Heterocyclic Chemistry

Professor J. Stephen Clark

Room C4-04 Email: stephenc@chem.gla.ac.uk

2011-2012

http://www.chem.gla.ac.uk/staff/stephenc/UndergraduateTeaching.html

1

Recommended Reading

- Heterocyclic Chemistry J. A. Joule, K. Mills and G. F. Smith
- *Heterocyclic Chemistry* (Oxford Primer Series) T. Gilchrist
- Aromatic Heterocyclic Chemistry D. T. Davies

Course Summary

Introduction

- Definition of terms and classification of heterocycles
- Functional group chemistry: imines, enamines, acetals, enols, and sulfur-containing groups

Intermediates used for the construction of aromatic heterocycles

- Synthesis of aromatic heterocycles
- Carbon-heteroatom bond formation and choice of oxidation state
- Examples of commonly used strategies for heterocycle synthesis

Pyridines

- General properties, electronic structure
- Synthesis of pyridines
- Electrophilic substitution of pyridines
- Nucleophilic substitution of pyridines
- Metallation of pyridines

Pyridine derivatives

• Structure and reactivity of oxy-pyridines, alkyl pyridines, pyridinium salts, and pyridine N-oxides

Quinolines and isoquinolines

- General properties and reactivity compared to pyridine
- Electrophilic and nucleophilic substitution quinolines and isoquinolines
- General methods used for the synthesis of quinolines and isoquinolines

Course Summary (cont)

Five-membered aromatic heterocycles

- General properties, structure and reactivity of pyrroles, furans and thiophenes
- Methods and strategies for the synthesis of five-membered heteroaromatics
- Electrophilic substitution reactions of pyrroles, furans and thiophenes
- Strategies for accomplishing regiocontrol during electrophilic substitution
- Metallation of five-membered heteroaromatics and use the of directing groups
 Indoles
- Comparison of electronic structure and reactivity of indoles to that of pyrroles
- Fisher and Bischler indole syntheses
- Reactions of indoles with electrophiles
- Mannich reaction of indoles to give 3-substituted indoles (gramines)
- Modification of Mannich products to give various 3-substituted indoles

1,2 and 1,3-Azoles

- Structure and reactivity of 1,2- and 1,3-azoles
- Synthesis and reactions of imidazoles, oxazoles and thiazoles
- Synthesis and reactions of pyrazoles, isoxazoles and isothiazoles

Introduction

• Heterocycles contain one or more heteroatoms in a ring

- Aromatic, or partially or fully saturated this course will focus on aromatic systems
- Heterocycles are important and a large proportion of natural products contain them
- Many pharmaceuticals and agrochemicals contain at least one heterocyclic unit
- Heterocyclic systems are important building-blocks for new materials possessing interesting electronic, mechanical or biological properties

Classification – Aromatic Six-Membered

Classification – Unsaturated / Saturated

Unsaturated

Imine Formation

• Removal of water is usually required to drive the reaction to completion

• If a dialkylamine is used, the iminium ion that is formed can't lose a proton and an enamine is formed

Enols and Enolates

- The enol form is favoured by a conjugating group R^2 e.g. CO_2R , COR, CN, NO_2 etc.
- Avoid confusing enols (generated under neutral/acidic conditions) with enolates (generated under basic conditions)
- Enolates are nucleophilic through C or O but react with C electrophiles through C

Enol Ethers

Enamines

- Analogues of enols but are more nucleophilic and can function as enolate equivalents
- Removal of water (e.g. by distillation or trapping) drives reaction to completion
- Enamines react readily with carbon nucleophiles at carbon
- Reaction at *N* is possible but usually reverses

• Heterocycle synthesis requires:

C–O or C–N bond formation using imines, enamines, acetals, enols, enol ethers C–C bond formation using enols, enolates, enamines

 During heterocycle synthesis, equilibrium is driven to the product side because of removal of water, crystallisation of product and product stability (aromaticity)

General Strategies for Heterocycle Synthesis

Ring Construction

- Cyclisation 5- and 6-membered rings are the easiest to form
- C-X bond formation requires a heteroatom nucleophile to react with a C electrophile

X, Y = O, S, NR

Manipulation of Oxidation State

• Unsaturation is often introduced by elimination e.g. dehydration, dehydrohalogenation

General Strategies for Heterocycle Synthesis

Common Strategies

• Strategy can be adapted to incorporate more than one heteroatom

• 1,5-Dicarbonyl compounds can be prepared by Michael addition of enones

14

General Strategies for Heterocycle Synthesis

Bioactive Pyridines

- Nicotine is pharmacologically active constituent of tobacco toxic and addictive
- Sulphapyridine is a sulfonamide anti-bacterial agent one of the oldest antibiotics

paraquat

- Paraquat is one of the oldest herbicides toxic and non-selective
- Isoniazide has been an important agent to treat tuberculosis still used, but resistance is a significant and growing problem

Drugs Containing a Pyridine

Name: Nexium 2008 Sales: \$4.79 billion 2008 Ranking: 2 branded Company: AstraZeneca Disease: Acid reflux

Name: Aciphex 2008 Sales: \$1.05 billion 2008 Ranking: 34 branded Company: Eisai Disease: Duodenal ulcers and acid reflux

Name: Gleevec 2008 Sales: \$0.45 billion 2008 Ranking: 87 branded Company: Novartis Disease: Chronic myeloid leukemia

Pyridines – Structure

- Isoelectronic with and analogous to benzene
- Stable, not easily oxidised at *C*, undergoes substitution rather than addition
- -I Effect (inductive electron withdrawal)
- -M Effect

- Weakly basic $pK_a \sim 5.2$ in H_2O (lone pair is **not** in aromatic sextet)
- Pyridinium salts are also aromatic ring carbons are more δ + than in parent pyridine

Pyridines – Synthesis

The Hantzsch synthesis ("5+1")

- The reaction is useful for the synthesis of symmetrical pyridines
- The 1,5-diketone intermediate can be isolated in certain circumstances
- A separate oxidation reaction is required to aromatise the dihydropyridine

Pyridines – Synthesis

Oxazoles are sufficiently low in aromatic character to react in the Diels-Alder reaction
 20

Pathways for the Electrophilic Aromatic Substitution of Pyridines

• The position of the equilibrium between the pyridine and pyridinium salt depends on the substitution pattern and nature of the substituents, but usually favours the salt

Regiochemical Outcome of Electrophilic Substitution of Pyridines

- Resonance forms with a positive charge on N (i.e. 6 electrons) are very unfavourable
- The β -substituted intermediate, and the transition state leading to this product, have more stable resonance forms than the intermediates/transition states leading to the α/γ products

Regiochemical Outcome of Electrophilic Substitution of Pyridinium Ions

 $\delta +$

- Regiochemical control is even more pronounced in the case of pyridinium ions
- In both pyridine and pyridinium systems, β substitution is favoured but the reaction is slower than that of benzene
- Reaction will usually proceed through the small amount of the free pyridine available

N Substitution

C Substitution

- Reaction at *C* is usually difficult and slow, requiring forcing conditions
- Friedel-Crafts reactions are not usually possible on free pyridines

Nitration of Pyridine

- Multiple electron-donating groups accelerate the reaction
- Both reactions proceed at similar rates which indicates that the protonation at N occurs prior to nitration in the first case

Sulfonation of Pyridine

• Low yield from direct nitration but good yield via a mercury intermediate

• Forcing reaction conditions are required for direct halogenation

Pyridines – Reduction

Full or Partial Reduction of Pyridines

- Pyridines generally resist oxidation at ring carbon atoms and will often undergo side-chain oxidation in preference to oxidation of the ring
- Full or partial reduction of the ring is usually easier than in the case of benzene

Pyridines – Nucleophilic Reactions

Regiochemical Outcome of Nucleophilic Addition to Pyridines

- Nitrogen acts as an electron sink
- β Substitution is less favoured because there are no stable resonance forms with the negative charge on *N*
- Aromaticity will is regained by loss of hydride or a leaving group, or by oxidation ²⁸

Pyridines – Nucleophilic Reactions

Nucleophilic Substitution

- Favoured by electron-withdrawing substituents that are also good leaving groups
- The position of the leaving group influences reaction rate ($\gamma > \alpha >> \beta$)

Pyridinium Ions – Nucleophilic Reactions

Nucleophilic Substitution

- Conversion of a pyridine into the pyridinium salt greatly accelerates substitution
- Substituent effects remain the same (α , $\gamma >> \beta$) but now $\alpha > \gamma$

Pyridines – Pyridyne Formation

Substitution via an Intermediate Pyridyne

- When very basic nucleophiles are used, a pyridyne intermediate intervenes
- Pyridynes are similar to benzynes and are very reactive (not isolable)

Pyridines – Nucleophilic Reactions

Nucleophilic Attack with Transfer of Hydride

 $X = H(NH_3) / 2$ -aminopyridine

- A hydride acceptor or oxidising agent is required to regenerate aromaticity
- The reaction with LiNH₂ is referred to as the Chichibabin reaction

Pyridines – Metal-Halogen Exchange

Direct Exchange of Metal and a Halogen

- Halogenated pyridines do not tend to undergo nucleophilic displacement with alkyl lithium or alkyl magnesium reagents
- Metallated pyridines behave like conventional Grignard reagents

Pyridines – Directed Metallation

Use of Directing Groups Me OMe **O**Me I(CH₂)₂CI t-BuLi, Et₂O, -78 ℃ 90% Ph Me⁻ Me N*i*-Pr₂ N*i*-Pr₂ N*i*-Pr₂ Mé Me LiTMP, –78 °C Li LITMP NMe₂ Ph

- Directing groups allow direct lithiation at an adjacent position
- A Lewis basic group is required to complex the Lewis acidic metal of the base

Oxy-Pyridines – Structure

Oxy-Pyridines/Pyridones

- Subject to tautomerism
- The α,γ systems differ from the β systems in terms of reactivity and structure
- In the α case, the equilibrium is highly solvent dependent, but the keto form is favoured in polar solvents 35

Amino Pyridines – Structure

Amino Pyridine Systems

- Contrast with oxy-pyridines
- Amino pyridines are polarised in the opposite direction to oxy-pyridines
Oxy-Pyridines – Reactions

Electrophilic Substitution

- Reactions such as halogenation, nitration, sulfonation etc. are possible
- N is much less basic than that in a simple pyridine
- Substitution occurs ortho or para to the oxygen substituent (cf. phenols)

Oxy-Pyridines – Reactions

Nucleophilic Substitution

- Replacement of the oxygen substituent is possible
- In this case, the reaction is driven by the formation of the very strong P=O bond

Oxy-Pyridines – Reactions

Cycloaddition

• Oxy-pyridines have sufficiently low aromatic character that they are able to participate as dienes in Diels-Alder reactions with highly reactive dienophiles

Alkyl Pyridines – Deprotonation

Deprotonation with a Strong Base

- Deprotonation of α and γ alkyl groups proceeds at a similar rate, but β alkyl groups are much more difficult to deprotonate
- Bases are also potential nucleophiles for attack of the ring

Pyridinium Salts – Reactions

Nucleophilic Attack with Reducing Agents

- Nucleophilic attack is much easier (already seen this)
- Deprotonation of alkyl substituents is easier (weak bases are suitable)
- Ring opening is possible by attack of hydroxide

Pyridine N-Oxides

N-Oxide Formation

- The reactivity *N*-oxides differs considerably from that of pyridines or pyridinium salts
- A variety of peracids can be used to oxidise N but m-CPBA is used most commonly
- *N*-Oxide formation can be used to temporarily activate the pyridine ring to both nucleophilic and electrophilic attack

Pyridine N-Oxides

- The *N*-oxide is activated to attack by electrophiles at both the α and γ positions
- Nitration of an *N*-oxide is easier than nitration of the parent pyridine
- Reactivity is similar to that of a pyridinium salt in many cases e.g. nucleophilic attack, deprotonation of alkyl groups etc.

Removal of O

• Deoxgenation is driven by the formation of the very strong P=O bond

Pyridines – Synthesis of a Natural Product

Synthesis of Pyridoxine (Vitamin B₆) Using the Guareschi Synthesis

- The final sequence of steps involves formation of a bis-diazonium salt from a diamine
- Pyridoxine performs a key role as the coenzyme in transaminases

- Quinine is an anti-malarial natural product isolated from the bark of the Cinchona tree
- Chloroquine is a completely synthetic anti-malarial drug that has the quinoline system found in quinine parasite resistance is now a problem

papaverine

• Papaverine is an alkaloid isolated from the opium poppy and is a smooth muscle₄₅ relaxant and a coronary vasodilator

Drugs Containing a Quinoline/Isoquinoline

Name: Hydroxychloroquine 2008 Sales: \$74 million 2008 Ranking: 146 generic Company: N/A Disease: Malaria, lupus erythematosus, rheumatoid arthritis

Malaria

- Approximately 500 million cases of malaria each year and 1–3 million deaths
- Disease is caused by protazoan parasites of the genus *Plasmodium* (*falciparum*, *vivax*, *ovale and malariae*)
- Disease spread by the *Anopheles* mosquito (female)

Cinchona pubescens

Anopheles mosquito

Plasmodium monocyte

Structure

- pK_a values (4.9 and 5.4) are similar to that of pyridine
- Possess aspects of pyridine and naphthalene reactivity e.g. form N-oxides and ammonium salts

Conrad-Limpach-Knorr Synthesis ("3+3")

• Very similar to the Combes synthesis by a β -keto ester is used instead of a β -diketone

• Altering the reaction conditions can completely alter the regiochemical outcome

- Acrolein can be generated in situ by treatment of glycerol with conc. sulfuric acid
- A mild oxidant is required to form the fully aromatic system from the dihydroquinoline

50

Friedlander Synthesis ("4+2")

- The starting acyl aniline can be difficult to prepare
- Acidic and basic conditions deliver regioisomeric products in good yields

Isoquinolines – Synthesis

Pomeranz-Fritsch Synthesis ("3+3")

Bischler-Napieralski Synthesis ("5+1")

- Cyclisation can be accomplished using $POCl_3$ or PCl_5
- Oxidation of the dihydroisoquinoline can be performed using a mild oxidant

Isoquinolines – Synthesis

Pictet Spengler Synthesis ("5+1")

- An electron-donating substituent on the carboaromatic ring is required
- A tetrahydroisoquinoline is produced and subsequent oxidation is required to give the fully aromatic isoquinoline

- Under strongly acidic conditions, reaction occurs via the ammonium salt
- Attack occurs at the benzo- rather than hetero-ring
- Reactions are faster than those of pyridine but slower than those of naphthalene

• In the case of quinoline, equal amounts of the 5- and 8-isomer are produced 54

Quinolines/Isoquinolines – Electrophilic Reactions

Sulfonation

- Halogenation is also possible but product distribution is highly dependent on conditions
- It is possible to introduce halogens into the hetero-ring under the correct conditions
- Friedel-Crafts alkylation/acylation is not usually possible

Quinolines/Isoquinolines – Nucleophilic Reactions

Regiochemistry

- Attack occurs at hetero- rather than benzo-ring
- They are enerally more reactive than pyridines to nucleophilic attack

Carbon Nucleophiles

Quinolines/Isoquinolines – Nucleophilic Reactions

• Oxidation is required to regenerate aromaticity

Amination

Quinolines/Isoquinolines – Nucleophilic Substitution

Displacement of Halogen

Quinolines/Isoquinolines – The Reissert Reaction

- The proton adjacent to the cyano group is extremely acidic
- The reaction works best with highly reactive alkyl halides

Isoquinolines – Synthesis of a Natural Product

• Cyclisation is achieved by the Pictet-Grams reaction cf. the Bischler-Napieralski reaction 60

Bioactive Furans, Pyrroles and Thiophenes

• Ranitidine (Zantac®, GSK) is one of the biggest selling drugs in history. It is an H₂-receptor antagonist and lowers stomach acid levels – used to treat stomach ulcers

ketorolac

• Ketorolac (Toradol®, Roche) is an analgesic and anti-inflammatory drug

banminth

 Pyrantel (Banminth®, Phibro) is an anthelminthic agent and is used to treat worms in livestock

Drugs Containing a Furan/Thiophene/Pyrrole

Name: Plavix 2008 Sales: \$3.80 billion 2008 Ranking: 3 branded Company: Bristol-Myers Squibb Disease: Stroke and heart attack risk

Name: Nitrofurantoin 2008 Sales: \$92 + 72 million 2008 Ranking: 119 and 149 generic Company: N/A Disease: Antibiotic for urinary tract infections

Name: Cymbalta 2008 Sales: \$2.17 billion 2008 Ranking: 14 branded Company: Eli Lilly Disease: Depression

Furans, Pyrroles and Thiophenes – Structure Structure $\int_{\alpha}^{\beta} \int_{\alpha} \int_{\alpha}^{\beta} \int_{\alpha} \int_{\alpha}^{\beta} \int_{\alpha}^{$

• 6 π electrons, planar, aromatic, isoelectronic with cyclopentadienyl anion

Resonance Structures

• Electron donation into the ring by resonance but inductive electron withdrawal

• O and S are more electronegative than N and so inductive effects dominate

Furans – Synthesis

Paal Knorr Synthesis

- The reaction is usually reversible and can be used to convert furans into 1,4-diketones
- A trace of acid is required usually TsOH (p-MeC₆H₄SO₃H)

Furans – Synthesis

Feist-Benary Synthesis ("3+2")

- The product prior to dehydration can be isolated under certain circumstances
- Reaction can be tuned by changing the reaction conditions

Furans – Synthesis

Modified Feist-Benary EtO₂C. EtO₂C **Ο ∖ δ+, Me** Ме EtO₂C. Me O Me Me Me Nal, NaOEt, **EtOH** EtC EtO₂C EtO₂C EtO₂C Me $-H_2O$ -Me Me Ме Me Me Ю

- lodide is a better leaving group than CI and the carbon becomes more electrophilic
- The Paal Knorr sequence is followed from the 1,4-diketone onwards
- The regiochemical outcome of the reaction is completely altered by addition of iodide

Thiophenes – Synthesis

Synthesis of Thiophenes by Paal Knorr type reaction ("4+1")

• Reaction might occur via the 1,4-bis-thioketone

Paal Knorr Synthesis ("4+1")

• Ammonia or a primary amine can be used to give the pyrrole or *N*-alkyl pyrrole

Knorr Pyrrole Synthesis ("3+2")

• Use of a free amino ketone is problematic – dimerisation gives a dihydropyrazine

- Problem can be overcome by storing amino carbonyl compound in a protected form
- Reactive methylene partner required so that pyrrole formation occurs more rapidly than dimer formation

Liberation of an Amino Ketone in situ by Oxime Reduction

Preparation of α -Keto Oximes from β -Dicarbonyl Compounds

• A modified version of the Feist-Benary synthesis and using the same starting materials: an α -halo carbonyl compound and a β -keto ester 71

Furans, Pyrroles Thiophenes – Electrophilic Substitution

- Pyrrole > furan > thiophene > benzene
- Thiophene is the most aromatic in character and undergoes the slowest reaction
- Pyrrole and furan react under very mild conditions
- α -Substitution favoured over β -substitution more resonance forms for intermediate and so the charge is less localised (also applies to the transition state)
- Some β -substitution usually observed depends on X and substituents

$$AcONO_2$$

$$X = NH 4:1$$

$$X = 0 6:1$$

72
Furans – Electrophilic Substitution

Nitration of Furans

- Nitration can occur by an addition-elimination process
- When NO₂BF₄ is used as a nitrating agent, the reaction follows usual mechanism

Bromination of Furans

• Furan reacts vigorously with Br₂ or Cl₂ at room temp. to give polyhalogenated products

73

• It is possible to obtain 2-bromofuran by careful control of temperature

Furans – Electrophilic Substitution

Friedel-Crafts Acylation of Furan

• Blocking groups at the α positions and high temperatures required to give β acylation

Vilsmeier Formylation of Furan

Thiophenes – Electrophilic Substitution

Nitration of Thiophenes

• Reagent AcONO₂ generated in situ from c-HNO₃ and Ac₂O

Halogenation of Thiophenes

- Occurs readily at room temperature and even at $-30~{
 m C}$
- Careful control or reaction conditions is required to ensure mono-bromination

Pyrroles – Electrophilic Substitution

Nitration of Pyrroles

• Mild conditions are required (c-HNO₃ and c-H₂SO₄ gives decomposition)

Vilsmeier Formylation of Pyrroles

Pyrroles – Porphyrin Formation

• The extended aromatic 18 π -electron system is more stable than that having four isolated aromatic pyrroles 7

Porphyrin Natural Products

- The pigment haem is found in the oxygen carrier haemoglobin
- Chlorophyll-a is responsible for photosynthesis in plants
- Both haem and chlorophyll-a are synthesised in cells from porphobilinogen

Furans, Pyrroles Thiophenes – Deprotonation

Metallation

- Free pyrroles can undergo *N* or *C* deprotonation
- Large cations and polar solvents favour N substitution
- A temporary blocking group on N can be used to obtain the C-substituted compound

Furans, Pyrroles Thiophenes – Directed Metallation

Control of Regioselectivity in Deprotonation

Common directing groups: CO₂H(Li), CH₂OMe, CONR₂, CH(OR)₂

Synthesis of α , α '-Disubstituted Systems

Use of a Trialkylsilyl Blocking Group

Furans – Synthesis of a Drug

Preparation of Ranitidine (Zantac®) Using a Mannich Reaction

- Furfural is produced very cheaply from waste vegetable matter and can be reduced to give the commercially available compound furfuryl alcohol
- The second chain is introduced using a Mannich reaction which allows selective substitution at the 5-position
- The final step involves conjugate addition of the amine to the α , β -unsaturated nitro compound and then elimination of methane thiol 81

- Tryptophan is one of the essential amino acids and a constituent of most proteins
- Sumatriptan (Imigran®, GSK) is a drug used to treat migraine and works as an agonist for 5-HT receptors for in the CNS
- LSD is a potent psychoactive compound which is prepared from lysergic acid, an alkaloid natural product of the ergot fungus

Indoles – Lysergic Acid

"The Beggars" ("The Cripples") by Pieter Breugel the Elder (1568) Louvre Museum, Paris

Drugs Containing an Indole

2008 Ranking: 66 branded Company: Eli Lilly Disease: Erectile disfunction

Company: Merck Disease: Migraine Ph N

Name: Relpax 2008 Sales: \$0.21 billion 2008 Ranking: 151 branded Company: Pfizer Disease: Migraine

Indoles – Synthesis

• A protic acid or a Lewis acid can be used to promote the reaction

Indoles – Synthesis

Bischler Synthesis

• An α -arylaminoketone is cyclised under acidic conditions

• The reaction also works with acetals of aldehydes

Indoles – Electrophilic Substitution

- Polymerisation occurs when there is no substituent at the 2-position
- Halogenation is possible, but the products tend to be unstable

• Acylation occurs at C before N because the N-acylated product does not react

Indoles – Electrophilic Substitution

Mannich Reaction

- A very useful reaction for the synthesis of 3-substituted indoles
- The product (gramine) can be used to access a variety of other 3-substituted indoles

Synthesis of Tryptophan from Gramine

Indoles – Electrophilic Substitution

Synthesis of Other 3-Substituted Indoles from Gramine

• The nitrile group can be modified to give other useful functionality

Indoles – Synthesis of a Drug

Synthesis of Ondansetron (Zofran®, GSK) using the Fischer Indole Synthesis

- Ondansetron is a selective 5-HT antagonist used as an antiemetic in cancer chemotherapy and radiotherapy
- Introduction of the imidazole occurs via the α,β -unsaturated ketone resulting from elimination of the ammonium salt 90

1,3-Azoles – Bioactive 1,3-Azoles

- O-Methylhalfordinol is a plant-derived alkaloid
- Vitamin B1 (thiamin) is essential for carbohydrate metabolism. Deficiency leads to beriberi, a disease which is characterised by nerve, heart and brain abnormalities
- Cimetidine (Tagamet®, GSK) is an H₂-receptor antagonist which reduces acid secretion in the stomach and is used to treat peptic ulcers and heartburn

Drugs Containing a 1,3-Azole

Name: Mirapex 2008 Sales: \$0.34 billion 2008 Ranking: 108 branded Company: Boehringer Ingelheim Disease: Parkinson's disease

Name: Azathioprine 2008 Sales: \$53 million 2008 Ranking: 178 generic Company: N/A Disease: Kidney transplant rejection

Name: Norvir 2008 Sales: \$0.31billion 2008 Ranking: 112 branded Company: Abbott Disease: HIV/AIDS

1,3-Azoles – Synthesis

The Hantzsch Synthesis ("3+2")

- The reaction is particularly important for the synthesis of thiazoles
- A thiourea can be used in place of a thioamide leading to a 2-aminothiazole

1,3-Azoles – Synthesis

Cyclodehydration of α -acylaminocarbonyl compounds

- A particularly important strategy for the synthesis of oxazoles which is known as the Robinson-Gabriel Synthesis
- The starting α -acylaminocarbonyl compounds are easily prepared

From Isocyanides

- Tosylmethylisocyanide (TOSMIC) is a readily available isocyanide
- Route can be adapted to give oxazoles and thiazoles using an acid chloride or a thiocarbonyl compound

1,3-Azoles – Electrophilic Substitution

Nitration

• Imidazoles are much more reactive to nitration than thiazoles (activation helps)

- Imidazoles usually nitrate at the 4-position and thiazoles tend to react at the 5-position
- Oxazoles do not generally undergo nitration

- Imidazoles are brominated easily and bromination at multiple positions can occur
- Thiazole does not brominate easily but 2-alkylthiazoles brominate at the 5-position

1,3-Azoles – Electrophilic Substitution

Acylation

- 1,3-Azoles do not undergo Friedel-Crafts acylation because complexation between the Lewis acidic catalyst and *N* deactivates the ring
- Acylation can be accomplished under mild conditions via the N-acylimidazolium ylide

1,3-Azoles – Nucleophilic Substitution

Displacement of Halogen

- There are many examples of displacement of halogen at the 2-position
- 2-Halothiazoles react rapidly with sulfur nucleophiles, and are even more reactive than 2-halopyridines

• 2-Halo-1-alkylimidazoles and 2-halooxazoles will react with nitrogen nucleophiles

1,3-Azoles – Metallation

- Direct deprotonation oxazoles, thiazoles and *N*-alkylimidazoles occurs preferentially at either the 2- or 5-position
- Transmetallation of the lithiated intermediate is possible

- Metallation at the 4-position can be accomplished by metal-halogen exchange
- In the case of imidazoles without substitution at the 1-position, two equivalents of base are required

- Leflunomide (Arava®, Sanofi-Aventis) inhibits pyrimidine synthesis in the body and is used for the treatment of rheumatoid arthritis and psoriatic arthritis
- Celecoxib (Celebrex®, Pfizer) is a non-steroidal anti-inflamatory (NSAID) used in the treatment of osteoarthritis, rheumatoid arthritis, acute pain, painful menstruation and menstrual symptoms
- Celecoxib is a COX-2 inhibitor, blocking the cyclooxygenase-2 enzyme responsible for the production of prostaglandins. It is supposed to avoid gastrointestinal problems associated with other NSAIDs, but side effects (heart attack, stroke) have emerged

1,2-Azoles – Synthesis

Synthesis of Pyrazoles/Isoxazoles from 1,3-Dicarbonyl Compounds and Hydrazines or Hydroxylamines ("3+2")

- This is the most widely used route to pyrazoles and isoxazoles
- The dicarbonyl component can be a β -keto ester or a β -keto aldehyde (masked)
- When a β -keto ester is used a pyrazolone/isoxazalone is formed

1,2-Azoles – Synthesis

Synthesis of Isoxazoles by Cycloaddition of Nitrile Oxides to Alkynes or Enamines ("3+2")

- Nitrile oxides react readily with alkenes and alkynes
- Addition to an alkene generates an isoxazoline unless a leaving group is present

 Mono-alkyl/-aryl alkynes react to give 3,5-disubstituted isoxazoles but when the alkyne possesses two substituents mixtures of 3,4- and 3,5-disubstituted isoxazoles are usually produced

1,2-Azoles – Electrophilic Substitution

Nitration of Isoxazoles, Pyrazoles and Isothiazoles

- Pyrazoles and isothiazoles undergo straightforward nitration
- 1-Nitropyrazole is formed in good yield by treatment of pyrazole with the mild nitrating reagent, acetyl nitrate
- 1-Nitropyrazole can be rearranged to give 4-nitropyrazole by treatment with acid at low temperature

• Isoxazole nitrates in very low yield, but 3-methylisoxazole is sufficiently reactive to undergo nitration at the 4-position

1,2-Azoles – Electrophilic Substitution

Halogenation of Isoxazoles, Pyrazoles and Isothiazoles

• Halogenation (iodination, bromination) of pyrazole leads to the 4-halopyrazole

• Poor yields are obtained when attempting to halogenate isoxazole or isothiazole, but bromination can be accomplished when an activating group is present as a substituent

103

• Only *N*-substituted pyrazoles can be *C*-acylated directly

• Vilsmeier formylation produces the 4-formylpyrazole in modest yield

1,2-Azoles – Metallation

Direct Metallation of Isoxazoles, Pyrazoles and Isothiazoles

• 1-Substituted pyrazoles and isothiazoles can be lithiated and alkylated at the 5-position

• It is possible to temporarily protect the 1-position of pyrazole and then perform sequential deprotonation and alkylation/acylation at the 5-position

1,2-Azoles – Metallation

• At low temperature, *N*-sulfonyl 4-bromopyrazoles can be lithiated at 5-position without undergoing metal-halogen exchange

Metallation of 4-Bromopyrazoles by Metal-Halogen Exchange

- Treatment of 4-bromopyrazole with two equivalents on *n*-butyllithium results in *N*-deprotonation and exchange of lithium for bromine
- 2,5-Dilithiopyrazole reacts with carbon electrophiles to give the 4-substituted product

1,2-Azoles – Side Chain Deprotonation

Deprotonation of 5-methylisothiazole and 5-methylisoxazole

- A weak base can be used to deprotonate 5-methylisothiazole and 5-methylisoxazole
- In this case above, dehydration of the initial product occurs in situ
- Surprisingly, 3-methylisothiazole does not deprotonate as easily as 5-methylisothiazole and the same effect is found in isoxazoles

• Metal-halogen exchange can be used to avoid deprotonation of alkyl groups

• 1,3-Dipolar cycloaddition of a nitrile imine offers a regioselective alternative route