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Chapter 1 
 
Introduction 
 

1.1 Synopsis for non-crystallographers 
 
Chemical crystallography and quantum chemistry encompass our knowledge about the 
detailed structure of molecules, their properties and reactions, and the distribution of 
electronic charge in their atoms and chemical bonds. On this insight are based all modern 
theories of chemical reactivity, and the design principles for new materials and drugs.  Great 
advances in the last two decades have led to the present theoretical and experimental 
methods for determining molecular structure at the electronic level; we can in principle (and 
increasingly in practice) obtain not just the positions of atoms in molecules but all other 
topological properties of the associated electron distribution (ED). 

 
A beam of X-rays is diffracted by the electrons in a crystalline material, just as visible light 
is diffracted by larger objects.  Recombination of diffracted light by means of lenses can give 
a magnified image of the object; X-rays, having a wavelength about four orders of magnitude 
shorter than that of visible light, produce an image of the electron or charge density 
distribution characteristic of the diffracting crystal.  There exist no lenses as such for X-
rays, but recombination of diffracted rays into an image can be brought about by suitable 
detection followed by computational Fourier transformation.  The experiment is effectively 

an X-ray microscope for the disposition of electronic charge. 
 
In practice we can bypass the Fourier transformation, because quantum mechanics enables 
us to construct a mathematical model of the charge density in a crystal.  The parameters of 
such a model can be adjusted to reproduce the experimentally-measured pattern of 
diffracted X-rays, given prior knowledge of the arrangement of atomic nuclei in the crystal 
lattice.  For chemical (as distinct from biological) molecules this can usually be found 
routinely using the methods of conventional crystal structure analysis programmed in 
widely available computer packages.  This leads to a "ball and stick" model of the atoms and 
bonds representing the topology of the charge density at the level of its most salient 
features, found at the positions of the atomic nuclei.  It is obtained by Fourier 
transformation of the diffracted X-ray pattern at relatively low resolution.  Next we can 
proceed with a far more elaborate, so-called "multipole" model of the crystalline density, 
fitting it to a diffraction experiment carried out at high resolution, such that two points as 

close together as 0.4×10-10 m can be distinguished.  As mentioned earlier, we need no 

Fourier transformation at this stage because the charge density in fine detail can be 
computed directly from the fitted multipole model.  One major component of the XD package 
is the program for least squares (lsq) fitting of a multipole model to the experimental data.   

 
Once a charge distribution has been obtained experimentally, various chemical and physical 
properties that depend on the distribution can be derived.  The chemical structure of 
molecules can be extracted from an analysis of the topology of the charge distribution, the 
features of which are summarized by the curvatures of the charge density at its critical 
points.  Each feature, maximum, minimum or saddle has associated with it a point in space 
called a critical point, where the density is flat. One type of critical point has all three 

curvatures in 3-D space negative; it is found at the sites of atomic nuclei.  Other types, with 
both positive and negative curvatures, are associated with bonding interactions between 
atoms.  Because the strength and nature of the interactions are characterized by topology, 
the chemistry of the molecule can be recovered as a property of its charge distribution.  A 
program for deriving molecular properties from the multipole model of the charge 
distribution is thus another major component of XD. Many of these properties can be 
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displayed pictorially, using the 2-D and 3-D graphics programs which plot contour, relief 
and iso-surface maps of selected properties such as the deformation density, the Laplacian 
of the total density, the electrostatic potential etc. 

 
1.2 Experimental electron densities 
 
X-ray diffraction was first applied with the purpose only of determining the positions of 
atoms in crystals and hence the geometrical structure of crystals and molecules.  With the 
development of single-crystal diffractometers and computing facilities from the middle 1960s 
onwards came studies aimed at obtaining an experimental description of the chemical 
bonding to compare with the picture given by quantum chemistry theoretical calculations 
[1-4]. Accurate experimental measurement of the charge density in a crystal has been 
feasible since that time, following the development of sufficiently compact parameterized 
descriptions of molecular densities [5,6]. One of the most exciting applications of such an 
analysis is the evaluation of one-electron properties in molecular crystals. In a pioneering 
paper [7] Coppens et al. demonstrated the feasibility of this technique for a number of 

centrosymmetric crystals. However, applications to non-centrosymmetric materials, such as 
organic materials with non-linear optical applications, have been relatively few. In part, this 
is certainly due to the increased difficulty of obtaining accurate model structure factors 
when the phase is a continuous variable.  Nevertheless, recent applications have 
demonstrated the usefulness and potential accuracy of the technique in the non-
centrosymmetric case [8,9]. 

 
ED determinations [10] are based on intensity measurements of X-ray photons elastically 
scattered by crystals. In the next section a brief summary is given on some theoretical 
aspects of the procedure to extract the ED from X-ray diffraction data. For more detailed 
descriptions the reader is referred to references [11,12]. 

 
1.3 Theoretical aspects of electron density determination 
 
According to the kinematical theory of scattering [13] the total diffraction intensity is  

 TTtot ,FII 〉〈∝〉〈= 2|)(| qh  (Eq.1-1) 

where F(h,q) is the Fourier transform of ρ(r,q), the static ED at a given nuclear configuration 
q, h is the Bragg vector with integral components h1, h2, h3 relative to the  

 

 rhrqrqh dF
V

)2exp(),(),( πρ∫=  (Eq. 1-2) 

reciprocal axes a*, b*, c*, V is the unit-cell volume and 〈 〉T means thermal averaging over all 

vibrational states. By disregarding the diffuse scattering altogether  

 2|)(| TBraggtot ,FII 〉〈== qh  (Eq. 1-3) 

it is assumed that the averaged scattering from a dynamic system can be well approximated 
by its main component, the scattering from the average structure [14,15]. This expression 
relates the intensity to the ED and its derivation implicitly includes assumptions not directly 
deducible from the experiment; assumptions on the coupling between nuclear and electronic 
motion and on the partitioning of the molecular ED into atomic components (convolution). 
Based on this equation the ED in the crystal can be given by a Fourier summation  

 ∑ −= −

h
h hrr )2exp()( 1 πρ FV  (Eq. 1-4) 

This direct evaluation of ρ to a desired level of resolution, is subject to severe limitations:  (i) 
the observed structure factors are affected by experimental errors, (ii) the phases are not 
measured, (iii) only a finite number of reflections can be collected. Due to these limitations 
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the interpretation of the X-ray data necessarily involves modelling the ED and optimizing its 
parameters by adjusting the calculated structure factors to those measured. 

 
 
1.4 Electron density - Structure factor models 
 
Within the convolution approximations the dynamic ED is  

 ∑ −−=
k

kkkkokT
dP uuuqrr )()()( ρρ  (Eq. 1-5) 

where the summation runs over the density units ρk centered at qko and Pk(uk) is the 

probability distribution function (pdf) describing the displacement uk of the k-th center with 

respect to its equilibrium position. The structure factor is then the Fourier transform of 

〈ρ(r) 〉T  

 ∑=
k

kokk tfF )2exp()()()( hqhhh π  (Eq. 1-6) 

where fk is the static scattering power of the k-th density unit and tk is the associated 
temperature factor. The commonly used scattering models differ in the description of fk and 
tk, both of which are, in general, complex functions of static and dynamic parameters, 

respectively. 

 
 
1.5 Conventional formalism 
 
This generalized form (1.6) is reduced to the conventional model if ρk is taken as the 
spherical atomic density and the nuclear motion is described within the harmonic 
approximation.  This formalism disregards static deformations due to the chemical bonding 
and the least squares estimates of the corresponding parameters are likely to be biased.  
Such errors ("asphericity" shifts) usually manifest themselves in significantly shorter bond 
distances and smaller bond angles (at atoms with lone-pair electrons) relative to the values 
obtained by neutron diffraction.  The accuracy of the thermal parameters is even more 
doubtful as the anisotropic displacements can absorb charge deformation. To overcome the 
inadequacy of the isolated atom model several methods can be applied. 

 
1.6 High order refinement 
 
In the atomic regions where the electron density is less affected by the bonding the isolated 
atom model is expected to be a fair approximation. The sharp core density has appreciable 
contribution to reflections at high Bragg angle where the scattering by the more diffuse 
valence or bond density is negligible.  For this reason a refinement emphasizing the high-
order data is expected to yield atomic parameters less biased by the inadequacy of the 
spherical-atom model [16]. 

 
1.7 The aspherical-atom formalism 
 
The accuracy of the parameters can be significantly increased by implementing aspherical 
density models into the fit of all measured data. To account for the density deformations due 
to chemical bonding, several methods have been developed and applied [17,18]. One of the 
most successful refinement techniques is based on the nucleus-centered finite multipole 
expansion of the ED [6]. This formalism, refined by Hansen & Coppens [19] is implemented 
in XD. The aspherical atomic ED is divided into three components:   

 )()()()( rr κρκρρρ ′++= dvvc rPr  (Eq. 1-7) 
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where ρc and ρv are the core and spherical valence densities (sphv), respectively and  

 ∑∑
−=

′=′
l

lm
lmlm

l
ld r

yPrR )()()(
r

r κκρ  (Eq. 1-8) 

is the term accounting for valence deformations. The ylm are density normalized, real 

spherical harmonics, such that:   

 0,2||
2

0 0
>=Ω∫ ∫= =

ldylm

π

φ

π

θ
 (Eq. 1-9) 

 = 1, l = 0 (Eq. 1-10) 

while Rl are properly chosen radial functions, and an element of solid angle φθθ ddd sin=Ω . 
 
The isolated-atom valence density and the radial functions Rl are modified by the screening 

constants (κ and κ', respectively) to account for the radial expansion or contraction of the 

valence shell. The corresponding scattering factor is  

 ∑ ∑
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)()(  (Eq. 1-11) 

where 〈Jl〉 is the l-th order Fourier-Bessel transform of Rl:   

 ∫= drrrRHrjiJ ll
l

l
2)()2(4 ππ  (Eq. 1-12) 

with jl being the l-th order spherical Bessel function. Closed-form expressions for evaluating 
〈Jl〉 using different types of radial functions have been given in reference [18]. 

 
 
1.8 Orbital vs. Multipole formalism 
 
For a single-Slater determinant atomic wavefunction composed of orthogonal spin-orbitals 
the electron density is given by  

 ∑=
i

iin 2||φρ  (Eq. 1-13) 

where ni is the orbital occupation number (1 or 2) of the ith atomic orbital,  

 lmnlnlmi yR== φφ  (Eq. 1-14) 

If the radial part Rnl is expanded in terms of basis functions  

 ∑=
j

ljnlinl OCR  (Eq. 1-15) 

the density unit ρnlm corresponding to φnlm is given by the following linear combination:   

 •=







= ∑ lmlmnllmlm

jk
lkljnjknlm yyRyyOOD 2ρ  (Eq. 1-16) 

The spherical harmonics form a complete basis set, thus their product can be expanded 
over spherical harmonics:   

 ∑ ′′′′ =
LM

YmMmlLlmllm Cyy
LM

 (Eq. 1-17) 
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Clebsch-Gordon coefficients (CLll'Mmm') are given for both complex and real spherical 
harmonics (up to l, l ' = 2) in the literature [12]. It follows that the orbital product 

representation of the atomic density is completely equivalent to the multipolar description. 
This equivalence does not hold for molecules because of the two-center orbital products 
occurring in expression (1.13). 

 
 
1.9 Radial functions and scattering factors 
 
The core and spherical valence density are calculated from Hartree-Fock atomic 
wavefunctions [20] expanded in terms of Slater-type basis functions:   
 

 Ol  = [2n(l)!] -1/2 (2ζl)
(n(l)+1)/2 rn(l) exp(-ζlr)         (Eq. 1-18) 

 

where ζl are energy optimized orbital exponents. 
 

The radial functions of the deformation density are also taken as simple Slater functions:   

 )exp(
)!2)((

)( )(
3)(

rar
ln

a
rR l

ln
ln

l
l −

+
=

+

 (Eq. 1-19) 

with n(l) ≥ l to obey Poisson’s equation [21] and with values for al as deduced from the  

single-ζ wavefunctions. As shown above, the evaluation of the scattering factor of an orbital 

product requires the calculation of Lth-order Fourier Bessel transforms of OlOl' (〈jL〉ll'). The 
simple scheme below shows how L is related to l and l ' (l=0,1,2 for s,p and d, respectively):  

 
l \ l 

' 
s p d 

s 0 1 2 
p  0 2 1 3 
d   0 2 4 

 

Taking the carbon atom as an example, the following scattering factors can be generated 
from the wavefunction:  
 

core: 〈j0〉(1s1s) 

sphv: 〈j0〉(2s2s) + 〈j0〉(2p2p) 

 
Dipolar (l =1) and quadrupolar (l = 2) radial scattering functions included in the deformation 
term in (1.8) could be composed as the Fourier-Bessel transforms of sp and pp type orbital 
products:  

 

defv: 〈j1〉(2s2p), 〈j2〉(2p2p) 

 
 
1.10 The temperature factor 
 
In harmonic approximation the vibrational pdf of the nuclear displacement vector u, taken 
with respect to the equilibrium position (u = q-qo), is a normal distribution:   

 

 )2/1exp()(det)2()( 2/12/3 uUuUu 1−−− ′−= πoP  (Eq. 1-20) 

where U  is the mean-square displacement amplitude (MSDA) matrix. 

 
The corresponding atomic anisotropic temperature factor is the Fourier transform of Po(u):   
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 )2exp()( 2 Uhhh ′−= πot  (Eq. 1-21) 

Anharmonic models in practical use are based on statistical approaches.  If the 
anharmonicity is small the corresponding pdf can be expanded about the normal 
distribution.  In the Gram-Charlier expansion [22] implemented in XDLSM, the anharmonic 
pdf is approximated in terms of zero and higher derivatives of the normal distribution:   

 ojklmjklmjkljkl PHCHCP )
!4

1

!3

1
1()( K+++=u  (Eq. 1-22) 

where Hjkl⋅⋅⋅ are three dimensional Hermite polynomials being functions of U and u, while the 

coefficients Cjkl⋅⋅⋅ are the quasi-moments being related to the moments of the pdf. The 
advantage of this form is that its Fourier transform is reduced to a simple power series 
expansion about the harmonic temperature factor:   

               )()
3

2

3

4
1()( 43 HThhhhChhhiCHT omlkjjklmlkjjkl K++−= ππ       (Eq. 1-23) 

 
1.11 Deformation electron density 
 
The conventional model is based on the pro-molecular density which is the superposition of 

the spherical atomic densities ρk(r) centered at the actual nuclear positions in the molecule. 
The promolecule can serve as a reference state relative to which charge migrations due to 
bond formations are expected to become visible [23].  
 

 )()()( k
k

kmol rrrr −−= ∑ ρρδρ  (Eq. 1-24) 

To interpret the δρ(r) one always has to critically examine not only the method yielding the 
molecular electron density but the effect of the preconceptions applied in composing the 

promolecule. For atoms with a degenerate ground state, ρk is obtained by sharing the 
valence electrons among orbitals of different angular dependence regardless of their ability 
to form a bond in the actual arrangement of the atoms.  As a result the obtained 
deformation electron density may not show the expected features of the covalent bond or 
lone-pair density [24]. 
 
In order to obtain a chemically meaningful deformation electron density, an alternative 
promolecule has been proposed for which the configuration and the orientation of the 
ground state of each constituent atom is correctly specified by a fitting procedure [25]. To 
elucidate important aspects of delocalization, effects of substitution or intermolecular 
interactions, one can consider fragments or molecules to choose as the basis for comparison 
[26,27]. Atoms prepared for bond formation can also serve as references [28]. 
 
If the deformation electron density is evaluated by a Fourier summation  

 )2exp()]()([)( hrhhr
h

iFF co πδρ −−=∑  (Eq. 1-25) 

the series termination error is considerably decreased.  The phases and the Fc are usually 

calculated from the promolecule with atomic and positional parameters obtained from (i) 
neutron diffraction data (X-N) [29], (ii) conventional refinement on high-order X-ray data (X-
Xho), (iii) full-data aspherical-atom refinement (X-Xmul). 
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1.12 Experimental requirements 
 
The applicability of the above formalism depends on the compound to be studied and its 
crystalline form, the radiation used and the method of the data collection.  The kinematic 

theory is valid only in a certain frequency range:  µr > µ > µK, where µK corresponds to the K 

absorption edge of any atom in the molecule and µr is the frequency limit, where relativistic 
effects occur. Accordingly, atoms with high atomic number (Z > 18) are not well suited for 
charge density studies when a standard X-ray source is used. Bonding effects are likely to 
be invisible for atoms with small valence to core electron ratio [30]. 

 
The most important requirement for an accurate measurement is to maintain kinematical 
conditions or to make the systematic errors, due to dynamic scattering, correctable.  To 
reveal these effects equivalent reflections should be measured.  To minimize the diffuse 
scattering the data should be collected at low temperature. Details of the data reduction can 
be found in references [31-34]. 

 
 
1.13 Determination of atomic and structural properties from 
charge distributions 
 
 
1.13.1 Critical points of the charge density 
 
Once a charge distribution has been obtained experimentally, various chemical and physical 
properties that depend on the distribution can be derived. Bader [35] shows how the 

chemical structure of molecules can be extracted from an analysis of the topology of ρ(r), the 

features of which are summarized by the curvatures of ρ(r) at its critical points.  Each 
feature, maximum, minimum or saddle has associated with it a point in space called a 

critical point, where the first derivatives of ρ(r) vanish.  At such a point, denoted by position 
vector rc,  

 0ˆˆˆ)( =
∂
∂+

∂
∂+

∂
∂=∇

zyxc

ρρρρ kjir  

where î , ĵ , k̂  are unit vectors. Whether a function is a maximum or minimum is 

determined by the sign of its second derivative, or curvature, at the stationary point.  In 
general, for an arbitrary choice of coordinate axes, there will be nine second derivatives of 

the form ∂2ρ/∂x∂y in the determination of the curvatures of ρ at a point in space.  Their 

ordered 3×3 array, the Hessian matrix of the charge density, can be diagonalized to yield the 
principal axes of curvature, with respect to which the magnitudes of the three second 

derivatives of ρ are extremized.  The principal axes and their corresponding curvatures at a 

critical point in ρ are obtained as the eigenvectors and corresponding eigenvalues (λ) of the 

Hessian matrix of ρ(r). The rank ω of a critical point is the number of non-zero eigenvalues or 

curvatures of ρ at the critical point, while its signature σ is the algebraic sum of the signs of 

the curvatures at that point.  The critical point is labelled by giving the pair of values (ω,σ). 
With few exceptions the critical points of charge distributions for stable molecules are of 
rank three, and there are four possible signature values and labels:   
 
(3,-3) all curvatures are negative and ρ is a local maximum at rc.  
(3,-1) two curvatures are negative and ρ is a maximum at rc in the plane defined by 

their corresponding axes. ρ is a minimum at rc along the third axis, perpen-
dicular to this plane.  

(3,+1) two curvatures are positive and ρ is a minimum at rc in the plane defined by 

their corresponding axes. ρ is a maximum at rc along the third axis, perpen-
dicular to this plane.  

(3,+3) all curvatures are positive and ρ is a local minimum at rc.  
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The traditional association of nuclear positions with local maxima in ρ(r) can now be 
formalized as the statement that nuclear positions behave topologically as (3,-3) critical 
points in the charge distribution.  

 
1.13.2 Interatomic surfaces and chemical bonds 
 
A useful function is obtained in the form of the gradient vector field of the charge density, 

represented through a display of the trajectories traced out by the vector ∇ρ. The gradient 

vector points in the direction of the greatest increase in ρ, so these trajectories are 

perpendicular to the contour lines of ρ. They have the property of originating or terminating 

at critical points in ρ. The charge distribution is partitioned into disjoint regions by surfaces 
for which  

0)()( =⋅∇ rnrρ  

 
where n is the vector normal to the surface.  These so-called zero flux surfaces are the 
interatomic surfaces or quantum mechanical boundaries of the atoms, and contain (3,-1) 

critical points when the atoms are chemically bonded. The pairs of gradient paths which 
originate at each (3,-1) critical point and terminate at the nuclei define a line through the 

charge distribution linking the neighbouring nuclei, along which ρ(r) is a maximum with 
respect to any neighbouring line.  This line is called a bond path and the (3,-1) critical point 
is referred to as a bond critical point. This is the topological definition of a chemical bond, 

formalizing the theoretically predicted and experimentally observed accumulation of charge 
between bonded nuclei.  Chemical structure can thus be recovered as a property of the 
charge distribution.  The strength and nature of the chemical bond can be characterized by 
the value of various properties evaluated at the bond critical points, e.g. bond order, bond 

ellipticity, ρ(rc), ∇2ρ(rc) [35]. 

 
The value of ρc in a bond measures its strength [36]; the trace of the Hessian at rc measures 
the extent of depletion or concentration of charge; and the ratio of eigenvalues of this matrix 

(the bond ‘ellipticity’ ε ) measures the degree of planarity or conjugation. More precisely, ε = 

(λ2/λ1)-1, where the λ’s are the two eigenvalues of the Hessian corresponding to directions 
perpendicular to the bond. 

 
Stationary points in ρ have been applied in characterizing benzenoid aromaticity [37], 
homoaromaticity and hyperconjugativity [38-40], and electrophilic substitution [41,42]. A 
number of applications of the topological properties of experimental charge distributions 
obtained from neutron and X-ray diffraction data for organic molecular crystals have been 
reported [43-46]. 

 
1.13.3 Lewis electron pairs - the Laplacian 
 
The trace of the Hessian matrix, the quantity  

2

2

2

2

2

2
2 )(

zyx ∂
∂+

∂
∂+

∂
∂=∇ ρρρρ r  

is termed the Laplacian of ρ and has physical meaning as representing local concentrations, 

where ∇2ρ(r) < 0, and depletions, where ∇2ρ(r) > 0, of the charge density.  Electronic charge is 
compressed above its average distribution in regions where the Laplacian is negative, and 
expanded relative to its average distribution where the Laplacian is positive. Maxima and 

minima in the function ∇2ρ(r) are to be distinguished from local maxima and minima in the 

charge density itself. Although the topology of ρ yields a faithful mapping of the chemical 

concepts of atoms, bonds and structure, there is no indication of maxima in ρ  
corresponding to the localized electron pairs of the Lewis model of electronic structure, of 
great importance to our interpretation of chemical reactivity and molecular geometry.  The 
physical basis of this model is one level of abstraction above the visible topology of the 
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charge density and appears instead in the topology of the Laplacian of ρ, the scalar 
derivative of the gradient vector field of the charge density. 
 
The Laplacian distribution recovers the electronic shell model of an atom by exhibiting a 
corresponding number of pairs of shells of charge concentration and charge depletion.  For 
a spherical free atom, the outer or valence shell of charge concentration (VSCC) contains a 
sphere of uniform concentration of electronic charge. Upon entering into chemical 
combination, this shell is distorted and maxima, minima and saddles appear.  The maxima 
correspond in number, location and size to the localized pairs of electrons assumed in the 
Lewis and VSEPR models of electron pairs.  A local charge concentration is a Lewis base or 
nucleophile, while a local charge depletion is a Lewis acid or electrophile, and a chemical 
reaction corresponds to the combination of complementary features of the VSCC of the base 
and acid.  The Laplacian distribution can thus be used to locate possible sites of 
nucleophilic attack, and to predict characteristics (such as hydrogen bonding) of the 
chemical reactivity in general. 
 

Stationary points in ∇2ρ(r), points of maximum charge concentration or depletion, are being 
extensively applied in studies of basicity and acidity [47-52]; to more general reactivity [53-
56]; in accounts of molecular geometries [57]; and to directionality of hydrogen bonding 
[58,59]. Such points may generally be associated with either bonded or non-bonded electron 

pairs.  Experimental determinations of ∇2ρ distributions are included in [60-63]. 
 
Finally we note that the use of the bipolar model for characterising chemical bonds solely on 

the basis of the magnitude of ρ(rc) and the sign and magnitude of ∇2ρ(rc) [35], is a useful 
model for light atom compounds (i.e. elements from the first three periodic rows). It ceases 

to be so useful for compounds of heavier elements such as the transition metals, where the 

bond critical points involving these elements invariably lie in a region of positive ∇2ρ(rc). The 
reader is directed to recent reviews [64,65], which discuss extentions to the bipolar model in 
considerable detail. 
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