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Our increasing reliance on renewable energy sources brings 
with it a need to store this energy to smooth out peaks in 
demand and troughs in supply1–3. Among the solutions pro-

posed for this challenge, two stand out in terms of their flexibility and 
scalability: storage of energy as electrical charge in batteries4–7 and 
storage of energy via conversion to chemical fuels, like H2 (refs 8–12).  
Both approaches bring their own unique set of advantages and 
drawbacks, and it is often not obvious as to which would make 
the better choice in any given circumstance13,14. Against this back-
ground, energy storage solutions such as battolysers, which can act 
as both batteries and fuel generation devices, could have a transfor-
mative effect on how renewable energy is used15,16. Soluble redox 
mediators are the cornerstone of these promising devices, but the 
electron storage capacity of the mediators considered hitherto is 
limited to only 1–2 electrons per molecule. As the number of elec-
trons that can be stored in the mediator places a fundamental limit 
on the energy and capacity density of these energy storage systems, 
there is a great need to search for new mediator systems that can 
store as many electrons per molecule as possible.

Polyoxometallates show tremendous promise in this regard 
because of their ability to store multiple electrons in a reversible 
manner17,18. For example, Launay reported that silicotungstic acid 
([H2W12O40]6–) can be highly reduced in aqueous solution19, and 
Bond and co-workers have reported that the polyoxometallates  
α -[S2Mo18O62]4– is capable of taking part in extensive redox pro-
cesses on the voltammetric timescale in mixed acetonitrile/water 
solutions20,21. In many of these cases, the effects of adding protons or 
other small cations (such as Li+) have been shown to be crucial for 
modifying the redox potentials of the polyoxometallates, facilitating 
the generation of reduced species at less cathodic potentials com-
pared to when these cations are absent22–24.

On account of the ability of polyoxometallates to undergo a large 
number of redox processes in a reversible fashion, polyoxometallates 
have been investigated as potential energy storage devices25, includ-
ing solid-state batteries (and battery electrodes) with Li+ (refs 26–30)  
and Na+ (refs 30,31) as charge carriers, and in redox flow batteries32–35. 
In these latter cases, however, the achieved power and energy  

densities have hitherto been rather low, with the current champion 
specific energy density for a polyoxometallates-based redox flow 
battery being 15.4 Wh l–1 (ref. 36). This is because polyoxometallates 
have not yet lived up to their potential in terms of storing a large 
number of electrons in a reversible manner, and hence we hypoth-
esized that it should be possible to produce more highly reduced 
systems that display reversibility.

Here, we show that the polyoxoanion [P2W18O62]6− displays 
notable proton-coupled electron redox activity, which allows this 
molecule to reversibly accept up to 18 protons and electrons in 
aqueous solution, allowing the construction of polyoxometallates-
based redox flow batteries with energy densities of 225 Wh l−1, or 
the rapid on-demand generation of hydrogen from water as part of 
a decoupled electrolysis system.

Results
The first suggestion of the intriguing redox chemistry displayed by 
[P2W18O62]6− (prepared according to a modified literature proce-
dure37, see Supplementary Sections I and II and Fig. 1a) in aque-
ous solution was provided by cyclic voltammetry (CV) experiments 
in a thin-layer electrochemical cell (Supplementary Fig. 3), such 
as those shown in Fig. 1b,c. Hence at a low concentration (2 mM), 
[P2W18O62]6− displays four reversible waves within the range + 0.6 to 
− 0.6 V (versus standard hydrogen electrode, SHE). At pH 7, each of 
these waves is a simple one-electron process (black line in Fig. 1b),  
as determined by controlled potential bulk electrolysis and by  
UV–vis titration, which agrees with literature reports for this com-
pound (Supplementary Figs. 4 to 8)38. However, as the pH is lowered 
to 4, both peaks below 0 V become two-electron processes, as previ-
ously observed39–43. Importantly, on moving to higher concentrations 
of the polyoxometallates (100 mM), there is a significantly enhanced 
redox wave for Li6[P2W18O62] below − 0.3 V, when compared to the 
control studies at 2 mM concentration or the CV of 1 M H2SO4 in 
the absence of polyoxometallates (Fig. 1c and Supplementary Fig. 9).

This behaviour suggested to us that the storage of electrons in 
the polyoxometallates was proton-coupled, and that as the con-
centration of polyoxometallates in solution increased (and the pH 
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decreased) it might be possible to store an increasing number of 
electrons in the polyoxometallates. Encouraged by these results, a 
three-electrode electrochemical flow cell with an Hg/HgSO4 refer-
ence electrode was constructed to quantify the number of electrons 
that the polyoxometallates could store in a reversible fashion (Fig. 2a;  
see Supplementary Section III for details concerning the mem-
brane44, materials and assembly).

In this device (Fig. 2a), water was oxidized on the iridium oxide 
catalyst (left-hand side of left-hand cell), producing O2, protons and 
electrons. These electrons and protons were used to reduce and pro-
tonate an aqueous solution of [P2W18O62]6− on the right-hand side 
of the cell, forming more reduced polyoxoanions ([P2W18O62](6+n)−). 
Once a desired amount of charge had been passed, the reduced 
polyoxometallates solution was then reoxidized electrochemically 
by recirculation of the solution to a carbon anode in a cell like that 
shown on the right-hand side of Fig. 2a. The charge stored revers-
ibly in the polyoxometallates solution could then be gauged by com-
paring the charge originally used to reduce the polyoxometallates 
with the charge obtained when it was reoxidized.

The key to dramatically increasing the amount of charge in 
terms of protons and electrons that can be reversibly stored on the 
Li6[P2W18O62] cluster is to increase the concentration of the clus-
ter in aqueous solution at low pH, as shown in Fig. 2b (note that 
these studies were conducted without any supporting electrolyte 
in the polyoxometallates solution). In each case, the charge passed 
equated to that which would be expected (in the absence of other 
reactions) to bring about an 18-electron reduction of the polyoxo-
metallates (red dashed line in Fig. 2b). At low polyoxometallates 
concentrations, it is apparent that most of the charge passed dur-
ing the reduction process cannot be extracted during reoxidation of 
the polyoxometallates solution. For example, at a concentration of 
cluster of 2 mM, only 4 of the 18 electrons passed during the reduc-
tion process can be recovered. By increasing the concentration of 
Li6[P2W18O62] to 50 mM, the amount of charge recovered increased 
to around 16 of the 18 electrons. Analysis of the headspace of the 
polyoxometallates holding tank indicates that the charge that is not 
recovered by electrochemical reoxidation is instead liberated as 
hydrogen (Supplementary Section IV). By increasing the concentra-
tion further (to 100 mM), 96% of the charge used during the reduc-
tion process can now be extracted by electrochemical reoxidation, 
implying that each polyoxometallates molecule is reversibly storing 
an average of 17.2 electrons under these conditions (Supplementary 
Table 1 and Supplementary Section V).

Flow cells with low ohmic polarization resistances (~20 mΩ  
in our case) are essential for the efficient operation of this system 
because reduction of the polyoxometallates anions happens at only 

slightly less cathodic potentials than hydrogen evolution (Fig. 1). 
Hence, we employed high flow rates of the polyoxometallates solu-
tion (100 ml min−1) to minimize mass transport overpotentials. We 
also found it expedient to use galvanostatic electrolysis methods to 
control the current density so that the polyoxometallates could be 
reduced without causing excessive hydrogen evolution. Using tra-
ditional static electrochemical cells (that is, without any continu-
ous flow of electrolyte) led to much higher resistances (usually at 
least several dozen ohms), which were found to be too high for the 
polarization potential to be sufficiently controlled when using gal-
vanostatic methods. Conversely, the use of potentiostatic methods 
in static electrochemical cells was found to lead to depletion of the 
polyoxometallates at the electrode and therefore gave rise to large 
hydrogen evolution currents. Hence flow cells seem essential if 
excessive hydrogen evolution is to be avoided when performing the 
reduction of [P2W18O62]6− by more than around six electrons.

The ability of the Li6[P2W18O62] cluster to store large numbers 
of electrons under flowed redox conditions was then explored by 
passing charge equivalent to 32 electrons per cluster at a concentra-
tion of 100 mM and measuring the difference between the reduc-
tion and reoxidation processes in terms of coulombic efficiency, as 
shown in Fig. 2c (also Supplementary Figs. 10 to 13). This shows 
that the efficiency of polyoxometallates reduction and reoxidation 
remains at or above 95% up to a reduction level of 18 electrons per 
polyoxometallates molecule. The maximum number of electrons 
that can be recovered electrochemically from the reduced poly-
oxometallates under these conditions appears to be 20 per poly-
oxometallates molecule, although there are considerable parasitic 
losses at this maximum value. Hence, we consider 18 electrons to 
be the maximum number of electrons that can be stored per poly-
oxometallates molecule under these conditions without apprecia-
ble losses to other processes.

The stability of [P2W18O62]6− during the 18-electron redox process 
was probed electrochemically with successive galvanostatic reduc-
tion/reoxidation cycles (Fig. 2d,e), with the coulombic efficiency of 
this process being > 95% with a capacity retention of 97.3% over 100 
cycles. In addition, high-resolution mass spectrometry analysis of 
a 100 mM solution of [P2W18O62]6− after such redox cycling serves 
as further evidence that the polyoxometallates is stable under these 
conditions (Supplementary Section VI).

Given that [P2W18O62]6− can be reversibly reduced by 18 elec-
trons with high coulombic efficiency, we decided to assess the 
performance of this highly reduced polyoxometallates for proton–
electron storage for on-demand hydrogen generation. Accordingly, 
we reduced a 100 mM solution of [P2W18O62]6− by 18 electrons per 
polyoxometallates using the electrochemical flow system (left-hand 
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Fig. 1 | Structure and basic electrochemistry of [P2W18O62]6−. a, Structure of [P2W18O62]6− (tungsten, grey; phosphorus, orange). b, Cyclic voltammograms 
of a 2 mM solution of Li6[P2W18O62] in 1 M Li2SO4 (pH 7, black line) and in 1 M Li2SO4/H2SO4 (pH 4, red line) at a scan rate of 10 mV s−1, showing the 
reversible nature of these waves. c, Cyclic voltammograms of a 2 mM solution (red line) and 100 mM solution (black line) of Li6[P2W18O62] in 1 M H2SO4, 
and a CV of just 1 M H2SO4 for comparison (blue line), showing the effects of increasing solution pH and polyoxometallates concentration on the redox 
profile. Scan rate, 10 mV s−1.
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side of Fig. 2a), and then exposed this to Pt/C (see Supplementary 
Section VII for a description of the apparatus used). An initial rate of 
3,500 mmol of hydrogen per hour per mg of Pt was achieved (Fig. 3a), 
which is a significantly higher rate per mg of Pt than that achieved 
in conventional proton exchange membrane electrolysers (where 
rates in state-of-the-art systems are on the order of 50–100 mmol of 
hydrogen per hour per mg of Pt)45,46. Supplementary Fig. 22 relates 
the amount of hydrogen that is evolved to the number of electrons 
used to reduce the polyoxometallates initially: after 400 s, around 14 
of the initial 18 electrons (per polyoxometallates anion) are recov-
ered as hydrogen, and hydrogen evolution is still ongoing (albeit at 
a much slower rate than initially). Given that Fig. 1 shows that the 
final two reoxidation potentials of the reduced polyoxometallates are 
anodic of the reversible hydrogen potential (0 V versus SHE), then 
contact with Pt/C would only ever be expected to yield hydrogen  

until the two-electron reduced species is reached. Hydrogen evo-
lution would then be expected to cease, leaving a two-electron-
reduced anion, [P2W18O62]8− (with appropriate charge-balancing 
cations). Hence, under these conditions, 16 is the maximum num-
ber of electrons that can be obtained spontaneously as hydrogen by 
contacting the reduced polyoxometallates with Pt/C, in very good 
agreement with the data in Supplementary Fig. 22.

Interestingly, spontaneous hydrogen evolution from solu-
tions of [P2W18O62](n+6)− can be achieved without any electro-
chemical bias and without the need for any catalyst, by simply 
diluting the solution. This is shown in Fig. 3b, where 50 mM 
solutions of [P2W18O62]6− (pH 2) were first reduced by 16 elec-
trons per polyoxometallates molecule, before then being diluted 
to a final concentration of 2 mM with various solutions. When 
this dilution is carried out with water (red circles), hydrogen 
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gas is observed to evolve spontaneously (albeit slowly) from 
the solution until the cluster is reduced by only four electrons. 
Meanwhile, when diluted with acidic media (50 mM H2SO4 and 
1 M H2SO4, blue and green triangles in Fig. 3b respectively), the 
spontaneous hydrogen evolution happens much more slowly. 
An enhanced kinetic effect is seen when the dilution is under-
taken with a non-buffering electrolyte, which still allows the 
pH to rise (Li2SO4, black diamonds). Hence, raising the pH 
causes more rapid spontaneous hydrogen evolution during the 
dilution process.

In our next set of studies exploring the properties of the highly 
reduced Li6[P2W18O62], we investigated its performance as an elec-
trolyte in a redox flow battery. We therefore constructed a system 
with the cluster as the negative redox couple and using HBr/Br2 
as the positive electrolyte (Fig. 4a,b). A discharge capacity den-
sity of 42.6 Ah l−1 can be achieved at a concentration of 0.1 M at 
50 mA cm−2 with a coulombic efficiency of 96%, as well as an 
energy density of 43.2 Wh l−1. On increasing the concentration of 
Li6[P2W18O62] to 0.3 M and 0.5 M, higher capacities of 131 Ah l−1 
and 230 Ah l−1 can be achieved at 20 °C, corresponding to practical  
energy densities of 130 Wh l−1 and 225 Wh l−1 respectively (Fig. 4c).  
Meanwhile, the energy efficiency at each of these concentrations 
is 76% (Supplementary Figs. 23 to 25). These results are excit-
ing because they show that this system, at the solubility limit of 
the cluster, could yield a flow battery with an energy density of 
more than 1,000 Wh l−1 (Fig. 4d). The polarization curves of this 
redox flow battery (Fig. 4e) exhibit a peak galvanic power den-
sity of 0.52 W cm−2 at a concentration of Li6[P2W18O62] of 0.3 M at 
20 °C, which falls off slightly at higher concentrations due to the 
increased viscosity of the solution. Figure 4f presents cycling data 
for this redox flow battery with 0.5 M Li6[P2W18O62] at 0.1 A cm−2 
within the voltage cutoffs of 0 V and 1.65 V. The galvanic discharge 
capacity during cycling is highly stable at around 210 Ah l−1 over 
20 cycles with a coulombic efficiency of 98%. Cycling data using 
0.1 M Li6[P2W18O62] at 0.1 A cm−2 is provided in the Supplementary 
Information (Supplementary Fig. 26). Compared to current 
state-of-the-art negative electrolytes for redox flow batteries47–50, 
Li6[P2W18O62] has a much higher energy density, as shown in 
Supplementary Table 5.

Conclusion
This work shows that polyoxometallates clusters like Li6[P2W18O62] 
can achieve very high proton–electron storage capacities in aque-
ous solution. This is illustrated by the ability of this cluster to 
reversibly accept 18 electrons and protons. This corresponds to 
~9 g of hydrogen stored per litre, or a flow battery with a practical 
discharge energy density of 225 Wh l−1 (with an open-circuit volt-
age of 1.25 V and an energy efficiency of 76%) at room tempera-
ture at 0.5 M. Extrapolating to the limits of the solubility of this 
polyoxometallates (1.9 M l−1 in aqueous solution)37, an effective 
storage potential of 34.2 g H2 l−1 could be achieved, which com-
pares with that of pure cryogenic liquid hydrogen (71 g H2 l−1 at 
20 K), and which would also yield a flow battery with an energy 
density breaking the 1,000 Wh l−1 barrier. Thus, we believe that 
this system will lead to new flexible energy production systems 
with the ability to switch between hydrogen or electrical power 
that could redefine the energy storage landscape. Moreover, such 
extremely high capacities could transform how redox flow batter-
ies are used, potentially allowing electric vehicles to be powered by 
these electrolytes51,52.

Data availability. All relevant data are available from the authors, 
and requests for data sets should be addressed to L.C. or M.D.S.
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