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Protocell models are used to investigate how cells might have first
assembled on Earth. Some, like oil-in-water droplets, can be seem-
ingly simple models, while able to exhibit complex and unpredict-
able behaviors. How such simple oil-in-water systems can come
together to yield complex and life-like behaviors remains a key
question. Herein, we illustrate how the combination of automated
experimentation and image processing, physicochemical analysis,
and machine learning allows significant advances to be made in
understanding the driving forces behind oil-in-water droplet be-
haviors. Utilizing >7,000 experiments collected using an autono-
mous robotic platform, we illustrate how smart automation
cannot only help with exploration, optimization, and discovery of
new behaviors, but can also be core to developing fundamental
understanding of such systems. Using this process, we were able
to relate droplet formulation to behavior via predicted physical
properties, and to identify and predict more occurrences of a rare
collective droplet behavior, droplet swarming. Proton NMR spectro-
scopic and qualitative pH methods enabled us to better understand
oil dissolution, chemical change, phase transitions, and droplet and
aqueous phase flows, illustrating the utility of the combination of
smart-automation and traditional analytical chemistry techniques.
We further extended our study for the simultaneous exploration of
both the oil and aqueous phases using a robotic platform. Overall,
this work shows that the combination of chemistry, robotics, and
artificial intelligence enables discovery, prediction, and mechanistic
understanding in ways that no one approach could achieve alone.
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There is great interest in oil-in-water droplets both as protocell
models and as simple systems that display an astonishingly

delicate set of behaviors that rest on a sensitive knife edge be-
tween stability and instability (1). They have been shown to exhibit
cell-like properties including movement, division, and chemotaxis
while inherently satisfying the need for a protocell to be com-
partmentalized (2–5). The understanding of the driving forces
influencing these droplets is limited, although Marangoni insta-
bilities, imbalances in surface tension initiated by symmetry break-
ing, are thought to play a key role (6). Indeed, along with autocatalytic
systems (7–9), chemical gardens (10, 11), and other protocell
models (12, 13), these systems together illustrate how the com-
bination of relatively few components and phase boundaries can
lead to complex and “life-like” outcomes. Chemotaxis (14, 15)
movement in response to chemical stimuli such as a pH or salt
concentration gradient has also been observed in simple oil-in-
water droplet systems (3, 4, 16–18). These droplet behaviors are
thought to be driven by Marangoni instabilities originating from
surface tension asymmetry and by the relative solubilities of the oil-
and aqueous-phase components (6, 19).
The use of automation and image analysis in the exploration

of protocell and droplet systems has been shown to be a pow-
erful way to investigate the behaviors observed for a four-
component oil-in-water droplet system (2). This is because
these platforms are now easy to design and construct using

affordable and open-source hardware and software. For ex-
ample, bespoke closed-loop systems can be used for the robotic
exploration and assisted evolution of physicochemical systems,
expanding from the fields of engineering and robotics, and in-
spired from the realm of biology (20–24). The variation in
droplet behaviors as their composition varies can be vast and
unpredictable, despite having only a small number of inputs.
For example (2), when using only four oil inputs droplets could
move rapidly, remain stationary, divide into many smaller
droplets, deform, or display a whole range of behaviors. The
issue is that the systems seem so complex that deriving mech-
anistic and predictive information seems far from reach, espe-
cially when utilizing smart-automation or standard chemical
analytical techniques alone.
Herein, we first apply classic analytical chemistry techniques

and machine learning to try to expand understanding of our oil-
in-water droplet system and to develop analytical methods uni-
versally applicable to such systems. The droplets are composed
of four oils [octanoic acid, diethyl phthalate (DEP), 1-octanol,
and 1-pentanol] and are placed in a high-pH surfactant-containing
aqueous phase. The utilization of machine learning for the pre-
diction of the surface tension and viscosity of the oil mixtures
enables the correlation of these to droplet behaviors, and unlocks
the dataset collected during optimization to enable mechanistic
insight. pH indicators are shown to be a method suitable for vi-
sualizing the flow of material within and outside the oil droplets
while 1H NMR spectroscopy is used to quantify the level of oil
dissolution in the aqueous phase. Furthermore, we present a
chemorobotic platform developed to allow us to study how the
chemical environment of the droplets (i.e., the aqueous phase)
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influences the droplet’s behaviors by adding up to six aqueous-phase
constituents. Using the platform we screen for interesting droplet
behaviors and utilize a genetic algorithm to optimize both the oil-
and aqueous phases simultaneously, thus showing that the co-
evolution of an entity with its environment allows the discovery of
behavioral niches unreachable by independent evolution. Funda-
mentally, the combination of automated experimentation and data
generation, physicochemical analysis, and machine learning has
allowed significant advances to be made in understanding the driving
forces behind droplet behaviors and moved us closer to being able to
predict them. Furthermore, we were able to demonstrate the general
utility of evolutionary algorithms, machine learning, and data visu-
alization for understanding complex systems defined by several in-
puts, which cannot feasibly be modeled.

Results
Our system comprises oil droplets (composed of octanoic acid,
DEP, 1-octanol, and 1-pentanol) placed into a surfactant-
containing aqueous phase by a robotic assistant. The droplet
behavior is recorded, analyzed by computer vision, and fed back
to generate the next experiments via a genetic algorithm, in a
closed-loop system (Fig. 1). Using this system, 7,767 experiments
were previously undertaken aimed at exploring the behaviors
possible in this system and optimizing for three––movement,
division, and vibration. This represented a vast underexplored
dataset which we wanted to exploit to try and investigate the
mechanisms behind the behaviors observed in our system. Fur-
thermore, we have now expanded the system to allow the si-
multaneous variation of the aqueous phase.

Chemical Analysis. We hypothesized that the various behavioral ef-
fects observed in the previously reported system are due to a trade-
off between different oil properties (e.g., density, surface tension,
and viscosity) and oil dissolution (Fig. 2). We targeted our investi-
gations on a select number of archetypal formulations known to
exhibit behaviors representative of what is possible in the system. In
the subsequent sections we present analysis of the oil density, dy-
namic viscosity, and surface tension, showing how these properties
can be related to droplet behavior. To do this we utilize machine-
learning techniques––the utility of which is rapidly being demon-
strated across the physical sciences (25–28). Phenolphthalein is used
to investigate phase mixing and material flows while 1H NMR spec-
troscopy enables quantification of oil dissolution in the aqueous phase.
A number of oil formulations were prepared and their density,

dynamic viscosity, and surface tension measured, with the in-
tention of testing for any correlation between these physical
properties and droplet behavior. From this initial dataset, it was
clear that for density a simple weighted mean was sufficient for
predicting mixed oil formulation densities (Fig. 3). For viscosity,
however, an Arrhenius-based method yielded unsatisfactory re-
sults for dynamic viscosity prediction while no appropriate method
for surface tension prediction of oil mixtures could be found. As
such, machine-learning regression was utilized for the prediction

of the physical properties of all of the formulations previously
tested––some 7,767 experiments––and mined for trends.
Fig. 4 reveals definite correlations between the physical prop-

erties of a given oil mixture and how the droplets behave. These
plots are presented in full in Movie S1. For example, oil formu-
lations expressing high levels of division usually have a high den-
sity for their surface tension and viscosity and a high surface
tension for their viscosity. Similarly, high movement is expressed
for formulations with a broad range of intermediate physical
properties while vibration occurs at the opposite end of the
physical property space to division. These trends were confirmed
using a machine-learning approach to predict the behavioral
trends from oil physical properties, as shown in SI Appendix, Fig.
S6 and Movie S1. This is significant as it allows us to build a property
to behavior model that fills the gaps between observations.
To test whether we could use physical properties in a predictive

manner, we identified two nonoverlapping regions in the physical
property space where a swarming behavior (see Automated Ex-
periments) appeared to be favored. The physical properties of
these formulations were predicted and used to select similar rec-
ipes that had not previously been analyzed by eye. By repeating
these experiments, 20 of the 53 exhibited swarming in both repeats
(SI Appendix, Fig. S9), demonstrating that our predicted physical
properties could be used to discover more instances of a rare
behavior. Both regions occurred at low viscosity and surface ten-
sion, but one at significantly higher density (0.92–0.96 g mL−1 vs.
0.85–0.88 g mL−1). Prediction of physical properties is therefore a
useful tool for both identifying general trends and for identifying
new recipes that display a previously observed behavior.
To investigate phase mixing and material flows, we added a

pH indicator––phenolphthalein––to the oil phase. Upon droplet
placement the clear, neutral indicator may be deprotonated and
turn pink. These experiments confirmed that there is aqueous–
oil phase mixing going in both directions; both the oil and
aqueous phase end up stained pink, while clouds of pink were
often seen to diffuse out of the droplets. Furthermore, vastly
different effects between the different oils were observed, for
example, DEP tends to favor mixing at the boundary and gentler
internal mixing while pentanol favors rapid internal mixing, as
illustrated in Movie S2. They also show the complexity of the
system; the fact that such complex behaviors can be exhibited in
such simple systems is remarkable. Movie S3 shows the Sudan III
(red dye) and phenolphthalein (pH indicator) versions of the
same four-component formulations and illustrates how much
more information is accessible using the indicator. While the
presence of the indicator will have some effect on the droplet
properties, these movies demonstrate that the effect is minimal.

Fig. 1. Summary of the workflow presented herein. During robotic explo-
ration, oil droplets are placed into a surfactant-containing aqueous phase by
a robotic assistant. The droplet behavior is recorded, analyzed by computer
vision, and fed back to generate the next experiments via a genetic algo-
rithm, in a closed-loop system. The recipes and data generated from this
process are then used for physicochemical analysis, where traditional
chemical analysis, machine learning, and archetypal droplet experiments are
used to study the behavioral mechanisms and to predict droplet behaviors.

Fig. 2. Summary of the different physical and chemical processes thought
to be occurring in our oil-in-water droplet system. VM, viscosity modifier.
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In some cases droplets expel white or pink material and influ-
ence the behavior of nearby droplets, suggesting that matter
expelled from the droplets affected the Marangoni forces resulting
in chemotaxis. This visualization of the “tethering” of droplets is
both interesting and surprising. The indicator observations were
fairly consistent for the same formulation, but different formula-
tions with a high fitness for a particular behavior did not exhibit
identical indicator phenomena.
Hypothesizing that oil dissolution could play a role in droplet

behavior, we developed an experimental procedure to quantify the
amount of each oil dissolved in the bulk aqueous phase. Interestingly,
ethanol was present in the aqueous phase, due to the hydrolysis of
DEP, showing that, even in this simple system, both physical and
chemical processes take place. Initially, we focused on droplets
containing either a single oil or a 1:1 (vol/vol) mixture of two oils.
As can be seen from Fig. 5, there are significant variations in

the levels of oil dissolution depending on the oil formulation
present. When placed alone, octanoic acid and pentanol dissolve
to significant levels (red and purple circles), while DEP is not
seen to dissolve at all (blue circle), as expected given the oils’
aqueous solubilities. The trends for the binary mixtures are not,
however, as predictable. Octanoic acid and pentanol promote the
dissolution of the other oils, while simultaneously their own disso-
lution is lower. Octanoic acid is seen to dissolve at low levels when
mixed with DEP, octanol, or even pentanol. These observations
could either be due to molecular-scale interactions or due to
droplet behavior. On observing how each of the binary oil droplets
behaves, however, there does not appear to be a direct link between
oil dissolution and droplet behavior in these cases. For those cases
with large error bars, it is thought this is due to spatiotemporal
variations in the oil concentration within each experiment.
For full formulations the levels of oil dissolution are similar, but

for a few outliers. These formulations represent a vast range of
droplet behaviors, thus implying that the level of oil dissolution
does not play a key role in defining droplet behavior. There are
some exceptions, however. For example, three formulations show
significantly higher levels of octanoic acid dissolution than the rest
of the formulations. On viewing the phenolphthalein indicator
movies of these formulations, these are also the only formulations
that show a tethering interaction between droplets, thus implying
there is a link between octanoic acid dissolution and this in-
teraction, potentially with octanoic acid aqueous-phase supramo-
lecular assemblies playing a key role. The level of pentanol
dissolution is also seen to vary significantly, although in almost all
cases this is just a reflection of the changing level of pentanol in
the formulation, as pentanol has a relatively high water solubility.
It is very surprising to learn that oil dissolution does not play a key
role in the quantified droplet behaviors, but can be linked to other
observed effects, especially given the fact that oil dissolution was
previously thought to be one of the key drivers for symmetry
breakage and droplet behavior in this and other systems (2).

Automated Experiments. To investigate how the chemical envi-
ronment of the droplets (i.e., the aqueous phase) influences their
behavior, we wished to enable the simultaneous variation and
optimization of both the aqueous and oil phases. A robotic

platform was designed to automatically undertake droplet ex-
periments with variable aqueous and oil phases, with droplet
analysis via video recording (SI Appendix, Fig. S11 and Movie
S4). Six aqueous-phase modifiers were chosen for use on the
automated platform: the cationic surfactants TTAB and CTAB;
the nonionic surfactants Brij O10 and Triton X-100; the zwit-
terionic surfactant DDMAB, and poly(ethylene glycol) (Mn =
400). These were chosen due to their varied chemical structures,
properties, effects on droplets, and compatibility. To identify the
droplet behaviors possible in this system, 393 random recipes
were tested. Movement and division, as previously observed with
the single aqueous-phase system, were again the most prevalent
droplet behaviors. Remarkably, several other behaviors were
identified: swarming, fusion, pulsing, and sorting (Movie S5).
“Swarming” was observed when the droplets divided into a

large number of small droplets on placement, maintaining a close
proximity to each other while appearing to move in concert, as
illustrated in Fig. 6. Interestingly, if a larger droplet approached
the swarm of smaller droplets, the direction and shape of the
whole swarm changed in response to repulsive interactions. From
our analysis work we have some understanding of the driving
forces behind this swarming behavior. Initially, a large number of
droplets must be present––hence the formulation must be un-
stable, leading to rapid division. Following this, small droplets
either move collectively, apparently driven by bulk surface tension
variations “carrying” the droplets together, or the smaller droplets
are “herded” by larger droplets, whose more definite movements
through the swarm cause the swarm to shift around the larger
droplet. Often, there is a period of rapid division at the beginning
of the experiment followed by a period of swarming and then the
repeated fusion of the small droplets.
Droplet “fusion” had previously been observed in the TTAB-

only system, but it was very rare owing to the stabilizing boundary
formed by the cationic surfactant. It would, however, be a de-
sirable behavior for oil droplets to exhibit, especially if it can
be controlled, due to the possibility of controlling a chemical
reaction between two components dissolved in two separate

Fig. 3. Plots of the predicted density (Left), dynamic viscosity (Center), and
surface tension (Right) against their measured values. Blue points are pre-
dicted using weighted mean (density) and Arrhenius-based method (viscos-
ity) while red values are predicted using an SVM regressor.

Fig. 4. Impact of dynamic viscosity, density, and surface tension on droplet
behavior: movement (Left), vibration (Center), and division (Right). Each dot
is an experiment; the color is proportional to the intensity of the behavior.
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droplets. Electrostatic repulsion plays a role in the prevention of
fusion, in addition to surfactant gradients induced by the de-
crease of distance between droplets resulting in Marangoni
forces against the direction of movement (30). These forces can
be reduced by ion pairing between oppositely charged ions (e.g.,
quaternary ammonium surfactant and octanoate). Clusters of
many smaller droplets provide greater surface area for the
deprotonation of octanoic acid, which combined with cationic
surfactants in the aqueous phase forms a catanionic system. In-
deed, fusion is far more commonly observed for smaller droplets
and division for larger droplets, implying there may be an in-
termediate optimal radius in many cases. As surfactant concen-
trations vary, fluctuations in interfacial tension mean that
division could be favored in one location in the dish and fusion in
another (31). Some droplet formulations give droplets which
may fuse if they happen by chance to collide with each other, i.e.,
they have no significant repulsive or attractive forces, while
others exhibit attraction to each other and experience a change
of trajectory before fusion. “Pulsing” droplets exhibit constant,
rapid changes in diameter as the droplets shrink and grow pe-
riodically. This is in contrast to vibration, which involves rapid
changes in a droplet’s direction of movement. When droplets
were attracted to the walls of the Petri dish they sometimes also
exhibited movement around the edge of the dish, division or
fusion. This also often resulted in droplet “sorting,” in which the
droplets spread themselves evenly around the circumference of
the dish due to repulsive interactions between the droplets.
Having identified the behaviors possible in this system, a genetic

algorithm optimization was then carried out for movement using all
10 components. CTAB and Brij-O10 were quickly optimized out
almost entirely (SI Appendix, Fig. S10); thus, only the remaining four
aqueous phases were subsequently used. It is very interesting to note
that TTAB and CTAB, which differ only by two CH2 groups to the
surfactant tail, have such different effects on droplet behavior. The
results of a genetic algorithm optimization for movement (average

speed of the droplets) with these eight parameters are shown in Fig.
7A. With these eight inputs there are 9.2 × 1015 possible recipes, a
space unfeasible to search exhaustively. The genetic algorithm was
run for 30 generations, with 10 new recipes each generation, taking
∼80 h for a complete optimization. The optimization was repeated
in triplicate from random starting recipes, and compared with the
maximum fitness values observed in the oil-only experiments. The
final median fitness value of each individual genetic algorithm run
surpassed 5.37 mm s−1, while the maximum fitness value achieved
was 9.59 mm s−1. This compares to the oil-only optimizations which
achieved a maximum droplet speed of 7.17 mm s−1 and a median of
up to 4.78 mm s−1. The large increase in median fitness from less
than 1.0 up to 5.37–6.93 mm s−1 showed that the environment in
which the droplets are placed has a considerable influence on their
movement, and that the higher number of parameters used in the
optimization enabled even higher fitnesses to be observed. SI Ap-
pendix, Fig. S13 shows the evolution of the composition of both the
aqueous and oil phases during the evolutionary experiments.
Overall, the compositional trajectories and final values differ sig-
nificantly between runs while the upward trend in fitness is con-
served, illustrating the complexity of the system and why it is
beneficial to optimize the aqueous and oil phases together. In-
terestingly, as SI Appendix, Fig. S14 shows, the physical properties of
the oil phase are fairly consistent throughout the runs, despite this
compositional variation.
To investigate whether such high fitnesses could be observed by

first optimizing the oil phase and then the aqueous phase, instead
of optimizing them simultaneously, evolution experiments were
carried out with a predefined high-fitness oil formulation opti-
mized in the TTAB-only aqueous phase (SI Appendix, Fig. S15).
The recipe chosen had a high, reproducible movement fitness
value of 5.96 mm s−1. The oil droplet fitness again increased
throughout the optimization, but only by 1–2 mm s−1, in contrast
to ∼6.0 mm s−1 in the case of the eight-parameter evolution ex-
periment. Only one of the three runs surpassed the fitness pre-
viously observed with 100% TTAB aqueous phase, suggesting that
100% TTAB was close to the optimal aqueous phase for this oil
formulation, even though much higher fitnesses are attainable
with different oil–aqueous formulations. Movie S6 compares the
fastest-moving droplets from each of these evolution experiments.
The evolutionary trajectories were compared between the oil-

only, aqueous-only, and combined optimizations (Fig. 7A). The oil-only

Fig. 5. Plots showing the concentration of oil dissolved in the aqueous
phase for various formulations 1 min after 4 × 4 μL droplets are placed in
3.5 mL aqueous phase. (Top) The proportion of the oil present dissolved for
droplets composed of a single oil or 1:1 (vol/vol) mixture of two oils, i.e.,
point A-B, corresponds to the oil-dissolution levels when a 1:1 (vol/vol)
mixture of DEP and octanol is used as the droplet formulation. (Bottom) The
concentration oil dissolved for full four-oil formulations, categorized by the
high- or low fitnesses they show for certain behaviors. Key: Vib, LoVib: high
or low vibration fitness. Div, LoDiv: high or low division fitness. 4Drops: di-
vision fitness of 4; i.e., four droplets present after 1 min. Mov, Stat: high or
low movement fitness. Error bars show SD.
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Fig. 6. Movie snapshots of a swarming formulation, converted into black
and white outlines using ImageJ. Numbers in the corners correspond to the
experiment time in seconds since the experiment started. Initially there are
relatively few droplets, fairly evenly spaced (0–60 s). These then divide and
swarm, to give more droplets closer together. At around 100–105 s, the rapid
dissolution of a droplet stuck to the edge of the dish (not shown) leads to a
much tighter-knit swarm, with an average interdroplet distance of only
around 6.4 mm. The variation in interdroplet distance is also seen to de-
crease. Images processed using ImageJ (29).
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optimization began from the highest fitness value compared with
the others, closely followed by the aqueous-only optimization. In
contrast, the combined optimization of aqueous and oil phases
began at a fitness value of below 1.0 mm s−1, far lower than the
other runs, which both began with one phase closer to optimal.
With the composition of both phases completely randomized for
all individuals in the first generation, the low median fitness
demonstrates that the eight-parameter space is vast and contains
many more poor formulations for a given fitness criterion than
good ones. The increase in fitness over successive generations is
rapid, and leads to a much higher final fitness than for either of
the separate optimizations. This demonstrates the complexity of
the formulation space––an oil phase which is optimal for one
aqueous phase may give poor results in another aqueous phase,
and vice versa, yet when both phases are optimized together, the
full range of effects of each component on the others is taken
into account, and therefore a greater space is available to the
algorithm for exploration.

Discussion
Herein, we believe we have illustrated how the combination of
automated experimentation and data generation, physicochem-
ical analysis, and “big-data” statistics has a unique potential to
complement traditional analytical chemistry tools as we aim to
understand complex chemical systems. Three analytical methods
have been developed for the analysis of oil-in-water droplet
systems––formulation physical property prediction based on
machine-learning methods, quantification of oil dissolution using
1H NMR spectroscopy, and the use of a pH indicator to visualize
phase mixing and flows. Through density, viscosity, and surface
tension prediction, correlations have been identified between physi-
cal properties and droplet behaviors. This also allowed the prediction
of recipes exhibiting a rare cooperative droplet behavior––swarming.
Without the ability to both generate and analyze this quantity of
data, these insights would have been impossible, leading both to a
weaker general understanding of the system and no ability to
predict such rare behaviors. This also illustrates how smart auto-
mation cannot only help with exploration, optimization, and dis-
covery but also be used for developing fundamental understanding

of such systems. Despite a massive range of droplet behaviors, 1H
NMR spectroscopy has shown that the levels of oil dissolution are
generally constant for all recipes. This implies that oil dissolution is
not the key factor defining droplet behavior. It is our intention,
however, to further develop this method via sampling at different
times and locations––maybe dissolution kinetics vary in a way not
captured by our end-point method. Finally, the use of a pH indi-
cator has opened a window into the droplet and aqueous-phase
dynamics. Specifically, long-range tethering interactions have been
identified between droplets, which seems to be linked to octanoic
acid dissolution in the aqueous phase. Notably, the three analytical
methods developed complement each other; one is a measure of bulk
properties, one is a measure of the state of the system, and the other
allows visualization of spatiotemporal variations within the system.
Particularly, the NMR and indicator studies fill a gap in the physical
property prediction in that they study dynamic processes occurring,
not just bulk properties. These three techniques are also all suitable
for analyzing other dynamic droplet systems.
By expanding our droplet system to include the aqueous phase,

using different surfactant types and modifiers, various droplet be-
haviors were observed. The increased speed of the droplets accessible
when both phases (eight parameters) were optimized together (over
oil or aqueous phase in isolation) sheds light on the complexity and
intertwined physicochemical properties of our droplet system. The
larger parameter space gave a far lower first-generation fitness than
either four-parameter space, with the fitness subsequently rising
rapidly during evolutionary exploration, showing that for systems
such as ours, such an increase in parameter space can produce im-
pressive results with a genetic algorithm. With eight parameters a
complete exploration of all possible combinations would take 2.1 ×
1011 years with our platform, making artificial intelligence an in-
dispensable tool. Evolution in materio, using artificial intelligence in
combination with a liquid-handling robot for autonomous explora-
tion of chemical spaces, is rapidly proving its utility for tackling wider
chemical problems. Over and above work utilizing oil-in-water
droplets, we believe that cheap, robust, and customizable auto-
mated platforms, in conjugation with advanced computer science
methods, represent a hugely underdeveloped opportunity for chem-
ists to apply to a wide range of research areas including complex
systems, chemical synthesis, and materials chemistry. Of particular
interest are recent developments in novelty-seeking and curiosity-
driven algorithms that open the way to the genuine autonomous
exploration of what can be done with a new system rather than a
more directed optimization of a specific property (32, 33). In the
future, we hope to apply these methods to other systems, to fur-
ther show the benefits possible via the interaction of these fields.

Materials and Methods
Detailedmaterials andmethods are given in SI Appendix. The robotic platform
used within this work is based upon that previously reported by this group,
modified to allow the use of multiple aqueous-phase constituents (2). Due to
the need for maximum consistency throughout experiments, standard oper-
ating procedures were developed for oil- and aqueous-phase preparation
which are shown in SI Appendix. Aqueous phases were prepared with a
20 mM concentration of the given modifier at a pH of approximately 13 while
the oils were dyed with 0.25 mg mL−1 Sudan III dye. For each droplet exper-
iment, 4 × 4 μL droplets were placed into 3.5 mL of mixed aqueous phase and
a 1-min movie recorded for analysis via computer vision.

Experiments Based on Physical Property Prediction. For physical property
prediction, the viscosity and density of 81 formulations were measured, while
the surface tensions of 69 oil formulations were measured using the Du Noüy
ring method. A weighted mean was then deemed sufficient for density
prediction, while a support vector machine (SVM) regressor using a radial
basis function (RBF) kernel was used for viscosity and surface tension pre-
diction. For the discovery of swarming formulations the density, viscosity,
and surface tension of five known swarming formulations were calculated.
The range of physical properties from each group of swarming formulations
was used to find formulations within them that could be tested and ana-
lyzed for swarming behaviors. Fifty-three formulations were tested in du-
plicate, of which 20 exhibited swarming in both repeats, with a further
10 showing swarming in one of the two repeats.

A B

Fig. 7. (A) Comparison of median fitness values for each generation between
the oil-only, aqueous-only, and simultaneous aqueous and oil optimizations.
Error bars show SD. (B) Change in physical properties of the oil mixture vs.
generation for the aqueous- and oil-phase optimization (run 1). The black line
corresponds to the median for each generation, the dark yellow area shows
the distribution between the 75th and 25th percentile, and the pale yellow
area shows the distribution between the 90th and the 10th percentile.
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Random Matrix Screen. A proximity-limited random search was carried out in
10 dimensions (6 aqueous, 4 oils); using a threshold factor to ensure formulations
generated were sufficiently different, 393 random formulations were tested.

Genetic Algorithm Explorations. A genetic algorithm was used with a genome
length equal to the number of components for the mixture. Twenty-four
random combinations were tested to form generation 1, then roulette wheel
selectionwas used to select individuals carried over to undergo cross-over and
random mutation––forming the next generation of 10 individuals. The ex-
periment was continued for 30 generations. An individual’s fitness was
quantified using the previously published methodology (2).
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