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ABSTRACT: An efficient stepwise synthesis method for discov-
ering new heteromultinuclear metal clusters using a robotic
workflow is developed where numerous reaction conditions for
constructing heteromultinuclear metal oxo clusters in polyoxome-
talates (POMs) were explored using a custom-built automated
platform. As a result, new nonanuclear tetrametallic oxo clusters
{FeMn,}Lu,A, in TBA[(A-a-SiW,0;,),FeMn,O,{Lu-
(acac),},A,] (IT%; A = Ag, Na, K; TBA = tetra-n-butylammonium;
acac = acetylacetonate) were discovered by the installation of
diamagnetic metal cations A* into a paramagnetic {FeMn,}Lu,
unit in TBA,[ (A-a-SiW,03,),FeMn,0,{Lu(acac),},] (I). POMs
IT* exhibited single-molecule magnet properties with the higher
energy barriers for magnetization reversal (118, 40.0 K; 1™, 40.3

POM precursor

Automated stepwise synthesis of
hetero-multinuclear metal oxo clusters

K; 11, 26.7 K) compared with that of the parent I (19.7 K). Importantly, these clusters with unique properties were constructed as

designed by a step of the predictable sequential multistep reactions

B INTRODUCTION

Over the past several decades, material scientists have tried to
develop effective methods in response to the scientifically
inspirational question posed by Richard P. Feynman: “What
could the properties of materials be if we could really arrange
the atoms the way we want?”' In molecular synthetic
chemistry, controlling physical and chemical properties of
homo/heteromultinuclear metal clusters by precise structural
arrangement is crucial® because the combination, nuclearity,
and coordination geometries of metal cations are closely
correlated to the electronic and magnetic interactions between
metal cations.” From the viewpoint of constructing desired
heteromultinuclear metal clusters, the stepwise synthesis
method using a bottom-up approach has proven to be a
powerful tool when compared with the one-step (usually one-
pot) synthesis method by serendipitous or empirical molecular
assembly (Figure 1a).* This is primarily due to the fact that
stepwise synthesis enables the chemist to target desired
structures using specifically designed multidentate ligands,
allowing for the selection of specific metal sources at each step
(Figure 1b). However, stepwise synthesis is a time-consuming
method as the combinations of metal cations grow
exponentially as the variety of metal cations available is
increased. An additional difficultly is that unpredictable
condensation/dissociation reactions of metal-containing spe-
cies often occur due to flexibility in some multidentate organic
ligands that lack bulky functional groups (Figure S1).* Thus,
the development of a time-efficient simple method applicable
to dozens of reaction conditions in order to construct
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with the time-efficient platform.

atomically designed heteromultinuclear metal clusters in a
predictable system is required.’

Polyoxometalates (POMs) are a family of anionic molecular
metal oxide clusters that exhibit diversity of structures, sizes,
and physical and chemical properties.” By utilizing lacunary
POMs as robust, bulky multidentate inorganic ligands,
numerous types of multinuclear metal and metal oxo clusters
possessing unique catalytic, electronic, and magnetic properties
have been synthesized.”” Recently, we have successfully
synthesized heteromultinuclear metal oxo clusters possessing
a wide variety of metal cations using lacunary POMs.”*"*
these reports, arranging the proper types of metal cations in the
desired position was demonstrated by the stepwise synthesis
method, showing the precise control of their coordination
geometries and magnetic properties. These results indicated
that lacunary POMs act as ideal multidentate ligands for
constructing various types of heteromultinuclear metal clusters
by a predictable stepwise synthesis method. However, it can
still require a lot of time and effort to carry out screening of
large areas of reaction parameter space in multistep synthesis.
For this, we chose to take advantage of recent advances in
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Figure 1. Schematics of (a) one-step and (b) stepwise synthesis
methods for constructing heteromultinuclear metal clusters. Metal
cations are represented by color spheres and polyhedra. Oxygen
atoms are represented as small red spheres. Ligands are omitted for

clarity.

approaches to the digitization of chemical synthesis and utilize
a bespoke workflow to allow the stepwise synthesis of modular
metal oxide clusters.

A number of automated synthesis methods have been
reported in recent years for a variety of synthetic systems.10
More recently, a modular system for the combinatorial
exploration of inorganic chemical space has been developed
in the Cronin group at the University of Glasgow named the
Modular Wheel Platform (MWP)."" This system has proven to
be a powerful tool for automated screening of reaction
conditions, leading to the discovery of gigantic and novel
POMs. As this system was used for one-step, one-pot
condensation reactions of metal sources, we envisioned
expanding this methodology for stepwise synthesis using
precursors, which should reduce time and effort for discovering
new heteromultinuclear metal clusters.

Herein, we successfully demonstrate the efficient stepwise
synthesis method for constructing heteromultinuclear metal
oxo clusters within POMs by utilizing a simple automated
platform. This facilitated the discovery of three new single-

molecule magnets (SMMs) including the structure with the
highest energy barrier for magnetization reversal (U.) among
the previously reported transition metal-containing POMs.

Bl RESULTS AND DISCUSSION

In a stepwise synthesis method, to reduce time and effort for
synthesizing new compounds and to discover unknown
compounds efficiently, it is necessary to achieve (1)
acceleration of established procedures, (2) examination of
various synthesis conditions at the same time, and (3)
optimization of the best synthesis and crystallization
conditions in unestablished procedures (Figure 2). Impor-
tantly, screening processes of steps (2) and (3) are the
bottlenecks to discover new compounds in a manual stepwise
synthesis method even when structures of desired compounds
are predictable. To demonstrate the efficient robotic stepwise
synthesis method, a system of heteromultinuclear metal oxo
clusters within trivacant lacunary POMs is chosen in this study
because the above-mentioned three tasks can systematically be
examined.

By utilizing TBA,[A-a-SiW,05,(H,0);] (TBA = tetra-n-
butylammonium)12 as a multidentate inorganic ligand, we have
developed the sequential synthesis method for constructing
heteromultinuclear metal clusters, including TBA,H o[(A-a-
SiW,03,),Fe] ({Fe}), TBA;[(A-a-SiWy0;,),FeMn,(OH),]
({FeMn,}), and TBA,[(A-a-SiW,0,,),FeMn,O,{Lu-
(acac),},] (I, acac = acetylacetonate).”* It takes about 1
week in each step to synthesize and characterize these clusters
via stirring the solutions, isolation and crystallization of powder
samples, and analyses by X-ray, IR, mass measurements, etc.
using established synthesis methods (Figure 2), while it will
take several weeks to months in order to examine the reactivity
of the precursor with metal cations and to optimize synthesis
and crystallization conditions in unestablished procedures,
such as addition of various types of univalent metal cations into
I (Figure 2). It should be noted that it took several months to
establish the synthesis conditions of {Fe}, {FeMn,}, or L.

Since the structure of I was controlled in an atomic level by
the stepwise synthesis method, I possessed unique features
applicable to the digitization of chemical synthesis. First, POM
I possesses four pseudo vacant sites that can potentially react
with a variety univalent metal cations, which enables us to
predict accurately the possible structures (Figure S2). Second,
to screen the various cation types and finally to vary the
stoichiometric ratio of univalent metal cations to assess
reactivity, which is important in an unestablished procedure.
In addition, as POM I shows SMM properties, the effect of the
types of installed diamagnetic metal cations on magnetic
properties is also interesting in terms of “modular synthesis
approach””® Furthermore, since a series of heptanuclear
trimetallic {M"' M%,}M>, clusters in POMs can be synthesized
by established three-step reactions of TBA,[A-a-Si-
W,0;,(H,0);] with metal cations, automated synthesis of
numerous types of heteromultinuclear metal oxo clusters in
POMs as designed would be possible by expanding the
methodology in this study.

First, we examined the one-pot stepwise synthesis of I from
{Fe} without isolation of the intermediate structure {FeMn,}
to assess whether the system was applicable to the MWP and
to accelerate the established procedures (Figure 2). Into a 1,2-
dichloromethane solution of I (4 mM, 2 mL), 1,2-dichloro-
methane solutions of Mn(acac); (16 mM, 0.25 mL) and
Lu(acac); (16 mM, 0.25 mL) were added in this order and a
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Figure 2. Schematic of manual and automated stepwise synthesis of I. Required time in each step are shown as bold arrows. Required tasks in each
step are shown under the allows, where tasks in red can be automated. The atoms are represented by polyhedra and spheres: Si, gray; W, light
green; Fe, pink; Mn, purple; Lu, orange; and A, black. Oxygen and carbon atoms are represented by small red and black spheres, respectively.

stepwise manner. The electrospray ionization mass measure-
ment of the synthetic solution in each step showed sets of
signals assignable to {Fe}, {FeMn,}, or I, indicating that the
reaction proceeded without isolation of the intermediate
structure (Figure S3). These results illustrated that the
continuous one-pot multistep synthesis of I was possible,
thus indicating that this system would be directly applicable to
the MWP. Since it was not necessary to isolate and
characterize the intermediate structures, one-pot stepwise
synthesis of I could surely reduce time and effort for the
established synthesis. More importantly, by changing the types
of metal sources, various types of heteromultinuclear metal
clusters, including {M"' M?,}JM3, (M' = V**, Cr**, Mn®*, Fe¥,
C02+, Ni2+, Cu2+, Ga3+; MZ — Mn3+, Cu2+; M3 — Gd3+, Dy3+,
Lu®, etc.), can be synthesized automatically at the same time
within a few days, which enables to accelerate screening
processes of the established stepwise synthesis method
(Figures 1b, 2).

Next, we demonstrated the MWP-assisted stepwise synthesis
utilizing I to solve the main bottleneck for discovering new
compounds in the unestablished procedure. To achieve the
automated stepwise synthesis using POM 1, it is crucial to
control synthesis conditions, including (1) temperature, (2)
reaction time, and (3) stirring speed, over all reaction vessels.
In addition to the environmental conditions, the precise
control of screening parameters, including (4) concentration of
POM solution, (5) types and (6) equivalents of added metal
cations, and (7) amount of poor solvent against synthetic
solution for crystallization, are also important to assess
reactivity. Therefore, we utilized the MWP where these
parameters can be digitized and accurately delivered to our
reaction vessels. The system itself uses in house software,
written in Python to control hardware via Arduino to run the
operations of the synthesis.'' The MWP-assisted screening was
attempted using the following stock solutions: acetonitrile,
acetonitrile solution of I (8.32 mM), acetonitrile solution of

AOTf (A = Li, Na, K, Ag; 50 mM), and diethyl ether (poor
solvent) (Figure 3). The volume of each solution was
programmed as follows: The concentration of I in the
synthetic solution was set to 10, 20, and 30 mg/mL, and the

diethyl ether c §

Figure 3. Schematic of the MWP-assisted stepwise synthesis of II*
using precursor I. The atoms are represented by polyhedra and
spheres: C, black; N, light blue; O, red; Si, gray; W, light green; Fe,
pink; Mn, purple; Lu, orange; Ag, green; Na, blue; and K, dark red.
Color boxes represent stock solutions where pumps were controlled
by Arduino Mega 2560/RAMPs boards via in house developed
Python code.
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equivalents of AOTf with respect to I was set to 1, 2, 3, 4, 5,
and 6, resulting in 72 reaction conditions (Table S1). It should
be noted that equivalents of AOTf are important parameters
even in the MWDP-assisted stepwise synthesis, because we
cannot control the types of products and thus deduce the best
synthesis conditions in unestablished procedures although
three possible structures can be predicted ahead of time
(Figures 2, S2). Then, the programmed MWP performed the
following sequence with constant stirring: (1) addition of
POM solution, (2) dilution with acetonitrile, (3) addition of
AOTf solution, (4) dilution to final 2 mL of total volume with
acetonitrile, (S) stirring for 4 h, and (6) addition of diethyl
ether for the crystallization. Since the reaction vessels were
arranged in a circle, each batch can be moved by rotating the
circular platform to perform every reaction automatically
(Figure 4). Notably, it took approximately only 60 min to

11

Figure 4. Photograph of the MWP used in this study.

finish all reaction conditions before the 4-h stirring step, and all
we had to do was to push the enter key once, showing a drastic
reduction of time and effort to explore large areas of reaction
parameter space in an unestablished reaction step (Figure 2).

As a result, the MWP created many crystals although powder
precipitations were obtained in most reactions containing >3
equivalents of metal cations, indicating that all of four vacant
sites of I could not react with metal cations simultaneously,
and cation exchange reactions with TBA* might occur (Figure
§4). In addition, when adding LiOTf, crystals could be
obtained by only one reaction condition, and quality of crystals
was too poor to reveal the crystal structure, indicating that
ionic radius of A* was important factor to be installed into the
vacant sites of I and crystallized. Furthermore, the size of
crystals tended to be large with increasing the concentration of
I. These results illustrated that the optimization of unestab-
lished synthesis and crystallization conditions was easily
performed by using the MWP although this process was
quite often a bottleneck in a manual synthesis approach
(Figure 2).

When adding AgOTf, NaOTf, or KOT{, the single crystals
suitable for the X-ray crystallographic analysis were obtained.
The X-ray crystallographic analyses successfully revealed that
each product possessed a nonanuclear tetrametallic {FeMn,}-
Lu,A, cluster (Table S2, Figures 3, SSb—d). These three anion
structures were essentially isostructural with each other except

for the differences in the types of A" and coordinated ligands
on A", As expected from the screening of crystallization, two of
four vacant sites of I were reacted with A*. The bond valence
sum values indicate that the respective valences of W, Si, Fe,
Mn, Lu, and A are +6, + 4, + 3, + 3, + 3, and +1 (Tables S3—
S5). In II*, two [A(solvents)]* units (solvents = CH;CN or
C,HOC,Hy) were installed so as to bridge Lu®* and the [A-a-
SiW,0;,]'" unit. Interestingly, one of the six-membered
chelate rings of acac ligands coordinated to Lu®" in II*® stacked
with the chelate ring of neighbor anion, resulting in the
alignment of the anions in the same direction (Figures S6, S7).
By installing the diamagnetic metal cations into I, the
coordination geometries of {FeMn,}Lu, were slightly changed;
an increase in Fe—=O—Mn bond angles and a decrease in Mn—
O—Mn bond angles were observed (Table S6). As the ionic
radii of A" became larger, the distances between A* and the
bridging oxygen atom of Mn—O—Mn became longer. The
cold-spray ionization mass measurements of II* in acetonitrile
supported that these structures were selectively synthesized
(Figure S8). On the basis of all the above-mentioned results,
elemental analyses, and thermogravimetric differential thermal
analysis data, II*8, I, and II* were proposed to have
formulas of TBA;[(A-a-SiW,04,),FeMn,0,{Lu(acac),},Ag,]-
4H,0-CH,CN, TBA[(A-a-SiW,0,,),FeMn,0,{Lu-
(acac),},Na,]-13H,0, and TBA[(A-a-
SiW,0,,),FeMn,0,{Lu(acac),},K,]-9H,0, respectively.
These results clearly illustrated that the MWP-assisted
screening successfully discovered three new heteromultinuclear
metal oxo clusters as designed.

In order to investigate the magnetic properties of II*,
magnetic susceptibility measurements were performed. The
direct current magnetic susceptibilities of I and II* under 0.1 T
showed the yT values of 10.80 (1), 11.54 (II*¢), 13.77 (II"®),
and 12.23 cm® K mol™ (II¥) at 300 K, respectively (Figure
$9). These values are significantly lower than the sum of the
spin-only values of one high-spin Fe** and four high-spin Mn**
(16.38 cm® K mol™!), which is likely due to the
antiferromagnetic interactions. The yT values of I gradually
decreased with decreasing temperature, while those of II*
gradually decreased with decreasing temperature and then
increased below about 50 K, and reached to the values of 13.38
(11%8, 2.9 K), 12.14 (II™*, 4.9 K), and 8.83 (11X, 9.68 K) cm® K
mol™!, respectively. These results indicated that the spin
ground states of II* were enhanced. The M vs H data showed
that the magnetization saturated at values of 9.1 (II*¢), 7.2
(I™), and 7.0 (II) Nug, also supporting the larger spin
ground states of II* compared with that of I (2.8 Nu;) (Figure
$10).

The alternating current magnetic susceptibility measure-
ments for I[I* showed considerable temperature and frequency-
dependent y’ and y” even under a zero external dc field,
indicating the slow relaxation of magnetization characteristic
for SMMs (Figure Sa—c, S11). The Arrhenius plots showed
that the values of Uy, in II* were 40.0 (11*8), 40.3 (II™*), and
26.7 K (1), respectively (Figure 5d). By installing A* into the
{FeMn,}Lu, unit in I, the energy barriers of II* were doubled
and significantly enhanced in comparison with that of I (U o=
19.7 K).”® It is noteworthy that the energy barrier of I (U, o

= 40.3 K) is the highest among those of the previously
reported transition metal-containing POMs (Table $7).”"* In
order to discover a SMM with high U, scientists have been
taken a lot of time and effort to synthesize molecular clusters
under various synthesis conditions, while we could automati-

https://doi.org/10.1021/jacs.1c06047
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cally find II™ by a simple robotic stepwise synthesis method
even in an unestablished procedure.

B CONCLUSION

In conclusion, the MWP-assisted stepwise synthesis success-
fully lead to the discovery of three new POMs with high U,
values. Importantly, the discoveries made in this study were
achieved not by serendipitous molecular assembly using
mononuclear metal sources but by a series of predictable
sequential multistep reactions. The structure of the precursor I
was maintained after the introduction of A*, which enabled us
to construct atomically designed heteromultinuclear metal
clusters in a predictable way regardless of established or
unestablished procedures. Therefore, it is our hope that the
robotic stepwise synthesis strategy and the use of time and
resource efficient automated platforms can be applied in
various filelds requiring precise structural arrangement of
multinuclear metal oxo and metallic clusters, both to increase
productivity and synthetic accuracy in these areas.

B EXPERIMENTAL SECTION

Materials and Instruments. Acetonitrile (Kanto Chemical),
diethyl ether (Kanto Chemical), 1,2-dichloroethane (Kanto Chem-
ical), Mn(acac); (TCI), Lu(acac); (Aldrich), LiOTf (Alfa Aesar),
NaOTf (TCI and Alfa Aesar), KOTf (Kanto Chemical and Alfa
Aesar), and AgOTf (Aldrich) were used as received. TBA,H, [ (A-a-
SiW,05,),Fe]” was synthesized according to the reported procedure.
TBA,[(A-a-SiW,03,),FeMn,0,{Lu(acac),},] (1)’ was synthesized
according to the reported procedure but recrystallized directly from
the synthetic solution by addition of diethyl ether. IR spectra were
measured on JASCO FT/IR-4100 using KBr disks. Cold-spray
ionization (CSI) mass spectra were recorded on JEOL JMS-T100CS.
Electrospray ionization (ESI) mass spectra were recorded on Agilent
6230 TOF LC/MS. Thermogravimetric and differential thermal
analyses (TG-DTA) were performed on Rigaku Thermo plus TG
8120. ICP-AES analyses for Fe, Mn, Lu, Ag, Si, and W were
performed with Shimadzu ICPS-8100. Polarized Zeeman AAS
analyses for Na and K were performed with Hitachi ZA3000.
Elemental analyses were performed on Elementar vario MICRO cube

(for C, H, and N) at the Elemental Analysis Center of School of
Science of the University of Tokyo.

X-ray Crystallography. Diffraction measurements were made on
a Rigaku MicroMax-007 Saturn 724 CCD detector with graphic
monochromated Mo Ka radiation (4 = 0.71069 A, 50 kV, 24 mA) at
123 K, Bruker Apex II Quasar CCD detector using Mo Ka radiation
(A = 071073 A, 50 kV, 1 mA) at 150 K, or Bruker D8 VENTURE
PHOTON II detector using Mo Ka. The data were collected and
processed using CrystalClear'* and CrysAlis"™™°."* Neutral scattering
factors were obtained from the standard source. In the reduction of
data, Lorentz and polarization corrections were made. The structural
analyses were performed using CrystalStructure’® and WinGX."” All
structures were solved by SHELXS (direct methods) and refined by
SHELXL-2018/3."® The highly disordered TBA cations and solvents
in I and IT* were omitted by use of SQUEEZE program.'’ The metal
atoms (Fe, Mn, Lu, Na, K, Ag, Si, and W) and oxygen atoms in the
POM frameworks, the organic ligands, solvents of crystallization, and
TBA cations were refined anisotropically. CCDC-1570010 (I),
—1570008 (11%8), —1570009 (I¥*), and —1570011 (II¥) contain
the supplementary crystallographic data for this paper. The data can
be obtained free of charge via www.ccdc.cam.ac.uk/conts/retrieving,
html (or from the Cambridge Crystallographic Data Centre, 12,
Union Road, Cambridge CB2 1EZ, UK; Fax: (+44) 1223—336—033;
or deposit@ccdc.cam.ac.uk).

Bond Valence Sum (BVS) Calculations. The BVS values were
calculated by the expression for the variation of the length r; of a bond
between two atoms i and j in observed crystal with valence V;

r(;_rxj
)

where B is constant ecgual to 0.37 A and r, is bond valence parameter
for a given atom pair.”’

Magnetic Susceptibilities. Magnetic susceptibilities of poly-
crystalline samples were measured on Quantum Design MPMS-XL7.
Direct current (dc) magnetic susceptibility measurements were
carried out between 1.9 and 300 K under 0.1 T magnetic field.
Diamagnetic corrections were applied by the diamagnetisms of the
sample holder and TBA,4[A-a-SiW,05,(H,0);]-2H,0."* Alternating
current (ac) magnetic susceptibility measurements were carried out
under zero dc field and the 3.96 X 107* T ac oscillating field.

General Procedure for Synthesis of Hetero-Multinuclear
Metal Clusters Using MWP. All reactions were carried out using the
following procedures: Stock acetonitrile solutions of I (8.32 mM) and
AOTf (50 mM) were prepared and connected to the inlets for the
programmable pumps. Acetonitrile solution of I (¢ mL) was pumped
to the reaction vessel with stirring approximately 600 rpm, followed
by addition of acetonitrile (b mL), acetonitrile solution of AOTf (¢
mL), and acetonitrile (d mL) in this order. Total volume of each
reaction solution was brought to 2 mL (a + b + ¢ + d = 2). Stock
solution dispensing flow rate was 4 mL/min. During the reaction, the
vessels were capped manually. After stirring for 4 h, diethyl ether was
pumped by entering specific amount of volume until the reaction
solution became cloudy, followed by immediate filtration. After 2
days, crystals appeared in the following conditions: 7H Na gNa 7N
13Ne) 14Ne 148 2A8 788 ghe 9As 13h8 1488 1K oK 7K gK 13K and
14% (Table S1). The structures of these crystals were confirmed by X-
ray crystallographic analyses, indicating that each compound possess
two A* at the pseudo vacant sites between POM framework and Lu®*
regardless of the equivalent of AOTf. The syntheses of these
heteromultinuclear metal clusters were reproducible by the
procedures included below.

The platform used to perform these procedures was developed in
the Cronin group at the University of Glasgow. The platform was
published in 2020."" Full details of the platform can be found in the
Supporting Information of that previous work, including the bill of
materials and instructions for the control software and construction of
the platform. For this work, a summary of the platform is included
here. The unit is constructed from custom 3D printed/laser cut parts
and commercially available components. The control software was

https://doi.org/10.1021/jacs.1c06047
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designed and written in-house using Python. Control of all functions
was achieved via Arduino Mega/RAMPs microcontroller boards using
this software that served to interface the Arduino controlled devices
directly to a simple Python code.

Synthesis and Characterization of TBA;[(A-a-
SiW,03,),FeMn,0,{Lu(CsH,0,),},Ag,]-4H,0-CH;CN (1i"9). To
an acetonitrile solution (1.5 mL) of I (62.2 mg, 8.6 umol), AgOTf
(4.4 mg, 17.3 ymol) was added, and the resulting solution was stirred
for 4 h at room temperature (ca. 20 °C). Then, diethyl ether (4.4 mL)
was added to the solution, and the solution was filtered off. The
brown crystals of II*¢ suitable for X-ray crystallographic analysis were
obtained after 1 day (34.8 mg, 57% yield based on I). IR (KBr pellet):
2963, 2875, 1630, 1524, 1484, 1463, 1402, 1384, 1269, 1154, 1107,
1016, 962, 938, 890, 791, 752, 634, 538, 387, 368, 349, 333, 323, 313,
301, 287, 282, 275, 258, 254 cm™} positive ion MS (CSI,
acetonitrile): m/z 3710 (calcd. 3710.1)
[TBA,Si,W,50,0FeMn,Lu,(acac),Ag,]**, 7178 (caled. 7177.7)
[TBA(Si,W,5050FeMn,Lu,(acac),Ag,]"; elemental analysis calcd
(%) for TBA[(SiWyO4,),FeMn,O,{Lu(acac),},Ag,]-4H,0-CH,CN
(Cr0oHs10Ag,FeLu,Mn,NOg, S, W), C 17.38, H 3.13, N 119, Si
0.80, W 46.95, Fe 0.79, Mn 3.12, Lu 4.96, Ag 3.06; found, C 17.37, H
3.18, N 1.21, Si 0.77, W 46.66, Fe 0.73, Mn 2.63, Lu 4.86, Ag 3.01.

Synthesis and Characterization of TBA;[(A-a-
SiW,0;,),FeMn,0,{Lu(CsH,0,),},Na,]-13H,0 (IIN?). To an aceto-
nitrile solution (1 mL) of I (50.0 mg, 6.9 ymol), NaOTf (2.4 mg, 13.9
pmol) was added, and the resulting solution was stirred for 4 h at
room temperature (ca. 20 °C). Then, diethyl ether (2.1 mL) was
added to the solution, and the solution was filtered off. The brown
crystals of IIN* suitable for X-ray crystallographic analysis were
obtained after 1 day (20.9 mg, 43% yield based on I). IR (KBr pellet):
2962, 2936, 2874, 1162, 1524, 1484, 1463, 1406, 1383, 1269, 1153,
1106, 1017, 962, 938, 890, 790, 757, 634, 539, 386, 372, 333, 308,
297, 291, 281, 278, 267, 254 cm™ positive ion MS (CSI,
acetonitrile): m/z 3625 (calcd. 3625.2)
[TBA,Si,W,30-,FeMn,Lu,(acac),Na,]**, 7008 (calcd. 7008.0)
[TBA4Si,W,3050FeMn,Lu,(acac),Na,]*; elemental analysis calcd
(%) for TBA4[(SiW,0;,),FeMn,0,{Lu(acac),},Na,]-13H,0
(Cy00H,34FeLu,Mn,N;Na, O, Si, W), C 17.16, H 337, N 1.00, Si
0.80, W 47.28, Fe 0.80, Mn 3.14, Lu 5.00, Na 0.66; found, C 17.01, H
3.33, N 1.11, Si 0.78, W 47.23, Fe 0.81, Mn 3.08, Lu 5.02, Na 0.63.

Synthesis and Characterization of TBA;[(A-a-
SiW,0;,),FeMn,0,{Lu(CsH,0,),},K,]*9H,0 (IIX). To an acetoni-
trile solution (1 mL) of I (50.0 mg, 6.9 pmol), KOTf (2.6 mg, 13.9
pmol) was added, and the resulting solution was stirred for 4 h at
room temperature (ca. 20 °C). Then, diethyl ether (1.5 mL) was
added to the solution, and the solution was filtered off. The brown
crystals of II* suitable for X-ray crystallographic analysis were
obtained after 1 day (25.6 mg, 53% yield based on I). IR (KBr pellet):
2963, 2875, 1634, 1525, 1485, 1464, 1399, 1384, 1269, 1153, 1105,
1016, 960, 938, 924, 891, 792, 635, 536, 370, 338, 332, 317, 303, 291,
282, 279, 254 cm™Y; positive ion MS (CSI, acetonitrile): m/z 3641
(caled. 3641.4) [TBA,Si,W,30,,FeMn,Lu,(acac),K,]*, 7040 (calcd.
7040.2) [TBASi,W,3050FeMn,Lu,(acac),K,]*; elemental analysis
caled (%) for TBA[(SiWy0;4),FeMn,0,{Lu(acac),},K,]-9H,0
(C1o0HnsFeK,Lu,Mn N O, Si,Wys), C 1726, H 327, N 101, Si
0.81, W 47.55, Fe 0.80, Mn 3.16, Lu 5.03, K 1.12; found, C 17.26, H
327, N 1.01, Si 0.81, W 47.55, Fe 0.80, Mn 3.16, Lu 5.03, K 1.12.
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