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C H E M I S T R Y

A curious formulation robot enables the discovery 
of a novel protocell behavior
Jonathan Grizou, Laurie J. Points, Abhishek Sharma, Leroy Cronin*

We describe a chemical robotic assistant equipped with a curiosity algorithm (CA) that can efficiently explore the 
states a complex chemical system can exhibit. The CA-robot is designed to explore formulations in an open-ended 
way with no explicit optimization target. By applying the CA-robot to the study of self-propelling multicomponent 
oil-in-water protocell droplets, we are able to observe an order of magnitude more variety in droplet behaviors 
than possible with a random parameter search and given the same budget. We demonstrate that the CA-robot 
enabled the observation of a sudden and highly specific response of droplets to slight temperature changes. 
Six modes of self-propelled droplet motion were identified and classified using a time-temperature phase diagram 
and probed using a variety of techniques including NMR. This work illustrates how CAs can make better use of a 
limited experimental budget and significantly increase the rate of unpredictable observations, leading to new 
discoveries with potential applications in formulation chemistry.

INTRODUCTION
The investigation of multicomponent chemical formulation is a labo-
rious and time-consuming effort. The combinatorial explosion, 
nonlinear properties, and rare events mean that even an expert ex-
perimentalist requires enormous resources to make significant dis-
coveries. Although laboratory automation has shown a remarkable 
increase in experimental throughput (1, 2), it does not change the 
relative rate of discoveries (with respect to the rate at which experiments 
are done) because the paradigm used to select experiments does not 
change alongside it. An appealing alternative is to implement the 
curious and knowledge-based inquiry process inherent in scientific 
researchers within a reliable and high-throughput robotic system (3–5). 
Statistical methods were previously introduced to analyze the vast 
quantities of data generated by laboratory robots (6, 7), and recent-
ly, machine learning algorithms have started to be integrated into 
laboratory equipment (8, 9). However, most of these methods focus 
on the optimization of targeted properties (10, 11) or require previ-
ous knowledge (12, 13).

Here, we focus on exploration for its own sake. We describe an 
experimental method (Fig. 1) that implements state-of-the-art curi-
osity algorithms (CAs) into a newly designed parallel laboratory robot 
(CA-robot; Fig. 2 and see the “Robotic platform: Dropfactory” sec-
tion in the Supplementary Materials). CAs have been developed to 
replicate curiosity-driven learning in humans (14, 15) and make use 
of knowledge acquired from developmental psychology, neurosci-
ence, artificial intelligence, and robotics (16). CAs have previously 
been shown very efficient at exploring systems in simulated problems 
or constrained robotic scenarios (17–19). Because CAs are designed 
to actively and autonomously select experiments that maximize the 
number of new and reproducible observations, applying CAs to the 
exploration of chemical systems could markedly improve the rate of 
new scientific observations in the laboratories.

Our CA, called random goal exploration (17, 20), is the simplest 
of its algorithmic family, is easy to describe, and still performs com-
paratively to other implementations (17), making it an ideal candi-

date for this interdisciplinary didactic study. To select a new exper-
iment, rather than deciding directly on experimental parameters, the 
CA generates a self-determined temporary target defined on the 
observation space.

The observation space is defined by the scientists and consists of 
properties of interest of the chemical system they wish to explore. 
The temporary target represents an observation that the CA-robot 
will try to generate from the chemical system by defining a new ex-
periment. To do so, the CA-robot refers to the dataset of previous 
experiments performed and builds a temporary model of the system 
using a regression algorithm. The model is used to infer the experi-
mental parameters that are most likely to lead to the observation of 
the self-determined target.

The selected experiment is then undertaken, leading to a new 
observation. The experiment results (both parameters and observa-
tions) are added to the dataset of previous experiments and will help 
improve the quality of the model, in turn improving the performance 
of the CA. The CA-robot repeats this process for a given number of 
iterations defined by the experimental budget allocated to the proj-
ect. We highlight that the CA-robot always starts with zero experi-
mental data and builds the dataset at the same time as it explores and 
learns about the system. For the first experiment, the CA cannot use 
any previous information. To define the Nth experiment, it will be 
able to reuse the N − 1 experiments previously performed. We em-
phasize that a CA generates a new temporary target for each new 
experiment, and our CA samples temporary targets from a uniform 
probability distribution over the observation space. A detailed de-
scription of the algorithm is available in the “Curious algorithm: 
Random goal exploration” section in the Supplementary Materials.

To understand the benefit of this approach, consider the analogy 
with learning to play golf for the first time with no tuition. With each 
shot, you can vary how you hit the ball and with what club (your 
experimental parameters). Your aim is to learn a wide skill set and 
discover where you can send the ball (your observation space). 
Every time you play a shot, you learn from how it went and apply 
that knowledge to your future shots (you are building a model from 
the dataset of past experiences). The exploration question we consider 
in this work is: How do you allocate your time? Should you try con-
tracting your muscles randomly and observe where the ball lands 
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(random parameter search) or should you try to set yourself ran-
dom targets to reach and observe how far from these targets the ball 
lands (our CA, called random goal exploration)? The problem is the 
same in experimental sciences: When faced with the task to de-
cipher an unfamiliar system (hitting a ball with a club), should we 
try experiments at random and observe how the system reacts (con-
tract your muscle randomly) or should we try to target specific 
states or properties and observe if we can generate them (set your-
self different targets and learn from the process)? In the first ap-
proach (called “random” in this work), many experiments will tend to 
produce no interesting or new effects (e.g., missing the ball), and 
in the second approach (called “CA” in this work), many targeted 
states will tend to be out of reach of the system (e.g., putting the ball 
on the moon). However, the strength of the CA approach is that, 
even if many targets cannot physically be attained, the process of 
trying to reach them has been shown to generate more varied ob-
servations than the random approach and without the need of under-
standing the system in study (17).

We tested our approach on dynamic oil-in-water droplets—promising 
protocell models (21, 22) displaying an astonishing range of life-
like behaviors, including movement, division, fusion, and chemotaxis 
(23–26). Although these droplets are thought to be driven by Marangoni 
instabilities originating from surface tension asymmetry (27), to date, 
the understanding of even the most simple systems remains limited 
(28, 29). Hence, oil-in-water droplets offer a great example of the chal-
lenges in studying complex and poorly understood systems where 
few components can lead to the emergence of a range of complex 
properties or behaviors, a topic of great relevance across many indus-
tries. To perform the experiment, we designed a new high-throughput 
droplet dispensing robot with parallel operations (Fig. 2 and movie S1; 
see the “Robotic platform: Dropfactory” section in the Supplemen-
tary Materials) that can complete more than 30 experiments per hour, 
a six-time throughput increase from previously reported platforms 
(24, 26). Our CA-robot can perform droplet experiments, record and 
analyze the droplets’ behaviors, and select the next experiments in 
full closed-loop autonomy.

Fig. 1. Description of the CA and the exploration methodology. (Top) Left: Explanation of the research question and approach. Right: Nomenclature of the terms used 
to describe our methodology using the droplet system in study as our example. (Bottom) Flow chart of the CA algorithm. At each iteration (one iteration = one experi-
ment), the CA first generates a new temporary target that represents a desired observation. It then collates all the experimental results collected so far and uses them to 
build a model, which is used to infer the experimental parameters most likely to achieve the temporary target. The said experiment is then tested, and the results are 
stored in the dataset. The CA repeats this process until the budget allocated to the exploration is used up (1000 experiments in this work).
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RESULTS
Discovery of an anomaly
The first objective of this study was to compare the efficiency of our 
CA approach and a random parameter search (also called screening 
in high-throughput automation) at generating varied observations 
from our droplet system. We gave ourselves a finite experimental 
budget of 1000 experiments and compared the range of behaviors 
we could observe using the CA or the random algorithm—both algo-
rithms being tested three times. Our parameter space is composed 
of all possible mixtures of four oils [octanoic acid, diethyl phthalate 
(DEP), 1-octanol, and 1-pentanol] from which our droplets are made. 
We chose our observation space as the droplet’s speed and number 
of divisions, both selected due to their inherently interesting nature 
and similarity to the behaviors of simple life-forms that can move and 
replicate (see the “Algorithms implementation” section in the Sup-
plementary Materials for more details).

While these specific droplet behavioral metrics were relevant in 
this context, the methodology and principles applied here are not spe-
cific and could apply to many other metrics or systems. For example, 
we could consider the droplets’ shape as an additional dimension 
of observation. In reaction experiments, the parameters could be the 
quantity of each starting material and the environmental conditions 
(temperature, pressure, etc.), and the observation space could be the 
yield of each compound in the final product. In formulation exper-
iments, the observation space could be the viscosity, density, elasticity, 

smell, color, etc. of a mixture that one might want to explore accord-
ing to an initial mixture composition (the parameter space). Con-
cretely, in pigment mixing experiments, the parameter space could 
be the composition of a mixture of pigments, and the observation 
space could be the resulting color after mixing, e.g., in the red-green-
blue space.

To our surprise, during our first set of CA experiments, we no-
ticed a marked change in the observable outputs for our third repeat 
compared with the first and second repeats, namely, at the third re-
peat, no droplets were observed with speed above 5 mm s−1 (see the 
“Observations leading to the discovery of a temperature effect” section 
in the Supplementary Materials). Our expectation was to get roughly 
the same range of droplet behaviors at each repeat because we con-
sidered the same droplet system and the same algorithm. After care-
ful investigation of all possible causes for this anomaly (change in 
chemicals, experimental conditions, robotic process, tracking algo-
rithm, etc.), we identified temperature as the most probable factor 
behind the observed phenomenon. The temperature in the room might 
have changed between the second and the third repeat. However, as 
in all previous reported work on this droplet system (24, 26), the tem-
perature was neither recorded nor controlled, and all experiments 
were performed at room temperature. A new set of questions emerged: 
(i) Can a change of only a few degrees Celsius really affect our drop-
let system? If yes, how and to what extent? (ii) Was it the CA algo-
rithm that allowed the observation of this anomaly? Or would it have 
been as likely for us to make our serendipitous observation with the 
random algorithm if the temperature had changed too? We answer 
first the latter questions and then characterize thoroughly the tem-
perature effect on our droplet system.

Proving that the discovery was enabled by the CA algorithm
To test whether our discovery was enabled by the CA algorithm, we 
ran three repeats of both algorithms (CA and random) at 22.6° ± 0.5°C 
and 27.0° ± 0.7°C (mean ± SD). At 27°C, and given the same budget 
of 1000 experiments (each lasting 90 s), the CA-robot generated sig-
nificantly more varied droplet behaviors than the random parame-
ter search (Fig. 3, B and C; notice the higher speed and division of 
droplets observed using the CA versus the random methodology). 
We quantified this exploration (see the “Exploration measure” section 
in the Supplementary Materials) and found that the CA enables us 
to observe 73.4 ± 15.2% of the total observable space, ca. 3.3× more 
(P = 0.039, Welch’s t test) than a random parameter search (22.5 ± 
2.1%) within the same experimental budget. After only 128 experi-
ments, the CA-robot already generated more varied experiments than 
random parameter search did in 1000 experiments (Fig. 3A), a seven-
fold efficiency gain in time and resources given the same hardware 
setup. Movie S2 illustrates the exploration over time using both the 
CA and random; notice how even after as few as 50 experiments, the 
CA-driven exploration is already identifying more extreme cases of 
droplet behavior, and this differentiation only increases as more ex-
periments are undertaken. Strikingly, the number of active droplet 
experiments observed (speed, >3 mm s−1) is as low as 28.7 ± 0.9 for 
random parameter search but jumps to 395.0 ± 16.5 for the CA, a 
14-fold improvement (P < 0.001), without explicitly asking the ro-
bot to generate high-speed experiments. This is further visualized in 
movie S3, which shows videos of the 1st, 10th, and 50th highest speed 
recipes from the two approaches.

The above result shows convincingly that, at a given temperature 
of 27°C and with a given budget of 1000 experiments, the CA enables 

Fig. 2. Diagram of the closed-loop workflow of the robotic platform. (Top) Left: 
Schematic of new high-throughput droplet-generating robot developed for this work 
in the “Robotic platform: Dropfactory” section in the Supplementary Materials. The 
robot runs the experiments by first mixing the oils according to specification and 
then prepares the aqueous phase and places droplets in the petri dish using a sy-
ringe. The motion of the droplet video is recorded and analyzed. Once the experi-
ment is completed, the platform cleans the entire system. Right: Droplet contours 
and positions are extracted from the video data. (Middle) Right: From the trajectories, 
the average speed and number of droplets generated per experiment was deter-
mined. Left: Experimental parameters are the proportions of each oil comprising our 
droplets, which are then used by the platform to perform the next experiment. (Bottom) 
The CA learns from the observations and defines new experiments to be tested 
(see Fig. 1).
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us to observe more varied droplet behaviors than a random parame-
ter search. But could the temperature effect still have been observed 
by the random parameter search? Figure 3 compares the distribu-
tion of the speed of droplet experiments generated by both algorithms 
at 22.6° ± 0.5°C and 27.0° ± 0.7°C. The ca. 4.4°C temperature change 
has a significant impact on the observations made using the CA (395.0 ± 
16.5 versus 93 ± 43.1 active droplets, P = 0.005), while a negligible 
change is observed with a random parameter search (28.7 ± 0.9 ver-
sus 19.3 ± 7.6 active droplets, P = 0.22). Notice the differences in the 
distribution of speed observed for each algorithm at both tempera-
tures in Fig. 3 (E and F). This key result allows us to claim that our 
initial observation of the temperature “anomaly” was only feasible 
because of the exploratory benefits that our CA algorithm provides. 
By extension, we have shown that to explore a new system along prop-
erties of interest, it is more efficient to set temporary targets randomly 
in the observation space and to try to reach them than to try random 
combinations of parameters. In other words, using a CA over a random 
parameter search to design exploratory experiments for an unfamiliar 
system is a better use of a limited experimental budget.

Characterizing the temperature effect
To study this newly observed effect in detail, we ran targeted droplet 
experiments within the range of temperatures accessible in the room 
(20° to 30°C). There were significant, unexpected, and nonlinear vari-
ations in the behavior of the droplets of different compositions due 
to temperature (see the “25 recipe temperature screen” section in the 
Supplementary Materials). Such variations were highly reproducible, 
as, for a given recipe, the observation of droplets’ behavior is enough 
to infer the room temperature with high accuracy (prediction error 
of 0.05 ± 0.66°C; see the “Droplets as temperature sensors” section 
in the Supplementary Materials), a testament to both the reproduc-
ibility of the droplet behaviors and the existence of a delicate tempera-
ture effect. This is rather striking given the complexity of the system, 
the time scale of an experiment, and the relative simplicity of our video-based 
analysis. One recipe of interest (composed of 1.9% octanoic acid, 47.9% 
DEP, 13.5% 1-octanol, and 36.7% 1-pentanol) was further analyzed. 
The vast differences of speed observed with this recipe to small tem-
perature changes are illustrated in movie S4. To probe the causes behind 
these observations, we ran longer (15-min) droplet experiments at a 

Fig. 3. A summary of the results generated using our CA-robot, illustrating how the CA enables both significantly greater exploration of the behavioral space 
and the discovery of temperature sensitivity of the droplets. Left: Comparison of the observed droplet behaviors after 1000 individual experiments for CA and ran-
dom (average of three repeats, with shaded area showing 68% confidence interval). (A) Evolution of the percentage of the behavior space explored between the two 
methods. CA explored 3.3 times more within the same experimental budget (73% versus 22%) and generated as diverse observations as random after only 
128 experiments—a sevenfold reduction in time and financial cost for equivalent results. (B and C) Visualization of the observations made by each method for each 
repeat; each scatter dot represents the average speed and number of droplets for a single 90-s droplet experiment. CA (B) leads to many more observations of rare and 
interesting droplets than random (C). Right: Effect of temperature (22.6° ± 0.5°C versus 27.0° ± 0.7°C) on the observations made using each algorithm. (D) Number of droplet 
experiments observed with a speed faster than 3 mm s−1 for each method and temperature, with error bars showing the SD. The CA-robot, by performing the same number 
of experiments, generated 14 times more interesting droplet recipes than random at 27.0°C (395 versus 28, P < 0.001) and 5 times more at 22.6°C (93 versus 19, P = 0.13). 
A change of only ca. 4.4°C led to a large and significant difference in the observed droplet behaviors when using the CA (395 versus 93, P = 0.005). This difference in effect 
could not be significantly observed when using random (28 versus 19, P = 0.22). This is confirmed by (E) and (F), which show the distribution of observation for CA and 
random, respectively. (E) The distribution of observations has a strong tail indicating a wider exploration from the CA-robot, and there is a significant difference between 
observations made at 27.0° and 22.6°C that is not observable at random (F). By focusing on the output space, the CA-robot provides a more accurate picture of the system 
for the same experimental budget, which allowed the discovery of this delicate temperature effect.
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range of temperatures (see the “15 minute experiments” section in the 
Supplementary Materials). Surprisingly, as shown in Fig. 4A and 
movie S5, the droplets were seen to exhibit two peaks in their speed-
time profile—they accelerate to achieve a first maximum speed, de-
celerate, and then accelerate again to reach a second maximum speed. 
The temperature effect on droplet motion can be seen in the variation 
of their speed profile, with the peak speed timing and magnitude ex-
hibiting clear trends with temperature, with the peaks occurring earlier 
and with a greater magnitude for hotter experiments.

Using the droplet displacement data, we identified six clear stages 
of droplet motion: initiation, fluctuation, irregular, deceleration, con-
tinuous, and saturation, of which characteristic examples may be seen 
in Fig. 4G (P1 to P6). During the initiation stage, the droplet vibrates 
around a point, showing little locomotion and low speeds. During 
fluctuation, these vibrations extend and the droplet speed increases 
before peaking during irregular motion, in which the droplet moves 
short distances in alternating directions. This is followed by a decel-
eration stage, during which the droplets slow down and display smoother 
motion, which then develops into continuous motion, during which 
concerted movement is seen and resulting in a more circular mo-
tion of the droplets around the dish. Eventually, the saturation stage 

is reached, in which the droplets slow down again and come to a halt. 
The peak speeds are observed for the irregular (purple) and contin-
uous (orange) modes of motion, with the deceleration (green) period 
existing in between these two. A temperature-time phase diagram 
was derived showing the times at which each distinct phase of mo-
tion occurs at different temperatures (Fig. 4C and see the “Generating 
the temperature-time phase diagram” section in the Supplementary 
Materials). The temperature-time phase diagram was created by calcu-
lating the intercept between cumulative distance traveled plots and 
linearly fitted transition times (Fig. 4B). The phase transition times 
were each defined by characteristic points in the droplet acceleration 
time plots. This phase diagram highlights the strong temperature de-
pendence on the duration of each of the phases of motion and can 
be used to predict the mode of droplet motion observed at any time 
or temperature within the studied range.

Oil dissolution into the aqueous phase is hypothesized to play a 
major role in the observed droplet behaviors (27, 29), with oil disso-
lution affecting the interfacial tension, leading to droplet motion in-
duced by Marangoni instabilities. We used a previously reported 
1H nuclear magnetic resonance (NMR) spectroscopic method (24) to quan-
tify the aqueous phase oil concentration during droplet motion at 

Fig. 4. A summary of the analysis undertaken on a focus recipe, which resulted in the classification of six phases of droplet motion and the production of a 
time-temperature phase diagram. (A) Temperature dependence of droplet speed versus time. Each color represents all experiments consisting of four droplets under-
taken in a given temperature interval of 1°C. (B) Temperature dependence of droplet cumulated distance moved versus time. The black dashed lines show the phase 
transitions in droplet motion that are used to estimate the phase diagram and are calculated by linear fitting of maxima and minima in the acceleration profile at each 
temperature interval. (C) Temperature-time phase diagram of droplet motion showing different phases: initiation (P1), fluctuation (P2), irregular (P3), deceleration (P4), 
continuous (P5), and saturation (P6). The marked data points correspond to the intercepts shown in (B). (D and E) The trajectory of a single droplet at 21.44°C (D) and 
27.39°C (E), with different motion phases highlighted by color. (G) Exemplar 36-s segments of each phase of motion, with each point showing the droplet location every 
0.25 s at 27.39°C (E). Each example trajectory contains the same number of points to emphasize the differences in distance covered during the different phases, which is 
quantified in the cumulative distance per phase plots (F) for the droplet trajectories seen in (D, left) and (E, right).
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22.4° ± 0.2°C and 27.7° ± 0.2°C (see the “1H NMR oil dissolution analy-
sis” section in the Supplementary Materials). A 5°C temperature in-
crease is seen to accelerate the dissolution of all oils (Fig. 5).

Pentanol dissolves fastest and to the greatest level, as expected by 
its relative solubility. Octanoic acid dissolves to a fixed level early in 
the experiment and then stays constant; this is expected due to its 
low concentration in the formulation and the fact that it will rapidly 
deprotonate at high pH. As previously reported (24), we note the pres-
ence of ethanol due to the base catalyzed hydrolysis of DEP. DEP and 
ethanol have different final concentrations at the different tempera-
tures, as temperature affects the equilibrium of the hydrolysis reaction, 
as opposed to only physical processes driving the other oil dissolution. 
Octanol, DEP, and ethanol dissolution are delayed as compared to 
pentanol dissolution, suggesting that pentanol dissolution is the main 
contributor to the first peak of droplet motion.

To confirm this hypothesis, we compared the oil dissolution rates 
with the droplet motion data, as shown in Fig. 6 (A and B) and de-
tailed in the “Associating physical and chemical analysis” section in 
the Supplementary Materials. The rate of pentanol dissolution is seen 
to be rapidly increasing during the fluctuation and irregular phases 
before rapidly decreasing during the deceleration phase. This indi-
cates that pentanol dominates the early stages of droplet motion and 
that its dissolution is the primary cause of the fluctuation and irreg-
ular forms of motion. As pentanol dissolves so fast in these early stages, 
it is expected that the motion is sporadic, as rapid dissolution in all 
directions (Fig. 6C) prevents the initiation of structure, regular flows, 
and a more continuous form of motion. Because pentanol dissolu-
tion has largely ceased by the time of the continuous phase of mo-
tion, while the other oils are still dissolving to significant levels, it 
appears that DEP/ethanol and/or octanol are the primary driving 

forces of the continuous period of motion. We hypothesize (Fig. 6D) 
that the more gradual rate of dissolution during the continuous phase 
of motion allows a positive feedback loop to be set up between oil 
motion, dissolution, and Marangoni flows (30, 31). As the droplet 
moves in this phase, it advects “fresh” surfactant solution onto its 
anterior face (via collision with empty micelles and free surfactant 
molecules) and leaves a trail of oil-filled micelles in its wake (via oil 
dissolution). Thus, the interfacial tension is higher at the posterior 
face, as there are more oil-filled micelles and less free surfactants in 
this zone. As there is an interfacial tension differential between the 
anterior and posterior faces of the moving droplet, a Marangoni flow 
is induced, supporting the forward direction of motion, providing a 
positive feedback loop for continued forward motion. This hypoth-
esis is also supported by the observation that droplets often avoid fol-
lowing the recent path of other droplets. When the oil dissolution 
rates begin to saturate, the continuous motion slows and stops.

We cannot ascertain from the previously discussed data whether it 
is DEP, ethanol, and/or octanol dissolution that is the primary cause 
of the continuous phase of motion. To discriminate between these, 
we varied the pH of the surfactant containing aqueous phase, which 
had a significant impact on the oil droplet behavior. As the pH and 
temperature are increased, DEP hydrolysis is significantly acceler-
ated, (32), leading to an earlier and larger second continuous motion 
peak (fig. S36). With increasing pH, there is also a 106-fold increase 
in ionic strength, significantly reducing the aqueous solubility of alco-
hols (33), thus lowering the dissolution of pentanol and reducing the 
irregular motion peak. These results together indicate that DEP hy-
drolysis is the primary cause of the second movement peak and continuous 
phase of motion. A range of experiments in which the pentanol-
octanol ratio, the alcohol chain length, and the number of droplets 

Fig. 5. Oil concentration in the aqueous phase over time at 22°C (black) and 28°C (red), as quantified by 1H NMR spectroscopy. Note how each oil (A to D) dissolves 
faster at the higher temperature, while DEP (C) and ethanol (D) also dissolve to different final concentrations. Note differences in y-axis scale—pentanol (A) dissolves 
around five as much as the other oils. When regulated to a target of 22°C, the temperature at the experimental location was 22.4° ± 0.2°C. When regulated to a target of 
28°C, the temperature at the experimental location was 27.7° ± 0.2°C.
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placed were varied further confirmed the links between pentanol 
and the first speed peak and DEP and the second speed peak (see the 
“Additional experiments to probe the system” section in the Supple-
mentary Materials).

As a proof of concept, we investigated the use of droplets as con-
tainers with temperature-dependent release for active molecules. 
Our experiment showed that the dye methylene blue was released 
2.5 times faster at 28.6° ± 0.6°C than at 17.6° ± 0.2°C (see the “Tempera-
ture controlled dye release” section in the Supplementary Materials 
and movie S6).

DISCUSSION
By designing a droplet-generating robot equipped with a CA (CA-robot), 
we were able to uncover the temperature sensitivity of our self-
propelled droplet system. We demonstrated that, given the same exper-
imental budget, this temperature effect could not have been observed 

using a random parameter search. This illustrates that CA-robots 
can be of significant advantage to assist scientists in revealing prop-
erties of unfamiliar systems as they can generate a wider variety of 
observation. Using physical and chemical analysis, we characterized 
the discovered effect and derived a phase diagram of droplet motion 
through time and temperature, which links to the underlying oil dis-
solution processes. This chemical analysis revealed the astonishing 
complexity that underlies the dynamics of our four-component oil-
in-water droplet system. This is the first time a CA has been used for 
the exploration of a physical system in the laboratory using a fully 
automated robotic platform. Future research will focus on construct-
ing the observation dimensions autonomously from the droplet videos 
in an unsupervised way, as in this work the observation space was 
designed by the authors, which potentially introduces human bias 
that can limit possible discoveries.

MATERIALS AND METHODS
Robotic platform
We designed a high-throughput droplet-generating robot (Fig. 2) that 
can execute and record a 90-s droplet experiment every 111 s, in-
cluding mixing, syringe-driven droplet placement, recording, cleaning, 
and drying. This minimal overhead time was achieved by paralleliz-
ing all operations, enabling our platform to routinely perform 300 drop-
let experiments per day in full autonomy. The platform and sequence 
of operations are described in the “Robotic platform: Dropfactory” 
section in the Supplementary Materials, with code and design avail-
able online.

Droplet chemistry
The oil-in-water system comprises four droplets composed of a mix-
ture of four oils placed onto a surfactant containing aqueous phase in 
a petri dish (26). An experiment consists of preparing a formulation 
of octanoic acid, DEP, 1-octanol, and 1-pentanol at a specific ratio deter-
mined by the algorithm and dyed with Sudan Black B dye (0.5 mg ml−1). 
The oil mixture was sampled by the robot using a 250-l syringe and 
delivered as 4 × 4 l droplets in a Y pattern from the center of a 32-mm 
petri dish filled with 3.5 ml of a 20 mM cationic surfactant [myristyl-
trimethylammonium bromide (TTAB)] solution raised to a high pH 
(ca. 13) using NaOH (8 g liter−1). The droplet-making procedures are 
described in the “Oil and aqueous phase preparation” section in the 
Supplementary Materials.

Image analysis
Droplet experiments lasted 90 s for exploration experiments and 900 s 
for the time-temperature phase diagram analysis. The droplet activity 
was recorded at 20 fps and analyzed using computer vision. Droplet 
contours were extracted using a thresholding algorithm and tracked 
through frames using a proximity rule. The droplets’ average speed 
and the average number of droplets in the dish (droplets can split, fuse, 
or leave the tracking area) were quantified and used as the observa-
tion space for exploration experiments. For time-temperature profiles, 
metrics were computed through time using a sliding window of 2 s. 
The droplet tracking procedures are described in the “Droplet track-
ing” section in the Supplementary Materials.

Algorithmic implementation
Experimental parameters were generated as a four-dimensional vec-
tor representing the ratio of each oil in the droplet mixture. Observations 

Fig. 6. The correlation between oil dissolution and droplet behaviors and sche-
matics illustrating the proposed mechanisms for the irregular and continuous 
phases of motion. (A) Average oil droplet speed (colored plot; left, y axis) observed 
at 28°C (average across eight experiments processed via a 10-s moving average), 
with the color corresponding to the phase of motion (cyan, initiation; yellow, fluc-
tuation; purple, irregular; green, deceleration; orange, continuous; and blue, satu-
ration). The gray lines illustrate the rates of oil dissolution (right hand, y axes) from 
the fitted 1H NMR spectroscopy dissolution data. (B) Difference between the sum 
of the rates of DEP, ethanol, and octanol dissolution and the rate of pentanol disso-
lution against time. Note the peak difference in favor of pentanol at 124 s, the point 
at which the rates are equal at 277 s and the peak difference in favor of DEP, ethanol, 
and octanol at 405 s. These times are also marked in (A) and correlate closely with 
the irregular-deceleration transition, rapid acceleration in the continuous phase, and 
the maximum droplet speeds in the continuous phase. (C) Schematic illustrating the 
proposed mechanism for the fluctuation and irregular phases of motion. Rapid 
pentanol dissolution in all directions (black arrows) into a largely oil free aqueous 
phase containing many empty micelles and free surfactants leads to no concerted 
directional motion but rather erratic motion in various directions (purple arrow). 
(D) Schematic illustrating the proposed mechanism for the continuous phase of 
motion. At this time, total oil dissolution is slower. The front of the moving droplets 
contacts “fresh” aqueous phase, while the rear of the droplet leaves a trail of “filled” 
micelles. Thus, the interfacial tension is lower at the front of the droplet, leading to 
a positive feedback loop of forward motion via Marangoni flows.
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were represented as a two-dimensional vector representing the av-
erage speed and average number of droplets in an experiment. The 
CA algorithm, called random goal exploration, samples temporary 
targets from a uniform distribution over the observation space. The 
forward model was built uniquely from previous observations using 
locally weighted linear regression, and the inverse model was solved 
for each target using the CMA-ES algorithm on the learnt forward 
model. The CA implementation is described in the “Algorithms im-
plementation” section in the Supplementary Materials.

Phase diagram experiments
To investigate the temperature effect, 72 15-min experiments were 
performed at temperature ranging from 20° to 30°C. Fifty-nine of them, 
evenly distributed in the temperature range, were exploited to build 
the time-temperature phase diagram. The experiment was binned in 
1°C intervals, and phase changes were identified from inflection points 
in the droplet average speed and acceleration profile for each bin. 
The procedure is described in the “15 minute experiments” and “Gen-
erating the temperature-time phase diagram” sections in the Supple-
mentary Materials.

Data availability
Because of the large total size of the droplet videos (>500 gigabytes 
of data), the experimental data used in this work are available upon 
request to the corresponding author (lee.cronin@glasgow.ac.uk).

Code availability
The code used to operate the robotic platform and generate and analyze 
results is available online in our group GitHub account at https://
github.com/croningp and is described in the Supplementary Materials.

ASSOCIATED CONTENT
Supplementary information
The Supplementary Information Appendix contains further results and 
discussion including more details on related work, an in-depth compar-
ison of the algorithms and a detailed explanation of the physico-
chemical analysis undertaken, the modeling of droplet behavior, and 
the phase diagram preparation. Additional experiments are presented 
studying the sensitivity of our system to pH, proportion of each oil, 
chain length of alcohol used and the number of droplets place in the 
dish, as well as detail given on the dye release and droplets as tem-
perature sensor experiments. The Supplementary Information Ap-
pendix also provides detailed information (and the relevant GitHub 
repositories) about the materials and methods including the full drop-
let robot design and code, the droplet tracking implementation, a formal 
description of the CA and its implementation, and the experimental 
procedure related to the chemical analysis. Last, the supplementary 
movies are listed along with their explanatory captions.

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/6/5/eaay4237/DC1
Supplementary Results and Discussion
Supplementary Materials and Methods
Fig. S1. Data leading to the discovery of an anomaly.
Fig. S2. Temperature recordings for experiments performed at 27°C.
Fig. S3. Observations by CA and random at 27°C.
Fig. S4. Density of observations by CA and random at 27°C.
Fig. S5. Density of observations by CA and random at 27°C with equal scale.
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