Article

Assembly theory explains and quantifies
selection and evolution

https://doi.org/10.1038/s41586-023-06600-9

Received: 1 April 2023

Accepted: 31 August 2023

Published online: 04 October 2023

Open access

M Check for updates

Abhishek Sharma'?, Daniel Czégel>*®, Michael Lachmann®, Christopher P. Kempes*,
Sara . Walker?*™ & Leroy Cronin'®

Scientists have grappled with reconciling biological evolution*? with the immutable
laws of the Universe defined by physics. These laws underpin life’s origin, evolution
and the development of human culture and technology, yet they do not predict the
emergence of these phenomena. Evolutionary theory explains why some things exist
and others do not through the lens of selection. To comprehend how diverse, open-
ended forms can emerge from physics without an inherent design blueprint, anew
approach to understanding and quantifying selection is necessary*. We present
assembly theory (AT) as aframework that does not alter the laws of physics, but
redefines the concept of an ‘object’ on which these laws act. AT conceptualizes objects
not as point particles, but as entities defined by their possible formation histories.
This allows objects to show evidence of selection, within well-defined boundaries of
individuals or selected units. We introduce a measure called assembly (A), capturing
the degree of causation required to produce a given ensemble of objects. This approach
enables ustoincorporate novelty generation and selection into the physics of complex
objects. It explains how these objects can be characterized through a forward dynamical
process considering their assembly. By reimagining the concept of matter within
assembly spaces, AT provides a powerful interface between physics and biology. It
discloses anew aspect of physics emerging at the chemical scale, whereby history and
causal contingency influence what exists.

In evolutionary theory, natural selection' describes why some things
existand others do not. Darwin’s theory of evolution and its modern
synthesis point out how selectionamong variants in the past generates
current functionality?, as well as a forward-looking process*. Neither
addresses the space in which new phenotypic variants are generated.
Physics can, in theory, take us from past initial conditions to current
and future states. However, because physics has no functional view
of the Universe, it cannot distinguish novel functional features from
random fluctuations, which means that talking about true novelty is
impossiblein physical reductionism. Thus, the open-ended generation
of novelty® does not fit cleanly in the paradigmatic frameworks of either
biology® or physics’, and so must resort ultimately to randomness®,
There have beenseveral efforts to explore the gap between physics and
evolution®®, This is because a growing state space over time requires
the exploration of a large combinatorial set of possibilities, such as
inthe theory of the adjacent possible'. However, the search generates
an unsustainable expansion in the number of configurations possi-
ble in a finite universe in finite time, and does not include selection.
In addition, this approach has limited predictive power with respect
to why only some evolutionary innovations happen and not others.
Other efforts have studied the evolution of rules acting on other rules®;
however, these models are abstractsoitis difficult to see how they can
describe—and predict—the evolution of physical objects.

Here,weintroduce AT, which addresses these challenges by describing
how novelty generation and selection can operate in forward-evolving
processes. The framework of AT allows us to predict features of new
discoveries during selection, and to quantify how much selection was
necessary to produce observed objects'" without having to prespecify
individuals or units of selection. In AT, objects are not considered as
point particles (asinmost physics), but are defined by the histories of
their formation as anintrinsic property, mapped as an assembly space.
The assembly space is defined as the pathway by which a given object
can be built from elementary building blocks, using only recursive
operations. For the shortest path, the assembly space captures the
minimal memory, interms of the minimal number of operations neces-
saryto construct an observed object based on objects that could have
existed in its past’®. One feature of biological assemblies of objects is
multiple realizability wherein biological evolution can produce func-
tionally equivalent classes of objects with modular use of units inmany
different contexts. For each unit, the minimal assembly is unique and
independent of its formation, and therefore accounts for multiple
realizability in how it could be constructed',

We introduce the foundations of AT and its implementation to
quantify the degree of selection and evolution foundinacollection of
objects. Assembly is a function of two quantities: the number of copies
ofthe observed objects and the objects’ assembly indices (an assembly
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index is the number of steps on a minimal path producing the object).
Assembly captures the amount of memory necessary to produce a
selected configuration of historically contingent objects in amanner
similar to how entropy quantifies the information (or lack thereof)
necessary to specify the configuration of an ensemble of point particles,
but assembly differs from entropy because of its explicit dependence
onthe contingency in construction paths intrinsic to complex objects.
We demonstrate how AT leads to a unified language for describing selec-
tion and the generation of novelty, and thereby produce a framework
to unify descriptions of selection across physics and biology.

Assembly theory

The concept of an object in AT is simple and rigorously defined. An
object is finite, is distinguishable, persists over time and is breakable
such that the set of constraints to construct it from elementary build-
ing blocks is quantifiable. This definition is, in some sense, opposite
to standard physics, which treats objects of interest as fundamental
and unbreakable (for example, the concept of ‘atoms’ as indivisible,
which now applies to elementary particles). In AT, we recognize that
the smallest unit of matter is typically defined by the limits of obser-
vational measurements and may not itself be fundamental. A more
universal concept is to treat objects as anything that can be broken
and built. This allows us to naturally account for the emergent objects
produced by evolutionand selection as fundamental to the theory. The
concept of copy number is of foundational importance in defining a
theory that accounts for selection. The more complex a given object,
the less likely an identical copy can exist without selection of some
information-driven mechanism that generates that object. An object
that exists in multiple copies allows the signatures describing the set
of constraints that built it to be measured experimentally. For example,
mass spectrometry can be used to measure assembly for molecules,
because it can measure how molecules are built by making bonds”.

Assembly index and copy number

To constructanassembly space for anobject, one starts from elemen-
tary building blocks comprising that object and recursively joins these
to form new structures, whereby, at each recursive step, the objects
formed are added back to the assembly pool and are available for sub-
sequent steps (Supplementary Information Sections 1and 2). AT cap-
tures symmetry breaking arising along construction paths due to
recursive use of past objects that can be combined in different ways to
make new things. For any given object i, we can define its assembly
space as all recursively assembled pathways that produce it. For each
object, the most important feature is the assembly index g;, which
corresponds to the shortest number of steps required to generate the
object from basic building blocks. This can be quantified as the length
of'the shortest assembly pathway that can generate the object (Fig.1).

In chemical systems, molecular assembly theory treats bonds as
the elementary operations from which molecules are constructed.
The shortest path to build a given molecule can be found by breaking
its bonds and then ordering its motifs in order of size, starting from
atoms and moving to larger motifs by adding bonds in sequence. Given
amotif generated on the path, the motif remains available for reuse.
Therecursivity allows identifying the shortest construction path with
parts already built on that path, allowing us to quantify the minimum
number of constraints, or memory size, to construct the molecule. The
assembly index can be estimated from any complex discrete object with
well-defined building blocks, which can be broken apart, as shown in
Fig.1.Atevery step, thesize of the object increases by at least one. The
number of total possible steps, although potentially large, is always
finite for any finite object and thus the assembly index is computable
in finite time. For molecules, the assembly index can be determined
experimentally.
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A hallmark feature of life is how complex objects are generated by
evolution, of whichmany are functional. For example,a DNA molecule
holds geneticinformationreliably and can be copied easily. By contrast,
arandom string of letters requires much information to describe it,
but is not normally seen as very complex or useful. Thus far, science
has not been able to find a measure that quantifies the complexity of
functionality to distinguish these two cases. Here we overcome this
inherent problem by pointing out another feature of the evolutionary
process: the complex and functional objects it generates take many
steps to make, and selection allows many identical copies of these
objects. Therefore, an evolutionary process can be identified by the
production of many identical, or near-identical, multistep objects.
Theassembly index onits own cannotdetect selection, but copy num-
ber combined with the assembly index can. This approach defines a
new way to measure complexity in terms of the hierarchy of causation
stemming from selection at different levels.

Because we do not typically know the full assembly trajectory of
an object, we instead adopt a conservative alternative. AT finds the
minimal number of steps to produce the object. We assume that every
subobject, once available, can be used as often as needed to generate
the object. Adifferentapproach would be to use Kolmogorov complex-
ity?** applied to a given molecule, but this requires starting with a
graphical representation, and a program to compute the graph of that
molecule. The Kolmogorov complexity of a string is the shortest pro-
gram that will output that string for a programming language capable
of universal computation. This measure cannot be easily computed,
because checking whether any single programwill output the string is
uncomputable, as itinvolves, at least, deciding whether the program
stops. Running this programreflects nothing of the underlying process
of how the molecule was constructed. Only late in the evolutionary
process will molecules be produced by anything starting to resemble
Turing machines, loops, stacks, tapes and so on®?. Thus, using universal
computation to assess molecules adds unrealistic dynamics, making
the answer uncomputable. The assembly measure that we have pre-
sented hereboth uses realistic dynamics for molecules, using bonds as
building blocks, and is computable for any molecule. The main work
for detecting evolution and memory is done here by combining the
assembly index and copy number of the objects.

The aim of AT is to develop a new understanding of the evolution
of complex matter that naturally accounts for selection and history
in terms of what operations are physically possible in constructing
anobject??*, We will discuss AT as applied to chemical systems as the
mainapplicationin thismanuscript because their assembly index has
been experimentally measured. For molecules, assembly index has a
clear physical interpretation and has been validated as quantifying
evidence of selection inits application to the detection of molecular
signatures of life. However, we anticipate the theory to be sufficiently
general to apply to a wide variety of other systems including poly-
mers, cell morphology, graphs, images, computer programs, human
languages and memes, as well as many others. The challenge in each
case will be to construct an assembly space that has a clear physical
meaning in terms of what operations can be caused to occur to make
the object® (Fig.1).

In AT there are two important features of the context the object
is found in. First, there must be objects in its environment that can
constrain the steps to assemble the object and second these objects
themselves have been selected because they must be retained over
subsequent steps to physically instantiate the memory needed to build
the target object. Among the most relatable examples are enzyme
catalystsinbiochemistry, which permit the formation of very unlikely
moleculesinlarge numbers because the enzymes themselves are also
selected to exist with many copies. We make no distinction between
the traditional notion of biological ‘individual’ and objects that are
selected in the environment to quantify the selection necessary to
produce agiven configuration. Thus, our approach naturally accounts
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Fig.1|Assembly index and shortest path(s). a-c, AT is generalizable to
different classes of objects, illustrated here for three different general types.
a, Assembly pathway to construct diethyl phthalate molecule considering
molecularbonds as the building blocks. The figure shows the pathway starting
withtheirreducible constructsto create the molecule with assembly index 8.

for well-known phenomena, such as niche construction, whereby organ-
isms and environment are co-constructed and co-selected.

Copy number is important because a single example of a highly
complex molecule (with a very high assembly index) could poten-
tially be generated in a series of random events that become increas-
ingly less likely with increasing assembly index. If we consider a
forward-building assembly process (see Supplementary Information
Sections1and2 for details), without aspecific targetinmind, the num-
ber of possible objects that could be built at each recursive step grows
super-exponentially in the absence of any constraints. The likelihood
of finding and measuring more than one copy of an object therefore
decreases super-exponentially with increasing assembly index in the
absence of selection for a specified target. Objects with high assembly
index, found in abundance, provide evidence of selection because of
the combinatorially growing space of possible objects ateachrecursive
assembly step (Fig. 2). Finding more than oneidentical copy indicates
the presence of a non-random process generating the object.

@&,@ﬁ,

b, Assembly pathway of a peptide chain by considering building blocks as
strings. Left, four amino acids as building blocks. Middle, the actual object
anditsrepresentation as astring. Right, assembly pathway to construct the
string. ¢, Generalized assembly pathway of an object comprising discrete
components.

The assembly equation

We define assembly as the total amount of selection necessary to pro-
duce anensemble of observed objects, quantified using equation (1):

@

where Ais the assembly of the ensemble, g; is the assembly index of
objecti, n;is its copy number, Nis the total number of unique objects,
eisEuler’snumber and Ny is the total number of objects in the ensem-
ble. Normalizing by the number of objects in the ensemble allows
assembly to be compared between ensembles with different numbers
of objects.

Assembly quantifies two competing effects, the difficulty of discov-
ering new objects, but, once discovered, some objects become easier
to make; this is indicative of how selection was required to discover
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Fig.2|Selectioninassemblyspace.a, Pictorial representation of the
assembly spacerepresenting the formation of combinatorial object space
frombuilding blocks and physical constraints. b, Observed copy number
distributions of objects at different assembly indices as an outcome of selection
ornoselection. ¢, Representation of physical pathways to construct objects
withundirected and directed pathways (selected) leading to the low and high
copy numbers of the observed object.

and make them. The exponential growth of assembly with depth in
assembly space, as quantified by assembly index, is derived by consid-
eringalinearly expanding assembly pool that has objects that combine
atstepa - a+1,whereby an object at the assembly index @ combines
with another object from the assembly pool. Discovering new objects
atincreasing depthinanassembly space getsincreasingly harder with
depth because the space of possibilities expands exponentially. Once
the pathway for a new object has been discovered, the production of
anobject (copy number greater than1) gets easier as the copy number
increases because a high copy number implies that an object can be
produced readily in a given context. Thus, the hardest innovation is
making an object for the first time, whichis equivalent toits discovery,
followed by making the first copy of that object, but once an object
existsin very high abundance it must already be relatively easy to make.
Hence, assembly (A) scales linearly with copy number for more than
oneobject forafixed cost per object once a process hasbeen discovered
(see Supplementary Information Section 3 for additional details).
Increasing assembly (A) results fromincreasing copy numbersnand
increasing assembly indices a. If high values of assembly can be shown
to capture cases in which selection has occurred, itimplies that finding
high assembly index objects in high abundanceis a signature of selec-
tion. InAT, the information required at each step to construct the object
is ‘stored’ within the object (Fig. 2). Each time two objects are combined
from an assembly pool, the specificity of the combination process
constitutes selection. As we will show, randomly combining objects
within the assembly pool at each step does not constitute selection
because no combinations existin memory to be used again for building
the same object. If, instead, certain combinations are preferentially
used, it implies that a mechanism exists that selects the specific
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operations and, by extension, specific target objects to be generated.
Later we will quantify the degree of selectivity by parameter ain the
growth dynamics, which allows parameterizing selection in an empir-
ically observable manner by parameterizing reuses of specific sets of
operations (see Supplementary Information Section 3 for example).

Assembly as givenin equation (1) is determined for identified finite
and distinguishable objects (with copy number greater than 1) and
their distinct assembly spaces. However, in real samples, there are
almost always several different coexisting objects, which will include
acommon history for their formation. Transistors, for example, are
used across several different technologies, suggestingacommon sub-
space in the assembly spaces of many modern technologies that
includes transistor-like objects. This common subspace, constituting
the overlap in the assembly paths of distinct structures, is called a
co-assembly space. By contrast, ajoint assembly space of several objects
is the combined assembly space required to generate those objects.
As a potential extension of the assembly equation, to account for the
jointassembly of objects, we expand the formulation of the assembly
equation that includes the quantification of shared pathways to con-
struct objects to determine the assembly (A) of an ensemble with dif-
ferent objects that share common history (Supplementary Information
Section 3).

Selection within assembly spaces

The concept of the assembly space allows us to understand how selec-
tion and historical contingency impose constraints on what can be
madein the future. By aiming to detect ‘selection’, we mean a process
similar to selectionin Darwinian evolution. We do not, however, model
functional differences that selection might act on. Instead, we account
only for the specificity of selection—that some objects are more likely
to be used to make new things and some are less likely. The only func-
tionality we wantto detect or describeis in the memory of the process
to generate the object, with examples including a metabolic reaction
network or agenome. This allows the three Lewontin conditions for evo-
lution to hold®. A key feature of assembly spaces is that they are com-
binatorial, with objects combined at every step. Combinatorial spaces
donotplay aprominentrolein current physics, because their objects
aremodelled as point particles and not as combinatorial objects (with
limited exceptions). However, combinatorial objects are importantin
chemistry, biology and technology, in which most objects of interest
(if not all) are hierarchical modular structures. More objects exist in
assembly space than can be built in finite time with finite resources
because the space of possibilities grows super-exponentially with the
assembly index. To tame this explosive growth, in AT historical contin-
gencyisintrinsic with the space built compositionally, whereitems are
combined recursively (accounting for hierarchical modularity) and
this substantially constrains the number of possible objects. It is the
combination of this compositionality with combinatorics that allows
us to describe selection (Fig. 3).

To produce an assembly space, an observed object is broken down
recursively to generate a set of elementary building units. These units
canbeusedtothenrecursively construct the assembly pathways of the
original object(s) to build what we call assembly observed, A,. A, cap-
tures all histories for the construction of the observed object(s) from
elementary building blocks, consistent with what physical operations
are possible. Because objects in AT are compositional, they contain
information about the larger space of possible objects from which
they were selected. To see how, we first build an assembly space from
the samebuildingblocksin Ay, whichinclude all possible pathways for
assembling any object composed of the same set elementary building
blocks as our target object. The space so constructed is the assembly
universe (A,).

Inthe assembly universe, all objects are possible with norules, yield-
inga combinatorial explosion and with double exponential growthin
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the number of objects, asis characteristic of exploding state spaces and
the adjacent possible (see Supplementary Information Section 4 for
details). Although mathematically well defined, this double exponential
growth is unphysical because the physical processes place restric-
tions on what is possible (in the case of molecules, an example is how
quantum mechanics constrains the numbers of bonds per atom). The
assembly universe also has no concept of directionality in time, as there
isno orderingto construction processes. Because everything can exist,
thereisanimplicationthat objects canbe constructed independently of
what has existed inthe past and of resource or time constraints, which
isnot what we observe in the real universe. For most systems of interest,
including in molecular assembly spaces, the number of molecules in
the assembly universe is orders of magnitude larger than the amount
of matter available inthe cosmologically observable universe. Thereiis
noway to computationally build and exhaust the entire space, even for
objects with relatively low assembly indices. For larger objects, such as
proteins, this can be truly gigantic?. In AT, we do not observe all possible
objects at agiven depth in the assembly space because of selection,
more reflective of what we see in the real universe. We next show how
taking account of memory andresource limitation severely restricts the
size of the space of what can be built, but also allows higher-assembly
objects to be built before exhausting resources constructing all the
possible lower-assembly objects. AT can account for selection precisely
because of the historical contingency in the recursive construction of
objects along assembly paths.

Assembly possible (A4,) is the space of physically possible objects,
which can be generated by means of the combinatorial expansion of
all the known physical rules of object construction and allowing all
rulestobeavailable atevery step to every object. This can be described
by a dynamical model representing undirected forward dynamics in
AT. When an object with assembly index a combines with its own his-
tory, itsassemblyindexincreasesbyone,a > a + 1.If the resulting object
canbe made by means of other, shorter path(s), its assembly index will
besmallerthana + 1orevena. Another assumption behind the dynam-
icalmodel of undirected dynamicsis amicroscopically drivenstochas-
tic rule that uses existing objects uniformly: the probability of
choosing an object with assembly index a to be combined with any
other objectis proportional to N, the number of objects with assembly
index a(see Supplementary Information Section 5for further details).

Within assembly possible, assembly contingent (A.) describes the
possible space of objects where history, and selection on that history,
matter. Historical contingency is introduced by assuming that only
the knowledge or constraints built on a given path can be used in the

Unique objects Fundamental

particles
(see text for details). Assembly universe has no dynamics and is displayed with
assembly steps as the time axis. Note that the figureillustrates their nested
structure only, not the relative size of the spaces where each setis typically
exponentially larger than the subset.

future, or with different paths interacting in cases in which selected
objectsthat had notinteracted previously now interact. We define the
probability P, of an object being selected with assembly index (a) as
P,<(N,)*, where N, is the number of objects with assembly index a.
Here, a parameterizes the degree of selection: for a =1all objects that
havebeenassembledinthe pastare available forreuse,andforO<a<1,
only a subset (that grows non-linearly with assembly index) are avail-
ableforreuse, indicating that selection has occurred. Thisleads to the
growth dynamics:

dNgiy

e kN

(2)

where k4 represents the rate of discovery (expansion rate) of new
objects. Fora=1,thereis historical dependence without selection. We
build assembly paths by taking two randomly chosen objects fromthe
assembly pool and combining them:; if a new object is formed, it is
added back into the pool. Here we are building random objects, but
these are fundamentally different from random combinatorial objects
because the randomness we implement is distributed acrosstherecur-
sive constructionsteps leading to an object (see Supplementary Infor-
mation Section 5 for solutions). The case of a=1, in which there is
historical dependence but no selection, defines the boundary of assem-
bly possible.

Within assembly possible, the assembly contingent (4.) is the space
of possible configurations of objects whereO < a <1, thatis, where selec-
tionis possible, and the objects found in the space are controlled by a
path-dependency contingent on each object that has already beenbuilt.
Thegrowth ofthe assembly contingent is much slower than exponential;
indeed, notall possible paths are explored equally. Instead, the dynam-
ics are channelled by constraints imposed by the selectivity emerging
along specific paths. Indeed, asignature of selection in assembly spaces
is a slower-than-exponential growth of the number of unique objects.
To show this, we use a simple phenomenological model of linear poly-
mers to demonstrate how assembly differentiates cases when selection
happens. Starting with a single monomer in the assembly pool, the
undirected exploration process combines two randomly selected pol-
ymers and adds them back to the assembly pool. Inthe case of directed
exploration with selection, the polymer that has been created most
recentlyis selected tojoin arandomly selected polymer from the assem-
bly pool. For both directed and undirected exploration, this process
was iterated up to 10* steps and repeated 25 times. For each observed
polymerintheassembly pool, the shortest pathway was generated. For
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comparisonbetween undirected and directed exploration after 100 assembly
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showninred andgrey, respectively). ¢, The meanand standard deviation of

the explorationratio (defined by the ratio of the number of observed nodes
and the number of total nodes, which includes observed and contingent nodes)
and mean maximum assembly index. nis 25 runsallaveraged up to10*
assembly steps.

each run, the assembly space of multiple coexisting polymers, their
joint assembly space, was approximated by the union of the shortest
pathways of all observed polymers. An example of joint assembly space
inanundirected exploration up to 30 steps is shown in Fig. 4a.
Comparison between the explored joint assembly space in undi-
rected and directed exploration up to100 stepsis shownin Fig.4b (see
Supplementary Information Section 6 for details). To quantify the
degree of exploration atagivenassembly step, we calculated the explo-
rationratio, defined by the ratio of observed nodes to total number of
nodes present in the joint assembly space. Figure 4c shows the explo-
rationratio and the mean maximumassembly index observed, approx-
imated by log,(n) ,where n is the length of the polymer for the
undirected and directed exploration processes (both upper and lower
bounds scale as log,(n) in leading order). Here, the mean maximum
assembly index was estimated by calculating the assembly index of the
mean value of the longest observed polymeric chains over 25 runs.
Comparing the directed process to the undirected exploration illus-
tratesacentral principle: the signal of selection is simply alower explo-
ration ratio and higher complexity (as defined by the maximum
assembly index). The observation of alower exploration ratio in the
directed process thaninthe undirected processisthe evidence of the
presence of selectivity in the combination process between the
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polymers existing in the assembly pool. The process representing sort-
ing and selecting chains within the assembly pool represents an out-
come of a physical process leading to selection (see Supplementary
Information Section 7 for an additional model).

We conjecture that, the ‘more assembled’ an ensemble of objects,
the more selection is required for it to come into existence. The his-
torical contingency in AT means that assembly dynamics explores
higher-assembly objects before exhausting all lower-assembly
objects, leading to a vast separation in scales separating the number
of objects that could have been explored versus those that are actually
constructed following a particular path. For example, proteins built
bothfrombandLamino acids and their pathways are part of assembly
possible, but, within an assembly contingent trajectory, only proteins
constructed out of L amino acids might be present, because of early
selection events. This early symmetry breaking along historically con-
tingent paths is a fundamental property of all assembly processes. It
introduces an ‘assembly time’ that ticks at each object being made:
assembly physics includes an explicit arrow of time intrinsic to the
structure of objects.

Assembly unifies selection with physics

In the real universe, objects can be built only from parts that already
exist. The discovery of new objects is therefore historically contingent.
The rate of discovery of new objects can be defined by the expansion
rate (k) fromequation (2), introducing a characteristic timescale 7, = kl
defined as the discovery time. In addition, once a pathway to build ah
object is discovered, the object can be reproduced if the mechanism
inits environment is selected to build it again. Thus far, we have con-
sidered discovery dynamics within the assembly spaces and did not
account for the abundance or copy number of the observed objects
when discovered. To include copy number in the dynamics of AT, we
must introduce a second timescale, the rate of production (k) of a
specific object, with a characteristic production timescale 7,~ -
(Fig.5). For simplicity, we assume that selectivity and interaction amoné
emerging objects are similar across assembled objects. Defining these
two distinct timescales for initial discovery of an object and making
copies of existing objects allows usto determine the regimesin which
selectlon is possible (Fig. 5).

For - > 1, whereby objects are discovered quickly but reproduced
slowly, ‘the expansion of assembly space is too fast under mass con-
straintsto accumulate a high abundance of any distinguishable objects,
leading to a combinatorial explosion of unique objects with low copy
numbers. This is consistent with how some unconstrained prebiotic
synthesis reactions, such as the formose reaction, end up producing
tar, which is composed of a large number of molecules with too low a
copy number to beindividually identifiable?”*. Selection and evolution
cannotemergeif new objects are generated on timescales so fast that
resources are not avallable for making more copies of those objects
that already exist. For — «1, objects are reproduced quickly but new
onesarediscovered slowly Hereresources are primarily consumedin
producing additional copies of objects that already exist. Typically,
newobjectsare discoveredinfrequently. This leads to ahigh abundance
of objects produced by extreme constraints, which could limit the
further growth of assembly space. This illustrates how exploration
versus exploitation can play out in AT. Significant separation of the two
timescales of discovery of new objects and (re)production of selected
objectsresultsin eithera combinatorial explosion of objects with low
copy numbers or, conversely, high copy numbers of low assembly
objects. Inboth cases, we will not observe trajectories that grow more
complex structures.

The emergence of selection and open-ended evolutionina physical
system should occurinthe transition regime where thereis only asmall
separation in the timescales between discovering new objects and
reproducing ones that are selected, for example the region located
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T4<Tp, (2) 74> 1, and (3) 74= 7. Selection is unlikely to emerge inregimes 1and
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between 7y« 7,and 7, 7,(Fig. 5). Toinvestigate discovery and produc-
tion dynamics simultaneously, we introduce mass action kinetics in
the framework of AT. Our aimis to demonstrate how the generation of
novelty canbe described alongside selectioninaforward process (thus
unifyingkey features of life with physics) and how measuring assembly
identifies how much selection occurred. We do so by studying phe-
nomenological models, with the understanding that we are putting
selection in by hand in our examples to demonstrate foundational
principles of how assembly quantifies selection. To explore this, we
consider a forward assembly process whereby the copy numbers of
emerging objects follow homogeneous kinetics, together with the
discovery dynamics as given by equation (2). With the discovery of new
unique objects over time, symmetry breaking in the construction of
contingent assembly paths will create a network of growing branches
withinthe assembly possible. In principle, interactions among existing
objects and external factorslead to discovery of new objects, expand-
ing the space of possible future objects. Such events can drastically

change the copy number distribution of objects at various assembly
indices, depending on the emerging kinetics in the formation of new
objects. By combining discovery and productionkineticsinasimplified
formulation, we estimate copy numbers of objects at different assem-
blyindices and show assembly of the ensemble over timein the forward
processatdifferent degrees of selection (see Supplementary Informa-
tion Section 8 for an example).

The interplay between the two characteristic timescales describes
how discovery dynamics (z;= 1/kd) and forward kinetics (rpz 1/kp),
together with selection (characterized by the selection parameter @),
are essential for driving processes towards creating higher-assembly
objects. This is characteristic of trajectories within assembly contin-
gent. Assembly captures key features of how the open-ended growth
of complexity can occur within arestricted space only by generating
new objects with increasing assembly indices, while also producing
them with a high copy number. Selectivity (a <1) together with com-
parable production timescales (74~ 1) is essential for the production
of high assembly ensembles. This suggests that selectivity in an
unknown physical process can be explained by experimentally detect-
ing the number of objects, their assembly index and copy number as
afunction of time. Considering molecules as objects and assuming
that molecules observed using analytical techniques such as mass
spectrometry implies a high copy number, the discovery rate and the
selection index (a) can be computed from the temporal data of
observed molecules at all assembly indices.

Conclusions

We have introduced the foundations of AT and how it can be imple-
mented to quantify the degree of selection found in an ensemble of
evolved objects, agnostic to the detailed formation mechanisms of
the objects or knowing a priori which objects are products of units
of selection. To do so, we introduced a quantity, assembly, built from
two quantities: the number of copies of an object and its assembly
index, where the assembly index is the minimal number of recursive
steps necessary to build the object (its size). We demonstrated how AT
allows a unified language for describing selection and the generation
of novelty by showing how it quantifies the discovery and production
of selected objects in a forward process described by mass action
kinetics. AT provides a framework to unify descriptions of selection
across physics and biology, with the potential to build a new physics
that emerges in chemistry in which history and causal contingency
through selection must start to play a prominent role in our descrip-
tions of matter. For molecules, computing the assembly index is
not explicitly necessary, because the assembly index can be probed
directly experimentally with high accuracy with spectroscopy tech-
niques including mass spectroscopy, infrared and nuclear magnetic
resonance spectroscopy?.

Online content

Any methods, additional references, Nature Portfolio reporting summa-
ries, source data, extended data, supplementary information, acknowl-
edgements, peer review information; details of author contributions
and competinginterests; and statements of dataand code availability
are available at https://doi.org/10.1038/s41586-023-06600-9.
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Methods

All the calculations were performed using Mathematica 13 (Wolfram
Ltd). In addition, assembly index calculations on polymeric strings in
the Supplementary Information were performed using a string assem-
bly calculator previously developed using Python and C++.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

All Mathematica Notebooks used to perform the calculations are
available at https://github.com/croningp/assemblyphysics. The
string assembly calculator and the dataset of assembly index calcula-
tionsis available from the Zenodo repository https://doi.org/10.5281/
zenodo.8017327.
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