of the desired complexity. For 

example, if we are establishing the complexity of the word “banana” then we could select the 

set of unique structures {𝑏𝑏,𝑎𝑎,𝑛𝑛}, where the complexity is relative to all other words that can 

be made from those three letters. In fact, we could reasonably extend this set to include all 

letters of the English language plus punctuation, so we could then compare the complexities 

of any arbitrary phrase in any language using that alphabet. For a chessboard, natural units 

to choose would be {black square, white square}, and the complexity would then be in 

relation to all patterns that can be made of black and white squares.  

 

In selecting the set of basic subunits we need to consider the class of objects that we are 

comparing. For example, if comparing a polymer to all polymers made of the same types of 

monomer, then the monomers could be our basic subunits, but if being compared to all 

molecules in general then we would be likely to select atoms types or bond types instead.  

 

Mathematical Formulation for the Pathway Complexity of graphs 

The following is a mathematical formulation for establishing the complexity pathway of a 

graph, as described above. 

Definition 1. A graph 𝐺𝐺 can be constructed in one step from two graphs 𝑋𝑋 and 𝑌𝑌 iff: 

• X and Y are disjoint subgraphs of G  

• Every vertex in 𝐺𝐺 is in either 𝑋𝑋 or 𝑌𝑌 

• Every edge in 𝐺𝐺 is either in 𝑋𝑋, in 𝑌𝑌, or connects a vertex in 𝑋𝑋 with a vertex in 𝑌𝑌 

 

Definition 2. A Complexity Pathway of a graph 𝐺𝐺 relative to a set of m single-vertex graphs is 

defined as a sequence of graphs 𝐺𝐺−𝑚𝑚+1,𝐺𝐺−𝑚𝑚+2, … ,𝐺𝐺0,𝐺𝐺1,𝐺𝐺2, … ,𝐺𝐺𝑛𝑛 such that: 

• 𝐺𝐺𝑛𝑛 = 𝐺𝐺 

• for 𝑖𝑖 <  1, 𝐺𝐺𝑖𝑖 is a single-vertex graph 



9 
 

• for 𝑖𝑖 ≥  1, 𝐺𝐺𝑖𝑖 can be constructed in one step from two graphs 𝐺𝐺𝑗𝑗 and 𝐺𝐺𝑘𝑘, with  

𝑗𝑗 , 𝑘𝑘 <  𝑖𝑖 

Definition 3. The Pathway Complexity 𝐶𝐶 of 𝐺𝐺 is the length of the shortest complexity pathway 

of 𝐺𝐺, minus the number of single-vertex graphs in that pathway (i.e. n in Definition 2). In other 

words,  𝐶𝐶 is the smallest number of construction steps, as defined in Definition 1, that will 

result in a set containing 𝐺𝐺. 

 

Characteristics of Pathway Complexity 

The Pathway Complexity of an object generally increases with size, but decreases with 

symmetry so large objects with repeating substructures may have lower complexity than 

smaller objects with greater heterogeneity. In addition, the history dependence and recursive 

nature of the measure means that internal symmetries are also accounted for if they lie on 

the shortest pathway. For example, an object may be asymmetric but have a symmetric 

feature in it that can be constructed through duplication prior to the asymmetric parts being 

added on. Those duplicated structures may themselves contain substructures with similar 

duplications, which are accounted for recursively. In this way, we can describe the 

construction of structures through repeated duplication and addition of subunits.  

 

Pathway Complexity has an upper bound of 𝑁𝑁𝑣𝑣 − 1, where 𝑁𝑁𝑣𝑣 is the number of vertices on 

the graph. This represents joining two fundamental graphs in the first step, and then adding 

one more at a time until the object is constructed. One lower bound of Pathway Complexity 

is log2 𝑁𝑁𝑣𝑣, which represents the fact that the simplest way to increase the size of an object in 

a pathway is to take the largest object so far and join it to itself, e.g. we can make an object 

of size 2 with one join, 4 with 2 joins, 8 with 3 joins, etc. An illustration of the upper and lower 

bounds of Pathway Complexity can be seen in Figure 4, with the orange regions being 

forbidden due to the above boundary conditions. The green portion of the figure is illustrative 

of the location in the complexity space where life might be reasonably be found. Regions 

below can be thought of as being potentially naturally occurring, and regions above being so 

complex that even living systems might have been unlikely to create them. This is because 
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they represent structures with limited internal structure and symmetries, which would 

require vast amounts of effort to faithfully reproduce. In exploring this region, we can attempt 

to find these boundaries, and examine the rate at which living systems can increase their 

complexity, and the limitations on that increase. 

 

Figure 4: An illustrative graph of complexity against size of the state space. Orange regions 

are impossible as they are above or below the bounds of the measure. The green region is 

where living systems may be most likely, where structures are neither too simple to be 

definitively biological, nor too complex to exist at all. 

 

Example - Text 

Pathway Complexity can be used to examine text strings, finding the shortest complexity 

pathway by leveraging internal regularities. In the following example, we used an algorithm 

to analyse four strings of text to establish their Pathway Complexity. The following text strings 

were used, each of them 60 characters long. For simplicity, we have converted the strings to 

lower case without space or punctuation. 

1) A random sequence of letters: 

“anpncsaveuoaklkgobqfdfoqtyilrzausbcbsxfclanbipcwizlmajbualbs” 
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2) Some text from “Green Eggs and Ham”[26] by Dr. Seuss: 

“iamsamiamsamsamiamthatsamiamthatsamiamidonotlikethatsamiamdo” 

3) Some text from “Dracula”[27] by Bram Stoker: 

“myfriendwelcometothecarpathiansiamanxiouslyexpectingyousleep” 

4) A highly repetitive sequence: 

“redrumredrumredrumredrumredrumredrumredrumredrumredrumredrum” 

Intuitively, one would expect the ascending order of complexity to be 4, 2, 3, 1 (with 2 simpler 

than 3 as “Green Eggs and Ham” is known for its simplicity and repetition). This ordering was 

confirmed by the algorithm, which found the Pathway Complexity of the (4) to be 9, of (2) to 

be 26, of (3) to be 53, and of (1) to be 57.  

The maximum possible Pathway Complexity for any 60-character sequence is 59, so we would 

expect a random string to have a value close to this. In our random string (1), there are two 

repetitions in the sequence that the pathway has leveraged to reduce the complexity to 57, 

which are repetitions of “an” and “bs”. 

In (3), the passage from Dracula, the pathway found has used repetition of “ec”, “ia”, “an”, 

“th”, and “ousl”.  

In (2), the algorithm constructs “am” and then uses that in “sam” and “iam”. It then constructs 

“samiam” from that pair, and adds letters “t”, “h”, “a”, “t”, to make “thatsamiam”. These are 

then used in the final pathway where “samiam” and “thatsamiam” are repeated two and 

three times respectively. 

The algorithm in (4) constructs the phrase “redrum” from individual letters, and then 

duplicates that to make “redrumredrum”, further duplicating that to make 

“redrumredrumredrumredrum”, then “redrumredrumredrumredrumredrumredrumredrum-

redrum”. Finally, “redrumredrum” is added to give the result. 

 

Complexity: General Approach 

We can extend the basic complexity measure above to cope with assessing the complexity of 

a group of objects that contain identical connection motifs. In this case we examine a 

population of objects and abstract out a common graph based on connected subunits that 
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share features. For example, if examining a set of cups or mugs we can create a common 

graph of “handle connected to body”, regardless of potential variations in size/colour etc. If 

examining a set of human beings, then we could create a common graph of bone connectivity, 

ignoring variations in size/shape of individual bones, or any material in the body other than 

bones. 

 

Figure 5: Illustration of the general approach. The same connection motif can be found in all 

of these shapes, as shown in the graph on the right. Even though the structures and their 

components are quite different, we can extract the same graph from them and establish its 

Pathway Complexity. 

 

Choice of subunits and connections 

In the general case, we define an archetypal set of connected subunits 𝑆𝑆 = {𝑠𝑠1, 𝑠𝑠2, 𝑠𝑠3, … }, 

along with a set of equivalence classes for the subunits 𝑃𝑃 = {𝑝𝑝1,𝑝𝑝2,𝑝𝑝3, … }, and a function 

𝑓𝑓: 𝑆𝑆 → 𝑃𝑃.  𝑓𝑓 maps members of 𝑆𝑆 into equivalence classes in 𝑃𝑃 based on defining 

characteristics for each of the 𝑝𝑝𝑖𝑖. For example, looking at bones in the human body there 
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could just be a single class for “bone” with the characteristic “made of bone”, or different 

classes for different types of bone distinguished by some characteristic of that type of bone 

(e.g. tibia, sternum). There may be characteristics of members of 𝑆𝑆 not considered by 𝑓𝑓 and 

these can be thought of as “noise”. For example, the same type of bone will vary in shape and 

size across individuals, but we are only interested in the characteristics that define the 

mapping onto 𝑃𝑃.  Connections are defined by mapping into another set of equivalence classes 

𝐸𝐸 = {0, 𝑒𝑒1, 𝑒𝑒2, … }  by some function 𝑔𝑔: 𝑆𝑆×𝑆𝑆 → 𝐸𝐸. 𝐸𝐸 contains the 0 element to represent “not 

connected”, and the 𝑒𝑒𝑖𝑖 represent different types of connection. Here connections could be 

actual physical connection, or it could be some more abstract relationship. We then define 

the archetypal graph 𝐺𝐺, in which vertices are members of 𝑆𝑆, with categories 𝑓𝑓(𝑠𝑠𝑖𝑖), and an 

edge exists between 𝑠𝑠𝑖𝑖 and 𝑠𝑠𝑗𝑗 if 𝑔𝑔�𝑠𝑠𝑖𝑖 , 𝑠𝑠𝑗𝑗� ≠ 0, with edges categorised by 𝑔𝑔(𝑠𝑠𝑖𝑖 , 𝑠𝑠𝑗𝑗). In the 

general case, we are looking at a class of objects to which the above rules can be applied to 

extract a graph isomorphic to 𝐺𝐺. In this case, members of 𝑆𝑆 are not necessarily substructures 

that can rebuild an object in its entirety, but rather are shared connection motifs common to 

a number of objects that we consider to be similar/related.  

 

In the construction of 𝐺𝐺, it is important that for each member of 𝑃𝑃 all subunits that are 

common to objects in the class being examined, and that any shared instances of 

substructures within P in the objects are included in 𝑆𝑆. This is to prevent overestimation of 

complexity by selecting a more complex subgraph of 𝐺𝐺 through exclusion of some member of 

𝑆𝑆. For example, one could remove some internal symmetries of a skeleton by selectively 

erasing some of the bones. 

 

Pathway Complexity in the general case 

The procedure for constructing complexity pathways on 𝐺𝐺, and defining the Pathway 

Complexity of the object, then follows that of the basic approach, only now we are 

establishing the Pathway Complexity of the selected archetypal graph 𝐺𝐺 that is contained 

within the whole class of objects. In this way, we can bound the complexity of sets of object 

that are non-identical but that clearly share features in such a way that they have some 

relationship to each other, and establish if the relationship of those motifs exceeds the 
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complexity threshold for a biological source. Greater specificity can provide a higher bound 

(e.g. specifying the type of each bone in a skeleton, rather than labelling each vertex of the 

graph as a bone, will result in a higher complexity value). 

 

With this approach, we can examine complex patterns within non-identical structures 

comprised of non-identical parts. As an extreme example, if we were to find sets of entirely 

different objects (pebbles, bits of wood, etc.) joined by lengths of string on a beach, we could 

then construct 𝐺𝐺 using “any object” as a vertex and “joined by string” as an edge. If the objects 

were all joined in pairs, then 𝐺𝐺 would be simple and indeed one could imagine plausible 

physical effects for such a phenomenon. However, if 𝐺𝐺 were particularly complex and 

abundant, i.e. the same complex pattern were found in multiple locations, one would have to 

consider that some biological agency was involved. Note here that characteristics such as the 

lengths of the string or the shapes of the object are not considered – the connected structures 

could be entirely different sizes and made of completely different things, but the identical 

complex connectivity motif common to all of them would be enough to make a judgement on 

the probability of naturally occurring origin from that perspective alone. 

 

Finding threshold between non biological and biological systems 

In order to assess a reasonable threshold for a given set of objects, we can examine the 

likelihood of objects of varying complexity being constructed randomly [28]. For example, if 

we examine a large random text string, and look at the abundance of repeating fragments up 

to a certain size, we can get some idea of how the abundance of repeated fragments of 

increasing size drops off as the size increases. To illustrate this point, we have generated a 

random  string of 100,000 characters and plotted the number of repeats of string fragments 

of different sizes up to size 8 (see Figure 6). We can see here in plot 1 that the number of 

repeated units drops off dramatically (note that the y-axis is logarithmic in plots 1 and 2), with 

very few repeats above length 4 or 5. By splicing in the word “complex” 1000 times at random 

positions (plot 2) we dramatically increase the number of repeating units at larger sizes. The 

difference in the number of repeats can be seen in plot 3, with a large difference starting at 

size 4. From this we can tell that we would expect to find a rather large number of repeats of 
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size 2 and 3, but finding any abundance of repeated strings of size 7 or 8 suggests some 

internal structure. We can then set a reasonable threshold at 3 to 5 sigma higher than the 

random data, suggesting that if we find an abundance of repeats of greater sizes we have a 

biosignature. 

 

Figure 6: Plot 1 (top) – number of repeated substrings of each size in a 100,000 character 

random text string. Plot 2 (middle) – as in plot 1 but where the same random string has the 

word ‘complex’ inserted at random locations 1000 times. Plot 3 (bottom) – The difference in 

the number of repeated substrings between Plot 2 and Plot 1. 

 

Although a useful indicator, this thresholding exercise does not capture the full details of the 

complexity measure. A stochastic model is currently in development to give a more accurate 

assessment of populations of larger structures being found amongst all the structures that 
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could be created in the same time period. This will be then developed in synergy with an 

experimental system to investigate if a given dataset contains a biosignature or not. 

 

Variant: Recursive Tree Complexity 

A variant on the concept of Pathway Complexity as described above is what we have called 

“Recursive Tree Complexity”. In this variant, we establish a complexity pathway by 

partitioning the object graph into a number of different subgraphs. Then the complexity of 

that pathway is established as the complexity of each unique subgraph, plus the number of 

times it is duplicated. If the subgraph is a single vertex then it contributes 1 to the complexity. 

The procedure is repeated recursively on the unique subgraphs, while adding 1 complexity 

for each time they are duplicated, and the entire structure will eventually be broken down to 

single-vertex graphs. The partitioning which gives the lowest total complexity is defined as 

the Recursive Tree Complexity. The Recursive Tree variant provides a slightly different model 

of the natural construction of objects. In this variant, the parts that have come together to 

make a particular substructure cannot be leveraged to create multiple completely different 

structures. In the Recursive Tree variant, one can think of different structures developing 

separately and then being brought together, rather than all structures being available at all 

times in the one pool. Any pathway in the Recursive Tree variant can also be made by the 

Pathway Complexity process, but it may not be the shortest pathway and may include 

redundant steps. Thus Recursive Tree Complexity is an upper bound for Pathway Complexity. 

Note also that since in Pathway Complexity the first step is a joining step, but in the Recursive 

Tree variant we effectively lay down a single fundamental structure first, the equivalent 

pathways in the Recursive Tree variant will be 1 greater than in the Pathway Complexity 

measure, and this must be accounted for when comparing the two. 
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Figure 7: The Pathway Complexity measure (top) and Recursive Tree variant (bottom) are used 

to construct the phrase “COATCOATCORNCORN”.  

 

Figure 7 illustrates an example of the difference between Pathway Complexity and the 

Recursive Tree variant. In the former (top of the figure), the substring “CO” can be constructed 

and then used to make both “COA” and “COR”. In the Recursive Tree variant, such sharing is 

not allowed, and the “CO” that goes to make “COA” is constructed separately from that which 

goes to make “COR”.  

A general mathematical formulation of the Recursive Tree variant is given below: 

A single complexity measure 𝑐𝑐𝑃𝑃 of an object partitioned into a given multiset P is 

𝑐𝑐𝑃𝑃 = �𝐶𝐶𝐾𝐾𝑖𝑖

|𝐾𝐾|

𝑖𝑖=1

+ 𝐷𝐷(𝑃𝑃) 

Where K is the set of unique objects in P, 𝐶𝐶𝐾𝐾𝑖𝑖  is the Recursive Tree complexity of the 𝑖𝑖th 

member of K, and 𝐷𝐷(𝑃𝑃) is a function of the multiplicity of the objects in P (initially, 𝐷𝐷(𝑃𝑃) is 

the total number of duplicated objects, or formally 𝐷𝐷(𝑃𝑃) = ∑ (|𝑃𝑃𝑖𝑖| − 1)|𝑃𝑃|
𝑖𝑖=1 ). 
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The recursive tree complexity 𝑪𝑪 of an object is equal to 1 if the object cannot be partitioned 

further (it is atomic / its graph is a single vertex), otherwise it is equal to the minimum single 

complexity measure 

𝐶𝐶 = � 1,   |𝑃𝑃| = 1 ∀ 𝑃𝑃
min 𝑐𝑐𝑃𝑃 ,   otherwise  

 

Conclusions 

It is clear that biological, and biologically derived systems have an ability to create complex 

structures, whether proteins or iPhones, that is not found elsewhere in nature. Assessing the 

complexity of an object in such a way that we can define a threshold above which biology is 

required could be used as a biosignature in the search for shadow biologies on Earth [29], or 

life elsewhere in the Solar System, and would make no assumptions about the details of the 

biology found. We propose Pathway Complexity as a potential measure for both assessing 

this threshold, and determining whether objects lie above it and are therefore biologically 

derived. This approach provides a probabilistic context to the extending the physical basis for 

life detection proposed by Lovelock [30]. In further work we will show how this applies to a 

range of other systems, and propose a series of experimental approaches to the detection of 

objects and data that could be investigated as a possible biosignature. In the laboratory, we 

are interested in using this approach to develop a system that can explore the threshold 

between a non-living and living system, but also to allow us to develop a new theory for 

biology. This might inform a new way to search for life in the lab in terms of the complex 

products a system produces and if they could have arisen in any abundance by chance, rather 

than trying to measure the intrinsic complexity of the living system itself.  
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