
Algorithms in chemistry
The expansion of chemical knowledge by 
searching for new molecules and chemical 
reactions is an inherently practical endeavour, 
but it is increasingly becoming possible 
to conduct these searches with the help 
of computer algorithms1,2. Simply put, 
an algorithm is a process or set of rules 
to be followed in calculations or other 
problem-solving operations, and these 
rules can be formulated into instructions 
to be used by a computer. For instance, the 
molecular structures of a set of molecules 
could be placed into a database using a digital 
representation (for example, text-based 
SMILES or coordinates) and then investigated 
in terms of their similarity, calculated 
properties or potential reactivity (for example, 
suggesting new reactions based upon the 

logical operations that can be built into an 
algorithm. Machine learning is a statistical 
approach that allows computers to learn 
patterns using provided training data and 
then make predictions on the basis of data 
not seen before9. Defining the problem using 
a flow chart of the chemical investigation 
(by identifying the inputs, process operations 
and outputs) can help with the development 
of a definition that expresses the problem 
algorithmically. This reframing opens many 
doors for using well-defined algorithms and 
other statistical approaches, with the goal of 
increasing the chances of discovery of new 
chemical knowledge.

Chemical space includes the entire 
universe of known and unknown molecules, 
as well as the transformations required 
to produce these molecules, and their 
relationship to each other, that is, a network 
of chemical reactions connecting the 
molecules in the space10. One of the primary 
difficulties of exploration is that chemical 
space is both large and sparse. Many parts 
of it contain only a few molecules, while 
other parts have highly dense clusters of 
molecules11–14. Furthermore, chemistry costs 
both time and physical resources, resulting 
in a limit on the number of experiments that 
can be conducted and the speed at which 
they can be safely performed. To alleviate 
these constraints, these characteristics 
of chemical space should be taken into 
account to design search approaches that 
are tailored for the application in mind. 
For instance, a self-imposed limitation of 
working on only a part of chemical space 
that contains a clustered, dense region is an 
intuitive approach. To use algorithms while 
taking advantage of the characteristics of 
chemical space, we must first consider how 
each possible point in chemical space has 
properties that can be measured (Fig. 1a). 
These properties could be directly linked to a 
molecule, for example, its molecular weight 
or other molecular characteristic, or could be 
an indirect probe, such as the colour change 
associated with a reaction. The parameters 
that define a chemical system — which could 
be a single-chemical reaction, a system of 
reactions or a supramolecular system — 
are the reaction inputs (reagents, catalysts 
and solvents) and the process conditions 
(addition rates, concentrations, temperature 
and time). By performing experiments and 

functional groups present). In the synthesis of 
new molecules, it is common practice to use 
single-parameter optimization (changing the 
temperature, concentration, solvent polarity 
or other reaction parameters only one at 
a time) in order to find the best outcome, and 
this approach also spans the quest for new 
reactivity3,4. Despite this, synthetic chemists 
are wary of computer-based searches and 
prediction because searching through the vast 
number of possible molecules requires a very 
high level of expertise5,6. In this Perspective, 
we describe how machine learning, coupled 
with real-time chemistry7,8, is set to change 
the way chemists discover molecules, 
reactions and reactivity as well as remove 
researcher bias. The first step in applying 
machine learning techniques in chemistry 
is to state the problem using a sequence of 
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Abstract | Although extending the reactivity of a given class of molecules is 
relatively straightforward, the discovery of genuinely new reactivity and the 
molecules that result is a wholly more challenging problem. If new reactions can 
be considered unpredictable using current chemical knowledge, then we suggest 
that they are not merely new but also novel. Such a classification, however, requires 
an expert judge to have access to all current chemical knowledge or risks a lack of 
information being interpreted as unpredictability. Here, we describe how searching 
chemical space using automation and algorithms improves the probability of 
discovery. The former enables routine chemical tasks to be performed more quickly 
and consistently , while the latter uses algorithms to facilitate the searching of 
chemical knowledge databases. Experimental systems can also be developed to 
discover novel molecules, reactions and mechanisms by augmenting the intuition 
of the human expert. In order to find new chemical laws, we must seek to question 
current assumptions and biases. Accomplishing that involves using two areas of 
algorithmic approaches: algorithms to perform searches, and more general 
machine learning and statistical modelling algorithms to predict the chemistry 
under investigation. We propose that such a chemical intelligence approach is 
already being used and that, in the not-too-distant future, the automated chemical 
reactor systems controlled by these algorithms and monitored by a sensor array 
will be capable of navigating and searching chemical space more quickly , 
efficiently and, importantly , without bias. This approach promises to yield not only 
new molecules but also unpredictable and thus novel reactivity.

PERSpECTIVES

Nature Reviews | Chemistry



probing the possible points in chemical space, 
raw data are collected and subsequently 
transformed into specific desirable outputs. 
The relationship between the chemical 
outcome and the states in the search space, 
here called the mapping or utility function, 
can be very complex, but it simplifies the 
raw data into easily comparable values, for 
example, molecular weight, a change15 in 
IR peak intensity16 or a wavelength shift for 

the UV/vis peak wavelength17. To explore the 
search space effectively, a search algorithm 
must use the data collected from this space 
to then choose a new set of input parameters 
for the next experiment. This process is not 
dissimilar to how a human experimenter 
goes about collecting data and exploring a 
chemical system.

As an example of a simple use of chemical 
spaces and a mapping function, let us 

consider the mechanism-aided discovery 
of photocatalytic reactivity reported by 
Glorius et al.18 (see Fig. 1b). Considering the 
mechanism of the reaction — excitation 
of a photocatalyst followed by quenching of 
the excited state by the reaction substrate — 
enabled the use of the quenching percentage 
of the photocatalyst excited state as the 
mapping function. Thus, rather than seek 
new reactivity by detecting a particular 
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Fig. 1 | searching chemical space. a | The schematic shows how the input 
parameters constrain chemical space to a limited section, which in turn is 
framed as a search space using a mapping function. Feedback from meas-
urements can then be used by the algorithm to assess the outcome of  
the reaction for use in the search algorithm. b | An example using 
fluorescence-quenching efficiency as a mapping function to identify strong 
interactions between the catalyst and substrate in photocatalysed reac-
tions. The left panel shows the underlying chemical mechanism, with the 

part relevant for the mapping function presented on a grey background 
showing the catalyst (Cat) and interaction with a substrate (Sub or Sub2), 
and an example of a photocatalyst used. From this information, a mapping 
function is constructed that assesses the level of interaction from the fluo-
rescence quenching. In the right panel, there are several hits from the 
experimental search, including previously known and new quenchers. IR , 
infrared; Prod, product; Temp, temperature. Part b is adapted with permis-
sion from ref.18, Wiley-VCH.



reaction product, the method detects the 
interaction strength between an organic 
substrate and a photocatalyst by evaluating 
the luminescence quenching. This approach 
helped in the discovery of two promising 
substrate classes after screening only 
100 compounds, because the excited state 
quenching step in the mechanism determines 
the reaction efficiency. The approach focuses 
on a single-constituent mechanistic step 
by defining the mapping function as the 
quenching percentage — an indication of 
how effectively energy is transferred from the 
excited photocatalyst to organic molecules. 
Here, the selection of reactants at random 
defines the chemical space. Collecting 
the luminescence emission spectra from 
these reactions produces a search space 
in which the degree of quenching can 
be used to identify substrates of interest. 
Applying this approach to a wide variety of 
substrates in a secondary step accelerated 
the discovery of new substrates for the 
development of photocatalysed reactions 
from a large array (~100), as well as yielding 
mechanistic insights. Several classes of 
organic molecules were identified as effective 
quenchers, among them 1H-benzotriazole 
and 4-methoxyphenol. This example 
illustrates how selection of the right assay and 
acceptance criteria can enable algorithmically 
driven systems to explore chemical space.

Building databases
Although it may be desirable to explore 
only a small part of chemical space, it 
remains useful to have access to as large a 
body of chemical knowledge as possible 

from which to choose. Chemical databases 
today contain vast amounts of accessible 
data, though not all are freely accessible. 
Their benefits include a large number 
of data points containing many forms of 
chemical information2, including reactivity, 
analytical data and sometimes metadata 
(information about the data). One key 
question is: how can knowledge of what 
reactions and molecules exist help us to 
discover novel molecules or reactions 
that are not predicted by the database 
entries? First, they can help us pinpoint the 
‘known-unknowns’, worthy of research in 
their own right, but which will help when 
looking for ‘unknown-unknowns’. Simply 
put, a good database can tell us what has 
not been explored as well as what has been. 
However, most databases currently do not 
contain negative results, nor do they offer 
an evaluation of the uncertainty of the 
source data, although multiple examples of 
the same chemical reactivity would allow 
a user to assess its validity19. The scale and 
diversity of the available data indicate that 
using databases for chemical discovery 
is not straightforward and depends on 
the use of suitable methodologies such 
as virtual screening, machine learning 
and statistics20.

The two main methods used to build 
and explore chemical databases include 
virtual screening and molecular design 
(see Fig. 2). Virtual screening encompasses 
the use of computational algorithms and 
models to identify the properties and 
activity of molecules21. Virtual screening 
can also be combined with experimental 

work, such as high-throughput screening, 
to perform more cost-effective research22,23. 
By contrast, molecular design approaches 
the problem from the opposite perspective 
— using stored chemical data to select 
molecules that are likely to fit specific 
design criteria. Using these approaches, 
learning algorithms that can improve 
or predict new properties become 
practical and useful. While both virtual 
screening and molecular design are similar 
in that they search within databases of 
chemical information, they use different 
input parameters and mapping functions, 
as they have different goals. A substantial 
difference is that virtual screening does not 
allow for the prediction of the unknown. 
The stores of chemical data available 
today coupled with the variety of available 
algorithms can help in exploration and 
making discoveries that are inside the 
collected data24. Other approaches that 
use the chemical data in databases are 
explored in the field of chemometrics. 
Chemometrics uses a broad range of 
mathematical and statistical methods,  
on databases and live data, to improve  
the understanding of chemical systems 
and to correlate parameters or physical 
properties with instrumental data25,26.  
As an example, the use of multivariate linear 
regression models utilizing computationally 
and empirically derived physical organic 
molecular descriptors has been described 
by Santiago et al.27, along with a discussion 
about methodological approaches from the 
perspective of reaction optimization and 
mechanistic interrogation.
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Fig. 2 | Creation of databases and the extraction of data. From left to 
right: input data are the collection of features, descriptors and raw data. 
Database structure is the structure holding the data based on the input clas-
sification and the intended use. Interpretation and mapping includes the 
various methods that can be used to identify molecular candidates, depend-
ing on the desired goal, as shown at the top with an example of ligand 

docking. The bottom shows computational molecular design utilizing the 
information gleaned from the databases in order to design molecules that 
are not outside the known collection. Model/output and verification — this 
is the final stage, in which the usefulness of the process is assessed through 
statistical verification methods; the red lines are candidate pathways, and 
the green network is a connected local portion of the chemical network.



A new approach to materials design 
for organic light-emitting diodes was 
demonstrated by Aspuru-Guzik and 
co-workers using high-throughput virtual 
screening. By combining theoretical 
computations, chemoinformatics 
with machine learning and organic 

synthesis, it was possible to successfully 
narrow down the space of 1.6 million 
possible molecules to thousands of 
promising novel organic light-emitting 
diode molecules and then to successfully 
synthesize new organic light-emitting 
diodes28.

Searching chemical space
Chemical space can be searched for specific 
molecules or specific goals such as optimized 
yield or a biological function. This search 
can be performed through two different 
avenues: theoretical and experimental. 
Theoretical searches are an important use 
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case for databases of accumulated chemical 
knowledge. One way of expressing the 
chemical knowledge is by defining a graph 
with molecules as nodes and the reactions as 
edges29. This work, shown in Fig. 3a, created 
a new knowledge representation of chemical 
reactions. Once in this new form, Segler 
and co-workers were able to take techniques 
from the field of network analysis and apply 
them to the chemical problem of reaction 
prediction; the techniques allowed them 
to predict new plausible links in the graph. 
However, they had to adapt the techniques to 
account for the unique attributes that allow 
the edges to represent the reactant, reagent, 
catalyst, solvent and product of the molecules 
in chemical reactions that are missing in other 
types of graph. In addition to the prediction 
of reactions, they were able to predict the 
reaction conditions (that is, reactivity) by 
looking at the paths in the network that 
connect similar molecules. This means that 
the chemical information in databases can 
be used to perform theoretical searches for 
new knowledge among the existing chemical 
knowledge. These searches are made possible 
by reframing chemical information into new 
formats that extend the scope of tools that 
can be used. New developments30 follow 
this path of extending the ways in which 
chemical information can be represented, 
thereby allowing for more methods from 
fields outside of chemistry to explore the 
information within chemical databases.

Retrosynthetic analysis can be considered 
as a reverse search of chemical space, starting 
from the target molecules and recursively 

transforming them into simpler precursors. 
Recently, retrosynthetic searches have been 
automated using deep neural networks and 
symbolic artificial intelligence by Waller 
and colleagues31. The neural networks 
were trained using databases that contain 
essentially all-known organic chemistry in 
order to efficiently guide and preselect the 
most promising retrosynthetic routes.

A common algorithm used for search 
problems is random search. It is both 
simple and limited because it does not make 
use of any feedback from experiments. 
A random search chooses the experiments 
to perform by picking randomly, with all 
possible choices equally probable. However, 
a random search cannot guarantee that the 
most interesting and informative parts of 
the space are being explored. The use of a 
random search for reaction discovery has 
been shown by MacMillan et al.32. However, 
it should be noted that their work would not 
be possible without a number of previous 
studies. For instance, Weber et al.33 described 
how new multicomponent reactions can 
be rationally designed, discovered and 
optimized using automated approaches. 
Beeler et al.34 developed these ideas further, 
building a workflow for reaction discovery 
constituting combinatorial screening, 
liquid chromatography/mass spectrometry/
electrophoretic light scattering (LC/MS/ELS) 
screening, structure elucidation and reaction 
optimization. Multidimensional approaches 
to the high-throughput discovery of catalytic 
reactions have also been demonstrated in the 
work of Robbins and Hartwig35. They were 

able to develop a practical approach to 
chemistry involving a random search, 
avoiding known reagent combinations and 
using rapid analysis by GC–MS (see Fig. 3b). 
A careful selection of candidate pairings of 
the reagents, by deliberately excluding known 
reagent combinations, generates a large 
number of possible reactions to perform. 
Of these options, random search was 
used to carry out the number of reactions 
that could be performed practically. This 
so-called accelerated serendipity provides 
a good starting point for pinpointing new 
reactivity by further testing these potential 
combinations. This subsequent testing of the 
outcomes of the random search led to the 
discovery of a new C–H arylation reaction. 
Although random search is a trivial strategy, 
it can still lead to useful discovery if there is 
an intelligent selection of the search space. 
More examples of this approach can be found 
in the literature36,37.

Intelligent search algorithm approaches 
that generate new experiments to be 
performed using feedback from reactions 
already tested are potentially much more 
efficient for use in chemistry. This is because 
there is inevitably a limited number of 
reactions that can be performed (a reaction 
budget); this budget is better spent on 
reactions that are more likely to match the 
search goal. Algorithms such as simulated 
annealing38,39, genetic algorithms17,40 and 
particle swarm optimization41 choose the 
next experiments using data obtained 
from previous experiments and can be 
referred to as instance-based algorithms. 
These algorithms try to perform successive 
experiments, aiming for improvement in the 
overall trend by selecting each subsequent 
experiment using a statistical approach. 
The more likely directions are the ones 
that the algorithms have determined to 
have the highest chance to yield the biggest 
improvement using prior data. Advances 
in artificial intelligence have also been used 
to optimize chemical reactions using deep 
reinforcement learning. By using recurrent 
neural networks, which are able to retain 
memories of previous experiments, the 
system was able to outperform current 
optimization algorithms42. A further 
example of the application of such 
algorithms is presented in the work of 
Nikolaev et al. for carbon nanotube growth43.

The second approach to search 
algorithms consists of model-based 
algorithms. These algorithms also use 
feedback from previous experiments, with 
the goal of improving the outcome of the 
ongoing search. However, the decision 
is made on the basis of a model of the 
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Fig. 3 | searching for new reactivity , methods or properties. a | Inferring reactivity from a graph 
structure. The traditional representation of a set of chemical reactions is shown in the left panel. 
Graphical representation (shown in the right panel) of the same chemical knowledge: the chemical 
knowledge can be represented as a graph G = (M, R, E), where M denotes molecular nodes, R denotes 
reaction nodes and E denotes directed reaction edges. Searching for new reactivity has been refor-
mulated as a problem of finding missing links in the knowledge graph between reactant molecules. 
The reframing enables the use of a mathematical graph methodology. b | Using high-throughput 
screening to improve the chances of novel reaction discovery. The process begins with substrates 
comprising well-known functional groups (generic organic substituent (R) and heteroatoms in posi-
tions X and Y), which is followed by a large number of reactions being performed by a robotic system. 
In the next step, the potential coupling for each reaction is estimated on the basis of gas chromatography– 
mass spectrometry (GC–MS) measurements. In the final step, initial results are assessed for their  
importance. The reaction shows a hit from the screening — the photocatalysed formation of an 
α-aminocyanobenzene coupling product. c | Machine-learning-assisted materials discovery. The feed-
back loop for learning from historical reactions (shown in the left panel), in which the prediction suc-
cess is based on all possible combinations of the reaction and the conditions involved. The process 
starts with data entry acquired from notebooks, which allows for the generation of reaction and reac-
tant descriptions (database of reaction descriptions), which is then used for training and testing using 
support vector machines (SVMs). From this point, a model of the model construction is used for the 
generation of interpretable decision trees, which allows generating human interpretable hypotheses 
about crystal formation or various other reactant combinations that are set for further recommenda-
tion and experimental testing, which effectively allow closing of the loop. An example of a chemical 
hypothesis (shown in the right panel) generated from the inversion of the machine learning model: 
polarizability and shape of the amine versus additivities and crystallization conditions. Cat, catalyst; 
DMF, dimethylformamide. Part a is adapted with permission from ref.29, Wiley-VCH. Part b is adapted 
with permission from ref.32, AAAS. Part c is adapted from ref.47, Springer Nature Limited.
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space. This model is constructed from the 
available data by an additional algorithm. 
Both during and at the end of a search, 
we possess a model that describes the 
space with improving fidelity; the system 

therefore develops intuition about the 
chemical space as the number of data points 
increases. Of the many different kinds of 
model-based algorithm, some common 
examples belong to the field of design of 

experiments, such as the two-level factorial, 
in which the identification of important 
factors is done at the beginning of the 
process; Plackett–Burman, which is similar 
to two-level factorial design and allows the 
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elimination of unimportant variables or 
factors through a type of screening design; 
full factorial, in which all the compositions 
of the levels of the factors are processed; 
and Box–Behnken, which is a surface 
methodology approach that has three or 
more levels and therefore can be used for the 
design of experiments with three or more 
factors. Finally, Doehlert designs, which, 
unlike Box–Behnken, are not rotatable, 
can give different qualities of estimates for 
different factors, which gives them very high 
efficiency that allows them to have different 
numbers of levels for different numbers of 
factors44,45. Nevertheless, these cannot be 
applied in a so-called black-box approach; 
it is essential to understand the application 
at hand and the data structure. This is due 
to the ‘no free lunch theorem’46, which 
states that in searching and optimization, 
the application of an algorithm to different 
data sets may result in diverse outputs 
and thus, in general, no single algorithm 
is optimal for solving all problems. This 
class of search algorithms in turn uses 
different model-building algorithms such 
as support vector machines (SVMs), 
a machine learning technique that can be 
used for both classification and regression, 
and which is particularly useful in studying 
small data sets. This is especially important 
in drug design for the prediction of various 
chemical properties, the optimization of 
chromatographic separation, fault detection, 
the modelling of industrial processing and 
much more47; self-organizing maps, an 
unsupervised learning method with links to 
artificial neural networks, which could be 
useful in identifying targets for both known 
drugs and computer-generated molecular 
scaffolds48; and kriging, a stochastic method 
for spatial predictions very often used for 
approximation problems49. Models of 
the search space are used in this case to 
enable efficient searching of the space. 
This allows the search algorithm to make 
predictions about the space. Furthermore, 
the models can also be used to characterize 
and understand the search space, with the 

overarching aim of uncovering novel parts of 
the chemical space.

A recent example of this approach has 
been the combination of prior knowledge 
with machine learning algorithms to 
predict the crystallization conditions of 
templated vanadium selenites47, as shown 
in Fig. 3c. An SVM model, trained on 
data extracted from historical reactions 
after adding physicochemical descriptors, 
was able to predict crystallization 
outcomes and outperformed human 
experimenters. Inversion of the machine 
learning model, so that desired outcomes 
led to expected reaction conditions, 
provided recommendations for candidate 
crystallizations. Figure 3c shows one of 
the chemical hypotheses generated by the 
model that was tested experimentally and 
resulted in the identification of several new 
inorganic compounds. This model-based 
approach has also been used by Doyle 
and co-workers to navigate chemical 
space using high-throughput screening 
and machine learning50. By generating 
descriptors of Buchwald–Hartwig amination 
components, the authors were able to 
demonstrate an increase in efficiency of 
yield prediction accuracy using an ensemble 
learning method for classification and a 
regression model called random forest 
that substantially outperformed other  
linear regression models presented in  
the study. This result could be related  
to the fact that random forest is a nonlinear 
approach that randomly samples the data by 
constructing decision trees, which are then 
used to generate overall prediction. This 
was further exemplified by demonstrating 
the applicability of this protocol to 
deoxyfluorination with sulfonyl chlorides51.

Model-based algorithms make use of 
feedback to generate a better model of 
chemical space and hence the potential 
points within it. The model contains the 
information gathered about the space, which 
might also be called its understanding. 
The system is given a chance to develop 
intuition about the chemical space as the 

number of data points increases and as the 
model is updated and refined. The bottom 
line is that using advanced algorithms to 
build models of the search space not only is 
more efficient but also increases the odds of 
generating new chemical knowledge because 
the model includes the collected knowledge. 
Understanding the chemical space can help 
find the parts that are most likely to contain 
the previously unknown. To gather sufficient 
experimental data to create good models, it 
is useful to use automation.

Automating the search
The use of automated approaches in 
chemistry could transform even the 
average laboratory by reducing the manual 
labour and time required for reaction 
preparation and work-up52–55. Robots also 
have the potential to improve the quality 
of experiments by decreasing variability4. 
In addition, the use of automation allows 
the exact operations undertaken for each 
experiment to be logged and linked with 
the results. Later, that information can be 
used for validation or repetition, as well 
as better knowledge archiving, transfer 
and reproducibility. Furthermore, the 
introduction of automation, especially 
in organic synthesis, might enable a 
reactivity-driven rather than target-driven 
search of chemical space16.

The increasing availability of off-the-shelf 
robots capable of performing chemical 
operations allows for higher-throughput 
exploration: the increase in the practical 
number of experiments that can be 
performed can help when using a common 
search algorithm, that is, screening. When 
performing a screening search, the search 
space contains all the possible experiments 
within the constraints of the cost, time 
and resources that are available. Using a 
high-throughput robot greatly increases 
this total number of experiments. When the 
screening begins, all the experiments that are 
to be performed are already scheduled, and 
they are all executed, either in sequence or 
in parallel. An example of this approach was 
described by Santanilla et al.23 (see Fig. 4a).

Standard off-the-shelf robots are 
inflexible in the chemistry that they 
can perform. Santanilla and co-workers 
were able to overcome this limitation by 
devising chemistry specifically suited to the 
capabilities of their robot23. For example, 
by adapting the chemistry to use dimethyl 
sulfoxide as a solvent — a low-volatility, 
plastic-compatible solvent that facilitates 
working at this scale — they were able to 
perform more than 1,500 experiments 
using as little as 0.02 mg of material. This 
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Fig. 4 | Optimizing reaction conditions. a | Nanoscale high-throughput screening. High-throughput 
screening platform for Pd-catalysed cross-coupling reactions at ambient conditions and solubilizing, 
low-volatility , plastic-compatible solvents. To the left, the heat map shows data from 1,536 
nanomole-scale reactions, with one example of a reaction discovered at room temperature (rt) (high-
lighted by a red box). To the right are examples of the high-complexity electrophiles and high-polarity 
nucleophiles used. b | Closed-loop robots work across two separate worlds. The control uses different 
operations needed to perform the desired reactions, such as fluid handling, measuring instruments and 
sensors, and communication and device-level control. The search algorithm operates entirely in silico 
with data from both a priori knowledge, such as chemical reactivity information and stored databases, 
and the live database of current experimental results. These two data sources are transformed into the 
desired conceptual representation using a mapping function that describes the search space. Inside 
this search space, a decision algorithm chooses the sequence of experiments to be performed by the 
control side. DMSO, dimethyl sulfoxide. Adapted with permission from ref.23, AAAS.
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screening step, followed by additional 
lower-throughput screenings scaled up to the 
milligram range, enabled the identification 
of dozens of successful reactions, including 
room temperature, metal-catalysed 
cross-coupling reactions, using several 
organic superbases in combination with 
biaryl palladium precatalysts. The benefits 
of using a high-throughput system in this 
case came with the trade-off of the limited 
chemistry. The advantages offered by robots 
increase greatly with the development of 
new off-the-shelf and bespoke systems 
that provide increased flexibility in the 
chemistry they can perform. By combining 
experimental and chemical design, robotics 
can be used for automatic, precise and highly 
reproducible investigations of reaction 
optimization and discovery. A contrasting 
example of the power of combining 
automation and innovative chemistry can be 
seen in the broadly applicable approach to 
small-molecule synthesis developed by Burke 
and co-workers56; for a general review of the 
subject, see Lehmann et al.57. The platform 
contains three parts: deprotection, coupling 
and purification modules. In the first stage, 
the MIDA boronate (N-methyliminodiacetic 
boronic acid ester) is deprotected to give 
free boronic acid, which is then coupled 
to alkyl and/or aryl halides in the coupling 
module in a Pd-catalysed reaction. The 
products of the reaction are then purified in 
a purification module employing the binary 
affinity of MIDA boronates towards silica 
gel in different solvents. Small molecules 
were synthesized in an iterative fashion 
analogously to peptide synthesis using 
MIDA boronates as the building blocks. 
The general applicability of this process was 
demonstrated by an automated synthesis 
of complex molecules, including natural 
products.

Although this system does not perform 
high-throughput experimentation, it makes 
great use of automation to push the envelope 
and the scope of automated chemistry. 
In another powerful approach, flow 
synthesis was combined with formulation 
to deliver a compact platform for the 
preparation of pharmaceutically active 
ingredients58. For a thorough review of the 
automation of small-molecule synthesis,  
see the recent review by Trobe and Burke59.

Finally, automation is vital in 
closed-loop systems60, as it allows the 
use of feedback-control algorithms as 
described by Gutierrez et al. (see Fig. 4b). 
A useful example of such an application is 
the autonomous system for the controlled 
synthesis of fluorescent nanoparticles 
described by Krishnadasan et al.61.  

On the control side, the system uses a 
microfluidic reactor to carry out the synthesis 
of nanoparticles with an in-line spectrometer 
to monitor the emission spectra of the 
produced nanoparticles. In the search section, 
the data are collected and processed using a 
mapping function called the dissatisfaction 
coefficient, which runs linearly from zero 
to one, in which zero means complete 
satisfaction and one means complete 
dissatisfaction, and the search algorithm 
that was used was stable noisy optimization 
by branch and fit (SNOBFIT), which is 
designed to select continuous parameter 
settings for simulations or to optimize some 
user-specified criterion.

Recently, Aspuru-Guzik and co-workers62 
described a portable and modular software 
framework for operating closed-loop 
systems with integrated robotics, sensors and 
artificial intelligence. This single-software 
framework was applied to a number of 
different tasks, including learning the colour 
space of dyes and autonomously calibrating 
high-performance liquid chromatography 
analysis.

Uncovering novelty
Most chemical discoveries belong to  
three categories: new molecules, new 
reactions and new reactivity. Finding  
new reactivity enables a search for new 
reactions, which in turn aids the discovery  

of new molecules. The amount of chemical 
knowledge contributed by each of these 
types of discoveries means that this is 
also the order of their potential impact. 
Such findings must, by definition, belong 
outside the known or predictable; they 
are outliers and, as such, can oppose 
conventions, assumptions and biases. 
We can use the idea of an outlier to define 
a novel discovery in practical terms as any 
information about the chemical space that 
exhibits sufficiently different outcomes 
from prediction. This definition places the 
burden of the proof of novelty on the source 
of prediction, experimental or theoretical 
knowledge. It would be favourable to define 
a chemical system well enough to be able to 
make predictions based upon it — it then 
becomes possible to seek outliers. Whether 
a value is sufficiently different to be called 
an outlier depends on the characteristics 
of the system under study. This kind of 
anomaly detection is highly developed in 
many fields outside chemistry and may 
enable chemists to better define novelty 
criteria in the future63–65.

The description of scientific work 
as novel can sometimes prove to be 
controversial. We therefore introduce here 
a practical, clear and useful approach to 
novelty. In order to ascertain if a discovery 
is novel, we have developed a simple but 
algorithmically programmable three-step 
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Fig. 5 | A projected 3D search space. The use of a mapping function can transform a 2D chemical 
space into a 3D search space, where the third dimension corresponds to the search goal. Red dots 
indicate known outcomes, whereas blue dots indicate new discoveries.



approach (see Fig. 5). In general, it seeks to 
determine if an outcome is repeatable, new 
and predicted by the current knowledge. 
An implementation for an autonomous 
robot would, in the first step, evaluate 
the reproducibility of the data. This step 
filters for outcomes that simply result 
from a high degree of experimental 
variance. An abnormal outcome can result 
from, for example, contamination or an 
unlikely stochastic reaction. By enforcing 
repeatability on the outcome, such results 
would be excluded as candidates for 
novelty. Second, the chemical databases 
are searched to check if the outcome is 
new. Of course, the values in a database 
may not match exactly the experimental 
result, but as long as they are within a given 
margin, they should be used to conclude 
whether an outcome is new. Third, if the 
observation is new, then a determination 
about the predictability of the outcome 
from the current body of chemical 
knowledge is made. Put simply, if a result 
can be reached by whatever means from 
current available information, then it is 
predictable. It is possible to imagine that 
the rules of organic synthesis, including 
all the known transformations, could be 
encoded into a model2 and then that novelty 
could be discovered when new reactions, 
molecules or reactivities are found when 
these rules are broken. If not all chemical 
rules are known, then novelty would 
involve adding new rules. The question of 
predictability is potentially very difficult 
to objectively determine, and hence, many 
experts often argue if an outcome is novel 
when considering all chemical knowledge. 
However, for the purposes of the system 
doing the measurements, the system can 
easily determine all three steps from its 
internal perspective. It is entirely plausible 
that chemical platforms could find outcomes 
that are novel given the information 
supplied to it, but when approached with the 
benefit of broader knowledge, the outcomes 
are no longer novel. This general approach 
serves two purposes: it frames a discussion 
of how to decide whether an outcome is to 
be considered novel, but more importantly, 
it also allows, in a practical way, a robot to 
conduct a deliberate search for novelty in an 
automated fashion. This approach can help 
chemists on two fronts: the former gives 
them a framework to evaluate chemical 
outcomes, while the latter enables the use of 
robots that can assist in exploring chemical 
space. Seeking outliers and then evaluating 
their novelty may seem straightforward, but 
we must still address the question of the best 
way to find outliers in chemical systems.

Outliers stand out because they 
contradict the knowledge gathered about 
the search space. Thus, a system needs a 
picture of the search space while the search 
is being conducted. In other words, outliers 
are easier to define when using a model.  
By using a model-based search algorithm, 
the system (and the chemist) will have 
a better understanding of the space, as 
the model can be used to explain and 
predict the space (see Fig. 5). By making 
predictions, we can subsequently find parts 
of the chemical space that do not match the 
results that are anticipated. This means  
that a search algorithm with a valid model 
(for example, of a reactivity pattern) 
allows the experimenter to make a clearer 
distinction between outliers that represent 
novel discoveries and ones that do not 
(Fig. 6). The more data the model is based 
on, the more precise the result.  
Thus, as the search algorithm performs 
more experiments and the model is 
dynamically updated as the results are 
obtained, the model is likely to have an 
improved ability to find outliers. A good 
model will help the search algorithm to 
prepare good experiments that add more 
information about the system. Using this 
flexible and adaptive approach, we can 
thus reach a far more comprehensive 
understanding of the chemical system 
under study and the chemical space that it 
embodies. This means that new information 
— not deducible using conventional 
techniques with small numbers of 
experiments — will become available, and 
by applying big data approaches and deep 
learning techniques, we will challenge our 
view of the rules of chemistry.

Conclusions
Major hurdles towards efficient 
exploration and discovery in chemistry 
include the difficulty in designing new 
ways to automatically search chemical 
space and the use of the appropriate 
search methodologies. The potential for 
improvement encompasses both basic 
and advanced chemical research, from 
basic reaction parameter optimization to 
novel reaction discovery. When combined 
with automated robotic systems, suitable 
algorithms can provide autonomous 
operation, allowing for larger chemical 
systems along with increased precision 
and reproducibility. However, the choice 
of the search algorithm and overarching 
framework must consider the characteristics 
of chemical space. The characteristics of this 
space, most notably its sparsity and practical 
limitations, offer two alternatives. The 

first and most common is to use heuristics 
to focus the space on areas that are easier 
to work with. The drawback of this 
approach is that it might suffer from biases 
that eliminate possible discoveries. The 
second is to use a search framework with a 
model-based search algorithm looking for 
outliers. By using a dynamic model search 
space, the chemical space can be explored 
with the presence of outliers directing the 
search towards the discovery of chemical 
novelty. To do this, we must not forget that 
chemists set out not only to discover new 
reactions but also to apply known design 
rules to make new molecules.

Ultimately, if chemical artificial 
intelligence (CAI) can be used to break 
the rules, find new reactivity and then 
update the rules, enabling the design of new 
molecules, then chemists will be able to 
replace serendipity with certainty. Once this 
becomes possible, the rate of discovery in 
chemistry will increase dramatically. This 
is because the use of CAIs enables chemists 
to challenge the current rules through the 
removal of bias. We predict that this will 
greatly accelerate the pace of discovery of 
new molecules, reactions and reactivity 
patterns. To do this, it is important to 
realize that a given reaction or reactivity 
pattern does not constitute a fixed law; 
although these reactions and patterns are 
extremely useful practical guides and use a 
consistent chemical language, they should 
be viewed as another layer of abstraction. 
The challenge for scientists is to step 
beyond their bias and instead use their 
expert knowledge together with CAI and 
chemical robots as a tool to venture into 
the unknown and to boldly go and explore 
chemical space.
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Fig. 6 | A flow chart to assist in a strict defini-
tion of validity , newness and novelty. A result 
is valid only if repeatable, new if not previously 
observed and novel only when the result would 
not be (easily) predicted on the basis of prior 
results.
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