Christian Jelsch , Benoit Guillot , Slawomir Domagala , Bertrand Fournier , Ignasi Mata , Christian Iordache |
(l,m) |
Angular Function not normalized |
Abreviation in mopro.out |
multipole level |
1 |
MONOP 1 |
Pval |
|
(0, 0) |
1 |
MONOP 2 |
P00 |
(1, 1) |
x |
DIPOL X |
Dipoles |
(1,-1) |
y |
DIPOL Y |
|
(1, 0) |
z |
DIPOL Z |
|
(2, 0) |
2z2 - (x2 + y2) |
4P 3ZZ-1 |
Quadrupoles |
(2, 1) |
zx |
4P XZ |
|
(2,-1) |
zy |
4P YZ |
|
[2, 2) |
(x2 - y2)/2 |
4P XX-YY |
|
(2,-2) |
xy |
4P XY |
|
(3, 0) |
2z3 - 3z(x2 + y2) |
(5Z2-3)Z |
Octapoles |
(3, 1) |
x [4z2 - (x2 + y2)] |
(5Z2-1)X |
|
(3,-1) |
y [4z2 - (x2 + y2)] |
(5Z2-1)Y |
|
(3, 2) |
z (x - y) (x + y) |
Z(XX-YY) |
|
(3,-2) |
2xyz |
8P 2XYZ |
|
(3, 3) |
x3 - 3xy2 |
X3-3XYY |
|
(3,-3) |
y3 - 3yx2 |
Y3-3XXY |
|
(4, 0) |
8z4 - 24z2(x2 + y2) + 3(x2 + y2)2 |
16P Z4 |
HexaDecaPoles |
(4, 1) |
x [4z3 - 3z(x2 + y2)] |
16P XZ3 |
|
(4,-1) |
y [4z3 - 3z(x2 + y2)] |
16P YZ3 |
|
(4, 2) |
(x2 - y2) [6z2 - (x2 + y2)] |
Z2*X2-Y2 |
|
(4,-2) |
2xy [6z2 - (x2 + y2)] |
16P XYZ2 |
|
(4, 3) |
z (x3 - 3xy2) |
16P X3Z |
|
(4,-3) |
z (y3 - 3yx2) |
16P Y3Z |
|
(4, 4) |
x4 - 6x2y2 + y4 |
16PX4+Y4 |
|
(4,-4) |
4x3y-4xy3 |
16P X3Y |
P 1 # 1 P -1 # 2 P 2 # 3 P 21 # 4 C 2 # 5 P m # 6 P c # 7 C m # 8 C c # 9 P 2/m # 10 P 21/m # 11 C 2/m # 12 P 2/c # 13 P 21/c # 14 C 2/c # 15 P 2 2 2 # 16 P 2 2 21 # 17 P 21 21 2 # 18 P 21 21 21 # 19 C 2 2 21 # 20 C 2 2 2 # 21 F 2 2 2 # 22 I 2 2 2 # 23 I 21 21 21 # 24 P m m 2 # 25 P m c 21 # 26 P c c 2 # 27 P m a 2 # 28 P c a 21 # 29 P n c 2 # 30 P m n 21 # 31 P b a 2 # 32 P n a 21 # 33 P n n 2 # 34 C m m 2 # 35 C m c 21 # 36 C c c 2 # 37 A m m 2 # 38 A e m 2 # 39 A m a 2 # 40 A e a 2 # 41 F m m 2 # 42 F d d 2 # 43 I m m 2 # 44 I b a 2 # 45 I m a 2 # 46 P m m m # 47 P n n n # 48 P c c m # 49 P b a n # 50 P m m a # 51 P n n a # 52 P m n a # 53 P c c a # 54 P b a m # 55 P c c n # 56 P b c m # 57 P n n m # 58 P m m n # 59 P b c n # 60 P b c a # 61 P n m a # 62 C m c m # 63 C m c e # 64 C m m m # 65 C c c m # 66 C m m e # 67 C c c e # 68 F m m m # 69 F d d d # 70 I m m m # 71 I b a m # 72 I b c a # 73 I m m a # 74 P 4 # 75 P 41 # 76 P 42 # 77 |
P 43 # 78 I 4 # 79 I 41 # 80 P -4 # 81 I -4 # 82 P 4/m # 83 P 42/m # 84 P 4/n # 85 P 42/n # 86 I 4/m # 87 I 41/a # 88 P 4 2 2 # 89 P 4 21 2 # 90 P 41 2 2 # 91 P 41 21 2 # 92 P 42 2 2 # 93 P 42 21 2 # 94 P 43 2 2 # 95 P 43 21 2 # 96 I 4 2 2 # 97 I 41 2 2 # 98 P P 4 b m #100 P 42 c m #101 P 42 n m #102 P 4 c c #103 P 4 n c #104 P P 42 b c #106 I I 4 c m #108 I I 41 c d #110 P -4 P -4 2 c #112 P -4 P -4 21 c #114 P P -4 c 2 #116 P -4 b 2 #117 P -4 n 2 #118 I I -4 c 2 #120 I -4 I -4 2 d #122 P 4/m m m #123 P 4/m c c #124 P 4/n b m #125 P 4/n n c #126 P 4/m b m #127 P 4/m n c #128 P 4/n m m #129 P 4/n c c #130 P 42/m m c #131 P 42/m c m #132 P 42/n b c #133 P 42/n n m #134 P 42/m b c #135 P 42/m n m #136 P 42/n m c #137 P 42/n c m #138 I 4/m m m #139 I 4/m c m #140 I 41/a m d #141 I 41/a c d #142 P 3 #143 P 31 #144 P 32 #145 R 3 #146 P -3 #147 R -3 #148 P 3 1 2 #149 P 3 2 1 #150 P 31 1 2 #151 P 31 2 1 #152 P 32 1 2 #153 P 32 2 1 #154 |
R 3 2 #155 P P 3 P 3 c 1 #158 P 3 1 c #159 R R 3 c #161 P -3 P -3 1 c #163 P P -3 c 1 #165 R R -3 c #167 P 6 #168 P 61 #169 P 65 #170 P 62 #171 P 64 #172 P 63 #173 P -6 #174 P 6/m #175 P 63/m #176 P 6 2 2 #177 P 61 2 2 #178 P 65 2 2 #179 P 62 2 2 #180 P 64 2 2 #181 P 63 2 2 #182 P P 6 c c #184 P 63 c m #185 P P P -6 c 2 #188 P -6 P -6 2 c #190 P 6/m m m #191 P 6/m c c #192 P 63/m c m #193 P 63/m m c #194 P 2 3 #195 F 2 3 #196 I 2 3 #197 P 21 3 #198 I 21 3 #199 P m -3 #200 P n -3 #201 F m -3 #202 F d -3 #203 I m -3 #204 P a -3 #205 I a -3 #206 P 4 3 2 #207 P 42 3 2 #208 F 4 3 2 #209 F 41 3 2 #210 I 4 3 2 #211 P 43 3 2 #212 P 41 3 2 #213 I 41 3 2 #214 P -4 F -4 I -4 P -4 3 n #218 F -4 3 c #219 I -4 3 d #220 P m P n -3 n #222 P m -3 n #223 P n F m F m -3 c #226 -3 m #227 F d -3 c #228 I m I a -3 d #230 |