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Abstract: Exoplanet science promises a continued rapid accumulation of new observations in 

the near future, energizing a drive to understand and interpret the forthcoming wealth of data to 

identify signs of life beyond our Solar System. The large statistics of exoplanet samples, 

combined with the ambiguity of our understanding of universal properties of life and its 

signatures, necessitate a quantitative framework for biosignature assessment Here, we introduce 

a Bayesian framework for guiding future directions in life detection, which permits the 

possibility of generalizing our search strategy beyond biosignatures of known life. The Bayesian 

methodology provides a language to define quantitatively the conditional probabilities and 

confidence levels of future life detection and, importantly, may constrain the prior probability of 

life with or without positive detection. We describe empirical and theoretical work necessary to 

place constraints on the relevant likelihoods, including those emerging from stellar and planetary 

context, the contingencies of evolutionary history and the universalities of physics and 

chemistry. We discuss how the Bayesian framework can guide our search strategies, including 

determining observational wavelengths or deciding between targeted searches or larger, lower 
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resolution surveys. Our goal is to provide a quantitative framework not entrained to specific 

definitions of life or its signatures, which integrates the diverse disciplinary perspectives 

necessary to confidently detect alien life. 

Keywords: exoplanets, biosignatures, life detection, Bayesian analysis 
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1 Introduction 

Over the last two decades, hundreds of exoplanets have been discovered orbiting other stars, 

inspiring a quest to understand the diversity of planetary environments that could potentially host 

life. Soon we will be positioned to search for signs of life on these worlds. Upcoming missions 

are targeted at obtaining atmospheric spectra of planets that may, like Earth, sustain liquid water 

oceans on their surfaces. To date, efforts to identify biosignatures on alien worlds have focused 

on the dominant chemical products and surface features of examples of life known from Earth, as 

well as some theoretically modeled cases (reviewed by Schwieterman et al., 2017, this issue). If 

we are lucky, we may be able to identify “Earth-like” life on “Earth-like” worlds. If we are 

unlucky, and true Earths with Earth-like life are rare, our current approaches could entirely fail to 

discover alien life or to place constraints on the processes of life or their frequency. Expanded 

efforts are necessary to develop quantitative approaches to remote biosignature detection, 

applicable both in cases where the stellar or planetary context, or biochemistry is like Earth, and 

in cases where these diverge significantly from what is known from Earth.  

 

With the exception of modern Earth, there are currently no known planets that can provide an 

unambiguous, easily detectable, true-positive biosignature of life – a so-called “smoking gun”. 

Even Earth throughout most of its history may not have had remotely detectable biosignatures, 

despite the presence of life (Reinhard et al., 2017). A major challenge is that the diversity of 

exoplanets greatly exceeds the variety of planetary environments found within our own solar 

system, such that the majority of exoplanets have no analogs in our solar system. Examples 

include water worlds, massive rocky planets, and small ice giants. The majority of discovered 

exoplanets orbit low-mass stars, and are subjected to very different radiation and space plasma 
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environments than planets in our own solar system (Coughlin et al., 2016; Twicken et al., 2016). 

A metabolic product such as O2 might be a smoking gun signal of life on one world and not a 

biosignature at all on another, leading to the possibility of false positives (see Meadows et al., 

2017, this issue, for an in-depth treatment of O2). Given the limited data we can collect on 

exoplanets (see review of observation capabilities in Fujii et al., 2017, this issue), and the 

stochasticity of planetary evolution (Lenardic, et al., 2012), we may only be able to predict the 

properties of exoplanets statistically (Iyer et al., 2016; Wolfgang et. al., 2016). Our uncertainty 

in exoplanet properties such as bulk composition, geochemistry, and climate – due both to lack 

of knowledge, and technical limitations on what we can directly infer from observational data – 

is a major hurdle to be overcome in our search for life outside our own solar system.  

 

A major hurdle is that we face signficant uncertainty in our understanding of what life is (Chyba 

and Cleland, 2002; Walker and Davies, 2013). Our views of life and its defining features have 

expanded in recent years with discoveries of novel metabolisms (Sogin et al., 2006; Rappe et al., 

2003; Hughes et al., 2001; Li and Chen 2015), and advances in synthetic biology and systems 

chemistry, which challenge our assumptions about what chemistries can participate in terrestrial 

life and in prebiotic chemistry (Chaput et al., 2012; Malyshev et al., 2014; Sadownik, 2016). 

From a first principles perspective, life is more readily understood in terms of dynamic processes 

than chemical products. Yet, in biosignature research for exoplanets we so far have focused 

primarily on the chemical products of Earth’s life. The focus on chemical products has primarily 

been driven by practical limitations of current detection methods: current or planned exoplanet 

missions will be geared to detect the presence or absence of materials, leading to a focus on what 

materials could be biologically derived. In particular, this led to a focus on the idea of a smoking 
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gun biosignature. O2 is the most notable example; however, even beyond the challenges 

associated with false positives, this particular smoking gun was not abundant in Earth’s 

atmosphere for several billion years of its history (Lyons et al., 2014), rendering Earth’s life 

undetectable by current methods for the first few billion years. Thus, even though the process of 

photosynthesis was present, our current product-based strategy would miss detecting it on 

inhabited worlds like early Earth. Ultimately, in our search to discover life, we are interested in 

answers to questions like: how frequently photosynthesis (or other life processes) evolve in a 

given planetary context? Beyond the biosignature community, life is not typically characterized 

in terms of its products, but instead in terms of its processes. Hallmark features of life, such as 

information processing, metabolism, reproduction, homeostasis, evolution etc. are all processes, 

which may generate different products in different evolutionary and environmental contexts. To 

advance our capabilities for life detection, next generation biosignature research must bridge our 

product-based detection strategy with an understanding of the underling living processes, in 

order to identify signatures of life in diverse planetary contexts.  

 

A process-based understanding will allow extrapolation to contexts different from Earth, where 

presumably the same universal processes of life (e.g., evolution, information processing, 

metabolism) should operate, but may lead to very different outcomes – that is to different 

remotely detectable products of life.  The multitude of exoplanets discovered provides 

unprecedented opportunity to address fundamental questions regarding the nature and 

distribution of life with large statistical data sets, but we must first better understand the 

processes governing both planets and life. Bridging processes with detectable products 

necessitates new cross-disciplinary collaborations. To make progress we must address the 
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questions:  

● What fundamental life processes could underlie the chemistry we can detect on 

exoplanets?  

● How do we infer the presence (or absence) of these processes?  

● How can understanding the processes of life inform new ways to identify and interpret 

the chemical signatures of life?   

In this manuscript, we introduce a Bayesian framework appropriate and timely for the long-term 

goal of searching exoplanets for signs of life.  A Bayesian methodology provides a language to 

define quantitatively the conditional probabilities and confidence levels of future life detection 

and, importantly, may constrain the prior probability of life with or without positive detection.  

To understand what is needed to quantify these probabilities, we review emerging and future 

developments of the study of life processes, their origins, their planetary contexts, the integrated 

tools necessary to model them, and the methodological tools necessary to detect their 

consequences. These inevitably require continued expansion of a cross-disciplinary community 

to develop the conceptual frameworks required to interpret the increasing (yet sparse) data upon 

which claims for the presence of life beyond our solar system will eventually be made. Because 

we are focused on future directions, we note that the views presented herein do not represent 

community consensus. The myriad challenges that come with adopting a probabilistic framework 

for life detection drive the organization of this paper, as resolving these challenges should be a 

priority for the exoplanet research community over the coming decade.  

2 Setting the Stage:  What is life? What is a biosignature?  
 

Des Marais et al., (2002) defined a biosignature as an “object, substance, and/or pattern whose 
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origin specifically requires a biological agent” (Des Marais and Walter, 1999; Des Marais et al., 

2008). In this paper we follow this convention and refer to a substance or pattern that is known to 

be an indicator of biological activity (in a given planetary context) as a biosignature, e.g., a 

‘biosignature molecule’ or ‘biosignature pattern.’ More specifically, we quantify a biosignature 

as a molecule, pattern or other signal that has a non-zero probability of occurring, conditioned 

on the presence of a living process (see Section 3 where we define P(data|life) and provide a 

quantitative definition for a biosignature within a Bayesian framework). Importantly, a 

biosignature does not imply life, it only implies a signal consistent with life. To qualify as 

evidence for life, a biosignature should be much more likely to be produced by living processes 

than by abiotic ones (see Section 3 for an in-depth discussion, and Catling et al., 2017, this issue, 

for additional perspective).  That is, a molecule, pattern or signal must be able to be produced by 

life to be a biosignature, but it does not qualify as evidence for life unless life is the best 

explanation for its production in a given environmental context.  

A challenge for developing a quantitative framework for assessing biosignature candidates is that 

life – the very thing we hope to measure – is notoriously difficult to define. For example, the 

definition of Des Marais et al. (2002) specifically refers to biological agency, yet we are far from 

a quantitative framework that precisely captures what we mean by “agent” (Barandiaran et al., 

2009). The state of the field is such that more than 100 definitions for life exist, alongside many 

attempts to analyze them (Chyba and McDonald 1995; Kolb 2007; Benner 2010;Trifonov, 2011; 

Mix, 2015). Some of the most common words used in defining life are shown in Table 1, 

demonstrating just how far from consensus we truly are. Some have argued that it does not make 

sense to define life until we have a theory for life (Cleland, 2012; Walker, 2017), much in the 

same way water was only precisely defined as H2O after the advent of molecular theory (Cleland 
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and Chyba, 2002). A thorough review on the literature of attempts to define life is outside of the 

scope of this paper; however it is important to acknowledge the challenges we face in 

biosignature research due to ambiguities in our ability to precisely quantify what is ‘life’ is.  

Table 1. Most common words used in definitions for life, from Trifonov (2011). 

life 

living 

system 

matter 

systems 

environment 

energy 

chemical 

process 

metabolism 

organisms 

organization 

complexity 

ability 

itself 

able 

capable 

definition 

organic 

alive 

evolution 

materials 

reproduction 

existence 

defined 

growth 

information 

open 

processes 

properties 

property 

reproduce 

through 

complex 

evolve 

genetic 

internal 

replication 

being 

change 

characteristics 

entity 

external 

means 

molecules 

one 

order 

organisms 

state 

things 

time 

way 

based 

biological 

capacity 

different 

force 

form 

functional 

highly 

.  

mutation 

necessary 

network 

objects 

only 

organized 

reactions 

self-reproduction 

some 

three 

 

Due to our lack of quantitative understanding of life, standards for the search for life have 

historically been qualitative in nature (true for both exoplanets and within the Solar System). As 
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an example, consider an approach to the search for life that follows the adage “I’ll know it when 

I see it.” For different disciplines “it” means different things. For example, biochemists might 

cite the molecular species that constitute ‘life-as-we-know-it’, such as DNA, RNA and amino 

acids, whereas, a physicist might discuss the emergence of collective behavior and so on. We 

outline some of these differences between disciplines, based on our own experiences as 

researchers in diverse areas in Table 2. The table is not intended to be exhaustive (which would 

be a research program in its own right), nor representative of a majority opinion, but merely to 

highlight how diverse, and controversial, approaches to the question “what is life?” can be.  

In order to evolve into a scientific discipline with testable hypotheses, biosignature science needs 

to make quantitative predictions based on the hypothesis that life is or is not present in a given 

environment. Gradually, we are developing a language and the quantitative frameworks required 

for this, but further progress will require even greater convergence of the disciplinary 

perspectives in Table 2 and mo.  No one discipline is “right” with respect to its perspectives on 

life, and each paints just one part of an emerging picture of what could be the most universal and 

fundamental properties of life. In what follows, we leverage this diversity of perspectives, 

unifying them within a common Bayesian formalism for searching for life on other worlds. The 

goal is to liberate our search strategies as much as possible from being entrained to specific 

definitions for life or its signatures, and instead to frame the problem in terms of what is 

observable and what we can infer from those observables based on what is known about non-

living and living processes. As this paper illustrates, we have much work ahead as a community 

to realize the promising future directions that could finally enable us to detect life on another 

world (and be confident in our assertion of success). 
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Table 2. Disciplinary perspectives on signatures of living processes.  

Scientific discipline Typical measures of life and objects of 

study 

Biosignature relevance 

Mathematics Theorems, proofs, calculus, algebra, 

number theory, geometry, probability and 

statistics, computational science 

The language of science.  Quantitive 

frameworks of relationships in nature. 

Physics Motion of mass and electromagnetic 

Energy, quantum behavior, organization, 

dissipative structure, collective behavior, 

emergence, information, networks, 

molecular machines 

Conservation laws to constrain abiotic 

context.  Systems interactions of 

biological processes 

Chemistry, Biophysics redox potential, Gibbs free energy (Hoehler 

et al., 2007) 

 

Metabolic processes that alter the redox 

state of the environment 

Microbiology, 

Molecular Biology, 

Biochemistry 

Cells, genes, genomes, proteins, 

metabolism  

Constraints on evolutionary path 

requirements for a type of life to emerge. 

Metabolic products that can be strictly 

biogenic. 

Geologists, Geophysics Isotope fractionation, morphology, fossils Planet formation factors that determine 

prebiotic elements.  Plate tectonics to 

allow a carbon cycle. 

Philosophy 

 

Emergence, meaning, goal-directedness Definitions of intelligence, optimality. 

Ecology Ecosystem, community dynamics, scaling 

laws, keystone species (May, 1974; May 

and Saunders, 2007; Pikuta et al., 2007; 

Amaral-Zettler et al., 2011)   

System interactions that lead to 

dominance or community mixes of 

particular kinds of life, determining what 

biosignatures will be detectable. 
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Biochemistry, 

Geochemistry 

Elemental cycling (Schlesinger, 2013), 

serpentinization   

Budgeting of the fluxes and stocks of 

particular molecules, wherein the net 

accumulated stock or phasing of fluxes 

may be detectable biosignatures. 

Astronomy planetary-scale spectral signatures, 

molecular line lists, remote observation 

(Seager 2014; Seager et al., 2016; 

Meadows et al., 2005) 

Stellar context for life determines the 

radiative balance and elemental 

composition of a planet.  Detection of 

biosignatures in planetary spectra from 

transits or direct imaging. 

 

3 Detecting unknown biology on unknown worlds: A Bayesian 
Framework 

 

To qualify as evidence for life in a given environment, a biosignature should be much more 

likely to be produced by living processes than by abiotic ones. For example, with some caveats 

(Meadows et al., 2017, this issue) current understanding provides confidence that geochemistry 

on a planet bearing liquid water will not generate an atmosphere containing >1% O2, so O2  is a 

priori a good biosignature. However, O2 as a biosignature may be rare: the likelihood of 

oxygenic photosynthesis on other worlds is unknown. What is known is that for 85% of Earth’s 

history, life did not produce significant amounts of atmospheric O2. By contrast, we might expect 

that if life exists on a world with hydrothermal systems and sulfate in its oceans, life will evolve 

to produce H2S; however, we are also confident that hydrothermal systems on such a world will 

make H2S abiotically, too. So, H2S on such a world would be an ambiguous indicator of life.  
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Terminology 
 
Biosignature: an object, substance, and/or pattern of 
biological origin, such that P(data|life) > 0 
Detectability: confidence of biological origins for an 
observed biosignature signal, D = 
P(data|life)/P(data|abiotic) (in the absence of noise). 
A biosignature is an indicator of life if D > 1. 
Habitability: conditions suitable for life, it is 
commonly implied that P(life) > 0 for ‘Earth-like’ 
life 
False positive: abiotic observables that mimic 
biologically produced observables, where 
P(data|life) >0 and P(data|abiotic)>0  
False negative: biosignatures that are not detectable, 
with P(data|life) ~ 0, despite the presence of life.  
Anti-biosignature: an object, substance, and/or 
pattern such that P(data|life) = 0  

 

These examples illustrate how, to 

claim detection of life, measurements 

must be statistically quantified within 

the context of our expectations. Here, 

we introduce a Bayesian framework 

for guiding future directions in life 

detection, which permits the 

possibility of generalizing our search 

strategy beyond biosignatures of 

known life. We incorporate process-

based approaches to constrain the probabilities of both living and nonliving processes to generate 

a particular observational signal, as required for Bayesian inference. Catling et al. (2017 this 

issue) suggest evaluation of four sets of criteria in order: (1) the stellar properties of the 

exoplanetary system (for example, if the planet can support surface liquid water), (2) 

characterization of the exoplanet surface and atmosphere, (3) identification of biosignatures in 

the available data and (4) exclusion of false positives. Their proposed scheme is based on current 

knowledge of biosignatures to increase confidence levels within a Bayesian framework, and is 

based on production of biosignatures similar to those of known life.  Here, we focus on unifying 

diverse research areas within a common quantitative framework to better constrain likelihoods of 

living and non-living processes, providing a means to organize current and future data in the 

assessment of upcoming observational data.  
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Bayesian inference permits evaluating the probability of a hypothesis (e.g., the presence of life) 

given a set of observed data. The posterior probability quantifies the probability of a hypothesis 

once the evidence has been taken into account. It is calculated based on prior probability, 

quantifying the probability a hypothesis is true, and a likelihood function, which quantifies the 

compatibility of the evidence with the hypothesis, that is, the probability of observing the data 

given the hypothesis. Specifically, a Bayesian claim of detection of life requires quantifying: 

 

● The likelihood of the signal arising due to living processes.  

● The likelihood of the signal arising due to abiotic processes.  

● The prior probability of the living process.  

 

These likelihoods are cast in terms of conditional probabilities, where a conditional probability is 

the likelihood of observing an event, given another event has already occurred. For example, the 

conditional probabilities P(H2S|anaerobic respiration) and P(H2S|hydrothermal systems) 

quantify the likelihood of abundant atmospheric H2S arising due to living processes or to abiotic 

processes, respectively (here and throughout the “|” operator means “given” or “conditioned on” 

and indicates a conditional probability). H2S is not a good biosignature in the example provided 

earlier precisely because biotic and abiotic production are both potentially important, such that 

P(H2S|anaerobic respiration) ~ P(H2S|hydrothermal systems) without additional contextual 

information.  Likewise, on modern Earth O2 is a good biosignature because the likelihood of it 

arising due to life, P(O2| oxygenic photosynthesis), is much higher than by the abiotic processes 

of photodissociation or volcanic outgassing, quantified as P(O2|abiotic), e.g. we expect  P(O2| 

oxygenic photosynthesis) >> P(O2|abiotic). 
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In modeling biosignatures we have so far focused on the likelihood of generating a particular set 

of observational signatures, given the presence of life.  However, soon we will have 

observational data to actually search for life. In analyzing this data we are interested in the 

inverse problem: what is the likelihood of life, given a set of observational data?  

 

A Bayesian framework permits determining the posterior probability of life (e.g., the likelihood 

of life, given observational data), for a given set of observational data, with the basic conditional 

probability: 

 

( 1 )   𝑃(𝑙𝑖𝑓𝑒|𝑑𝑎𝑡𝑎) =  !(!"#"|!"#$)!(!"#$)
!(!"#")

 

Here, data is intended to indicate any observable that be indicative of life, such as NIR 

absorption features in the case of exoplanets. The denominator is the total likelihood of 

observing a given data set, and can be expanded further: 

(2) 

𝑃(𝑙𝑖𝑓𝑒|𝑑𝑎𝑡𝑎) =  
𝑃(𝑑𝑎𝑡𝑎|𝑙𝑖𝑓𝑒)𝑃(𝑙𝑖𝑓𝑒)

𝑃 𝑑𝑎𝑡𝑎 ¬𝑙𝑖𝑓𝑒 (1− 𝑃 𝑙𝑖𝑓𝑒 )+ 𝑃 𝑑𝑎𝑡𝑎 𝑙𝑖𝑓𝑒 𝑃(𝑙𝑖𝑓𝑒) 

 

The “¬” logical operator means “not”, where 𝑃 𝑑𝑎𝑡𝑎 ¬𝑙𝑖𝑓𝑒  is the probability of the data in the 

absence of life (given no life), and 𝑃 ¬𝑙𝑖𝑓𝑒 =  1− 𝑃(𝑙𝑖𝑓𝑒) is the probability there is no life. 

 

P(life|data) is what we would like to know: the posterior probability of life, given a set of 

observational data. To determine the likelihood of life in a given data set, we must tightly 
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constrain P(data|life) the probability of the observational data given life is present, and 

𝑃(𝑑𝑎𝑡𝑎|¬𝑙𝑖𝑓𝑒), the probability of the observations arising if life is not present. This latter term 

includes contributions from abiotic sources (life is absent) or experimental noise: 

 

( 3 ) 𝑃 𝑑𝑎𝑡𝑎 ¬𝑙𝑖𝑓𝑒 =  𝑃 𝑑𝑎𝑡𝑎 𝑎𝑏𝑖𝑜𝑡𝑖𝑐 +  𝑃(𝑑𝑎𝑡𝑎|𝑛𝑜𝑖𝑠𝑒) 

 

Additionally, knowledge of P(life), the prior probability of living processes, is required to assess 

the likelihood of life. In Catling et al. (2017, this issue), the conditional probabilities include an 

explicit term for context in terms of joint probabilities, e.g., P(data|life) was instead cast as 

P(data|life, context). Here, we include context as implicit in the probabilities for living or 

nonliving processes as these should in any case be conditioned on what is known about the 

context for the observation (and the abiotic probability could by definition be considered the 

‘context’). In general, we care about the likelihood of life given a particular context, and not 

necessarily the probability of the context. We discuss the importance of context and how those 

terms arise in a Bayesian framework more explicitly in Section 7 on P(life), below. 

 

The utility of the Bayesian approach is that it permits separating the calculation of the prior 

probability of life, P(life), from the likelihood of observational data if life is present P(data|life) 

or if life is not present P(data|abiotic).  That is, it permits quantifying the detectability of life, 

and thereby provides a tool for identifying promising targets in our search for life, without 

necessarily knowing the prior probability of life itself, which is currently unconstrained 

(discussed more below in Section 6). In the Bayesian framework, detectability can be quantified 

as: 
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( 4 )  𝐷 =  !(!"#"|!"#$)
! !"#" | !"#$%#& !! !"#" | !"#$%

 

 

where the denominator is again, the probability that the signal was not generated by living 

processes. In the limit there is no experimental noise: 

( 5 ) 𝐷!"#$%→! =  !(!"#"|!"#$)
!(!"#"|!"#$%#&)

 

Comparing the likelihood of the data being produced by life to its likelihood to be produced by 

abiotic sources can provide a guide to how likely we are to detect life on a given target, under the 

assumption that life exists on that target. In other words, detectability provides a quantitative 

means to answer the question: given life is present on a planet, can we detect it? The 

detectability criterion is distinct from habitability: a world might be habitable, but could host life 

that is not detectable. The example of H2S above provides one such example, as do cryptic or 

marginal biospheres. Considering detectable biosignatures, by definition, should be much more 

likely to be observed being produced by living processes than non-living processes, one could 

consider Eq. (5) for D > 0 as a threshold for the quantitative definition of a detectable 

biosignature. More detectable biosignatures have higher values of D. It should be clear that a 

given observational signal may be a detectable biosignature in one environment and not another, 

depending on the value of P(data|abiotic). This is related to the point made earlier that a given 

signal may be a biosignature, but not be evidence for life – this occurs if  D ≤ 0. 

 

In our framework, “data” can refer to different kinds of observations: the statistics from planet 

surveys, the context of a particular planetary system, or the observation of the planet itself.    

Here we will not be asking about the probability of the observation of a planet relative to 
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instrument capabilities and distributions in the galaxy, as we leave this for the review by Fujii et 

al. (2017, this issue) and we are in any case interested in quantifying the likelihood of life on 

already identified targets.  Instead, we focus on “data” with regard to direct observations of a 

planetary system and a planet that could host life. More often, a suite of these kinds of data will 

be utilized, where planetary statistics, as well as understanding from life on Earth, could provide 

theoretical support to interpret the direct observation of a planet, by contributing to the relevant 

conditional probabilities. For example, detection of a gas in an atmosphere requires a process-

based model of that atmosphere to determine the contexts in which a certain mixture may be 

geochemically plausible and thus whether it is a signal of abiotic processes.  The measured 

variables could be the NIR absorbance features (𝑁𝐼𝑅), the planet’s mass (𝑀), density (𝜌), orbital 

parameters (𝑜) (for transiting planets), and the expected planetary elemental composition (𝑐), 

which may be based on the star’s composition. Catling et al. noted that some contextual 

parameters will depend on the presence of life and some will not (e.g., in general (excluding 

significantly advanced technological civilizations) we do not expect biology to significantly 

contribute to a planets mass), leading to differences in their treatment in a Bayesian framework. 

Of those listed here, only NIR absorbance features (𝑁𝐼𝑅) is in general expected to depend on the 

presence of life. As such, 𝑑𝑎𝑡𝑎 = 𝑓(𝑁𝐼𝑅). The remaining observables should therefore be 

considered as the context of the observation, and the likelihoods and priors must be conditioned 

on these. Thus, for example, P(data|life) = 𝑓(𝑀,𝜌, 𝑜, 𝑐)  and P(data|abiotic)= 𝑔(𝑀,𝜌, 𝑜, 𝑐) are 

both functions of the planetary observables (these functions could also include stellar 

observables as well).  Obviously it is a long way to go from the values of a planet’s mass, 

density, etc. to predicting the observational signatures of life on its surface: hence the need for 

new cross-disciplinary collaboration.  
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To bridge observations to biosignatures, the surface chemistry, atmospheric mass, temperature 

profile, outgassing rate and photochemistry of a planet must all be modeled, along with any 

putative biological processes that could be occurring on its surface. The modeled atmospheres 

can then be compared to observed spectral features, and the plausibility evaluated of the 

biogenicity of the observations. If no plausible abiotic model can reproduce the atmospheric 

context for the gas at the same level of detection, but a model including life processes can, then 

we could conclude that the gas is biogenic. In such cases we should expect D >> 1.  

 

A Bayesian approach requires good models for exoplanet properties in the absence of life to 

tightly constrain P(data|abiotic). In many ways, this seems like it should be easier than building 

models of inhabited planets: removing the biosphere could significantly simplify models.  But, 

we do not know what Earth would be like without life. To model Earth without life requires 

extrapolation from uninhabited environments on Earth, from worlds considered uninhabited, or 

from the identification and separation of biosphere processes from geological ones. Most of the 

input parameters to such models are not known. This includes the geochemical context of the 

atmosphere, and in the case of surface coloration features, the surface geology of the planet. The 

unpierceable ‘flatness’ of the VIS-NIR (0.6-2.5 µm) transmission spectrum of GJ1412b 

(Kreidberg et al., 2014) ) illustrates that not seeing a spectral feature does not necessarily mean 

that a gas is not there. In fact, features unobservable with current technology or at wavelengths 

accessible to a specific mission may become observable given more sensitive measurements or 

through instruments capable of measuring different wavelengths  (e.g., for the case of GJ1214b; 

see Charnay et al., 2015). In example, volatile molecule chemistry outside the major constituents 
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of Earth’s atmosphere in Earth’s atmosphere is not even known. These are observables, which 

could in the future be measured. If no plausible abiotic model can reproduce observed spectral 

features at a given detection level, but no models including life processes can reproduce 

observed spectral features, then no conclusions can be drawn about whether or not the spectral 

features are biogenic in origin. Just because a signal cannot be explained abiotically does not 

mean it is biogenic. 

 

The most challenging parameter to constrain is P(life). In the absence of a theory for life’s 

origins we do not have a means to calculate this probability ab initio. There may be biospheres 

that are undetectable because the signal-to-noise is too low or because they do not produce a 

measureable signal, This is a problem of detectability (e.g., 𝐷 ≤ 1), which is distinct from the 

problem of estimating the probability of the prior occurrence of life. Attempts have been made to 

estimate P(life) within a Bayesian framework by Carter and McCrea (Carter and McCrea, 1983) 

and more recently by Spiegel and Turner (Spiegel and Turner, 2012). Both concluded that P(life) 

could be close to 1 or zero based on our current state of knowledge (one inhabited planet with a 

single origin for life) and that evidence for a second sample of life is necessary to distinguish the 

likelihood that life is common from the likelihood it is rare. This is of course the goal of the 

exoplanet life-detection community. The question is, how can we develop the most effective 

strategies for searching for life, faced with the challenge that we have only trivial bounds on its 

prior occurrence? One strategy is to focus on detectability, as noted above, since we can at least 

identify targets where we are most likely to detect life should it exist on a planetary surface.  
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P(life) will, in practice, be decomposed into probabilities for different living processes. For 

example the probabilities for oxygenic photosynthesis and sulfate reduction will, in general, be 

different. We do not know the frequency of planets with oxygen-containing atmospheres, 

although we can model this for abiotically produced O2, and in the next 20 - 30 years we will 

start to have measured frequencies. There are many stages of evolution in the history of life on 

Earth (Bains and Schulze-Makuch, 2016; Maynard Smith and Szathmary, 1995), some depend 

strongly on prior history, and others have occurred independently within the branching history of 

life (e.g., multicellularity has evolved independently many times), although as far as we know all 

life on Earth shares common origins. Assumptions about what biological processes are 

happening within a given planetary context must be made with care. These should be informed 

by knowledge of potential evolutionary pathways in a particular planetary environment, as well 

as how many distinct environments a planet could potentially have on its surface. Even on Earth 

there is debate about the stages of evolution in the history of life, which may potentially 

confound our analysis when extrapolating to other worlds. This necessitates deeper connection 

between the exoplanet and evolutionary biology communities.  

 

In what follows, we treat each relevant term in the Bayesian framework in turn. P(data|abiotic), 

P(data|life), and P(life). P(data|abiotic) and P(data|life) are more readily constrained, we 

therefore first assess what is known and future directions for calculating these likelihoods, before 

moving to the harder problem of constraining P(life). Toward the end, we provide an illustrative 

example of the Bayesian Framework and potential directions for informing search strategies.  
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Figure 1:  Conceptual diagram of a Bayesian framework for detection of exoplanet biosignatures, with section 

guides to this paper. 

3.1  Habitability in the Bayesian Framework for Biosignatures 
 

One of the most important metrics for guiding the search for life discussed within the exoplanet 

biosignature community is the concept of habitability, where a habitable world is one where we 

expect Earth-life to be compatible. It is outside of the scope of this paper to provide a detailed 

discussion of habitability (see Schwieterman et al., Meadows et al., and Catling et al., 2017 this 

issue), or any ambiguities associated with definitions of habitability in relation to either life-as-

we-know-it or life-as-we-don’t-know-it. However, it is important to acknowledge the 

relationship between standard definitions of “habitability” and its relationship to terms in the 

Bayesian Framework.   
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The most commonly referenced definition of the  ‘’habitable zone’’, is the radiative habitable 

zone, defined to be that region around a star in which an Earth-like planet with an N2-CO2-H2O 

dominated atmosphere can have a surface temperature that could support liquid water (Kasting et 

al., 1993; Kopparapu et al., 2014). The concept of habitability implicitly makes assumptions 

about both P(life) and P(data|life), such that P(life)Earth-like and P(data| life)Earth-like > 0 within the 

‘habitable zone’, where  P(life)Earth-like and P(data| life)Earth-like > 0  are the prior probability for 

Earth-like life (by whatever definition) and the likelihood of observing the data given Earth-like 

life, respectively. The former is concerned with assumptions about the origins of life and its 

evolutionary innovations (discussed in Sections 6.1 and 7.2, respectively), the latter is concerned 

with life’s ability to evolve and thrive in habitable environments (discussed in Section 5.3).  

Depending on the expectation of how habitability maps to the habitable zone, different priors can 

be constructed for P(life) as a function of radius from a star (and likewise for P(data|life)). If one 

assumes inhabited worlds to be limited to a habitable zone, then the assumption is P(life) = 0 

outside of the of the habitable zone (Figure 2A). If one assumes inhabited worlds are possible 

outside of the habitable zone, but much more likely inside the habitable zone, then P(life) > 0 but 

small, outside the habitable zone, and P(life) >> 0 inside the habitable zone (Figure 2B) (and 

could be such that P(life)Earth-like > 0 in the habitable zone and zero outside). If one assumes the 

habitable zone is unrelated to the distribution of inhabited worlds, and life is equally likely at any 

radius from the host star, then P(life) = constant everywhere (Figure 2C). These are only a 

fraction of all possible prior scenarios (there are as many as there are hypotheses about the prior 

probability of life), and are given with the intent to help clarify how assumptions about 

habitability could translate to the quantitative formulation of biosignature assessment within a 

Bayesian framework. For example, assuming an inner radius around a host-star where conditions 
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are too hot or radiating to allow habitable planets, implies P(life) = 0 within that boundary. 

Currently, the value of P(life) in the habitable zone, or outside it, is not well-understood. 

P(data|life) is much better constrained, especially for oxygenic photosynthetic life (see 

Schwieterman et al., Meadows et al., and Catling et al., 2017 this issue for discussion of 

biosignature observables in the habitable zone). We discuss how to advance our understanding of 

P(data|life) to other scenarios for alien biospheres in Section 5, and P(life) in Section 6 below.  

 

In this paper, we focus on the detectability of life, quantified in terms of likelihoods for biotic 

and abiotic signals, rather than habitability since the latter is discussed so extensively elsewhere 

(see Schwieterman et al., Meadows et al., and Catling et al., 2017 this issue). Importantly, we do 

not necessarily need to know what makes a planet habitable to identify planets with detectable 

biosignatures (although habitability can of course provide guidelines for detectability). 

Detectability is distinct from habitability: a world might be habitable, but could host life that is 

not detectable. Alternatively, a world may be “uninhabitable” (based on our limited 

understanding of planetary habitability, or the definition of habitable used, e.g., lacking presence 

of liquid water on its surface) yet could host life that is detectable (for example, utilizing a 

different solvent than liquid water).  This distinction between detectability and habitability 

allows us to, in this paper, expand the concepts of P(life) and P(data|life) implicitly underlying 

discussions of habitability and make them explicit and quantitative. By focusing on detectability, 

we hope the framework laid out in this paper will be useful for guiding the future directions of 

biosignature science, and will readily accommodate changes to the community’s understanding 

of planetary habitability. 
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Figure 2: Examples of the relationship between the canonical definitions of the habitable zone and our assumptions 

about P(life), based on different priors. (A) A prior where habitability is limited to the habitable zone. (B) A prior 

where habitability is not limited to the habitable zone, but where P(life)inside_HZ >> P(life)outside_HZ. (C) A flat prior 

where habitability is equally likely at any distance from the host star (not dependent on the habitable zone). By 

definition, the concept of a habitable zone implies that we expect P(life) > 0 (but of unknown value) for worlds 

within the habitable zone. See section 6.3 below for further discussion on P(life) and the habitable zone. This paper 

focuses on detectability as opposed to habitability. These examples are given to clarify how habitability might 

integrate into the Bayesian framework we outline above, but we do not go into further detail on this topic in this 

paper. 

4 P(data|abiotic)  
 

To reliably distinguish worlds with life from those without it, we must improve our 

understanding of worlds without life and their observational signatures. That is, we must 

constrain P(data|abiotic). This is being pursued through modeling (Krissansen-Totten et al., 

2016; Domagal-Goldman et al. 2014; Harman et al. 2015; Luger & Barnes 2015; Schwieterman 

et al. 2016), but is a much more difficult problem observationally. To guarantee the absence of 

life, it would not be sufficient, for example, to make observations of planets outside of the 

habitable zone alone: those worlds may well be inhabited (see discussion in Section 3.1). Our 

assumptions regarding what worlds are likely to be uninhabited are most certainly incomplete, -- 
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different forms of life may thrive in environments not compatible with our current concepts of 

habitability, e.g. subsurface life may somehow have an unexpected connection to the 

atmosphere. Furthermore, planets within the habitable zone that have no obvious “smoking gun” 

biosignature may nevertheless be inhabited, as exemplified by the early Earth which possessed a 

photosynthetically active biosphere, where net production and consumption fluxes balanced 

rendering atmospheric biosignatures challenging to detect (Reinhard et al., 2017).  

 

These examples make clear more work must be done to improve models to identify observational 

signatures of planets without life if we are to understand planets with life. This can be done 

through a combination of detailed understanding of abiotic processes, as developed from 

theoretical models, and observational surveys that select with care likely uninhabited worlds for 

observation to constrain P(data|abiotic). By better constraining the observables of strictly abiotic 

planets, it will become easier to disentangle true-positive biosignatures from false-positive 

biosignatures and to understand cases where life might be present, but not detectable. Here, we 

focus on what is known and what needs to be known to determine P(data|abiotic), including 

constraining external planetary system parameters and internal planet characteristics in the 

absence of life. Each context considered – stellar environment, climate, and geochemistry – also 

impacts P(data|life) and P(life) as the likelihood and prior probability of life cannot be 

disentangled from its planetary context; we therefore also discuss these terms where appropriate.  

 

4.1  Stellar Environment 
Stars both influence planetary processes, and affect our ability to detect planetary 

properties, including any potential biosignatures. Catling et al. (2017, this issue) thoroughly 



 
 

28 

summarize basic features of a parent star that influence or serve as indicators of a planet’s 

atmosphere and potential development of life, including stellar age, effective temperature, 

composition (metallicity), spectral irradiance to the planet including flaring and particle flux, and 

whether it is part of a multiple-star and multiple-planet system.  If we are to study the statistical 

probabilities for the emergence and likelihoods of life on different worlds, assessing the 

probability distributions of each of these stellar quantities throughout our galaxy is a key 

component, as each will affect the planet, influencing P(data|abiotic) and P(data|life), and its 

potential to be inhabited, influencing P(life).  

 

Stellar surveys to characterize properties of stars of different masses, and hence temperatures, 

continue to add to our understanding of the potential impacts of stellar temperature on the search 

for life.   The host star’s temperature defines the radiative habitable zone, where we expect 

P(life) > 0 (at least for life like Earth’s, see Section 3.1). Astronomers are able to measure a 

star’s temperature typically to better than 2-5% providing an accurate measure of the stellar 

irradiation, at least for wavelengths dominated by the star’s Planck (black body) function.  A 

star’s temperature is closely tied to its mass, and we have strong constraints on the mass 

distribution in the stars in our galaxy (Reid et al., 2002; Bochanski et al., 2010; Bovy, 2017). 

The relative abundance of spectral types is much greater for cooler, long-lived stars, for which 

the habitable zone is closer to the star (0.1-0.4 AU). This makes for a higher probability of 

observing transiting planets in the habitable zone of cooler stars.  The spectral energy 

distribution of a star’s radiation will have different impacts on a planet’s climate, due to the 

spectral properties of its atmospheric gas photochemistry and surface albedo, affecting 

potentially all three of terms of the Bayesian framework: P(data|abiotic), P(data|life) and P(life).  
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Figure 3: Median X-ray, far-UV (FUV), and near-UV (NUV) excess fractional fluxes , including upper limits, as a 

function of stellar age for early M stars. The radiation environment changes in time and is more intense for young 

stars, potentially impacting the probability of life emerging P(life). Figure adopted from Shkolnik and Barman 

(2014). 

 

The lifetime exposure of planets to damaging stellar UV radiation is a key environmental factor 

for calculating the likelihoods and priors in the Bayesian framework. Increased stellar activity, 

through UV emission and associated particle flux can have dramatic effects on a planet’s 

atmosphere (Segura et al., 2010; Luger and Barnes 2015). Studies have examined effects on the 

destruction and generation of secondary products of biogenic gases (Domagal-Goldman et al., 

2011; Segura et al., 2005; Segura et al., 2003; Hu et al., 2012, 2013; Hu and Seager, 2014). 

While predicting atmospheric chemistry and biosignature gases through coupled radiative-

convective/photochemical models is a mature method for Earth, atmospheric evolution of planets 

and the subsequent time-dependence around perpetually UV-active stars is not understood. 
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Unlike G-type stars like the Sun, M dwarfs are known to be active, with high emission levels and 

frequent flares when they are young, and this activity reduces as they age (see Figure 3; Shkolnik 

and Barman 2014). The large variability in M star UV outputs compared to Sun-like stars 

throughout their lives is just now being quantified and shows an increased level of activity 

towards cooler stars (Miles and Shkolnik 2017). The effects of sustained high levels of stellar 

activity on planetary atmospheres have not yet been studied, in part due to our lack of knowledge 

of  UV flare rates and energies across stellar ages.  However, efforts to resolve this are underway 

(Shkolnik et al. in preparation).   

 

Explorations of the parent star role in planetary processes are recently expanding from 1D 

models to 3D General Circulation Model (GCM) based techniques. Rigorously quantifying 

atmospheric and water vapor loss can be informed through 1D models, but is dependent on 

magnetospheric shielding, which requires improved constraints through measurements and 

additional modeling. Interactive chemistry in GCMs for exoplanet studies is still in its early 

stages; few GCMs have the radiation capability to study atmospheric compositions that differ so 

substantially from modern Earth. In general, climatological GCMs can perform time slice 

equilibrium climate simulations given atmospheric composition (which may be provided by 1D 

models) or with photochemistry within Earth-like ranges. Conditions such as reducing 

atmospheres, absence of oxygen, condensation of greenhouse gases, and change in atmospheric 

mass at the edges of the habitable zone require further long-term model development.  Thus 

P(data|abiotic) is currently relatively unconstrained with respect to how stellar activity impacts 

atmospheric observables.  
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This is therefore is an important area for future research; M dwarfs have far-UV (FUV) to near-

UV (NUV) flux ratios ~1000 times greater than the Sun (France et al., 2016; Miles and Shkolnik 

2017), and represent 75% of stars. Small planets in the habitable zones of M dwarfs are common, 

and could have abiotic O2 and O3 levels 2–3 orders of magnitude greater than for a planet around 

a Sun-like star, due to hydrogen escape from stellar activity or photolysis of CO2 (Domagal-

Goldman et al., 2014; Harman et al., 2015; Luger and Barnes 2015). This is an example of a 

false-positive biosignature of oxygenic photosynthesis (Tian et al., 2014; Domagal-Goldman et 

al., 2014; Harman et al., 2015; see also Meadows et al., 2017, this issue). False positives suggest 

the presence of life, but occur where P(data|abiotic) is comparable to P(data|life) confounding 

interpretation of biogenecity.   

 

Conversely, M stars may also become quiescent as they age such that they emit very little UV.  

The lack of UV to generate ·OH radicals can increase the detectability of biologically generated 

gases that would otherwise be removed by OH (Segura et al., 2005), increasing P(data|life). It is 

therefore critical to determine the lifetime exposure of such planets to stellar UV radiation, from 

quiescent and flare emission levels, and explore the limitations on our ability to predict the 

resultant atmospheric properties. 

 

In terms of detectability, we should expect that for most observables we might associate as 

biosignatures, D>1 in some environments, but not others. For example, O2 can accumulate to 

high levels on lifeless planets due to runaway water loss around pre-main sequence M stars 

(Luger and Barnes, 2015), as discussed above. The observation of collisionally induced 

absorption of O4 (e.g., Misra et al., 2014) would allow one to calibrate P(data|abiotic) for this 
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process. For example, one might set P(data|abiotic) close to 1, where the abundance of O2 is the 

data, due to knowledge of these abiotic processes . In contrast, a planet in the habitable zone of a 

G-type star with properties similar to modern-day Earth (liquid water, ~1 bar of total 

atmospheric pressure, percent-levels of O2, and relatively low levels of CO2 and CO) strongly 

suggests a photosynthetic origin for atmospheric oxygen (Meadows, 2017 this issue). Again, 

evaluating P(data|abiotic) for the presence of O2 requires contextual information about stellar 

environment, background atmospheric characteristics, and co-occurring atmospheric species, but 

in this case would yield P(data|life) >> P(data|abiotic).  

 

As we increase our knowledge of how planetary systems are influenced by stellar properties, 

through modeling and observations, there is a rich set of relevant phenomena to explore. 

Photochemistry interacting with radiation from different stellar types can inform our 

understanding of atmospheric chemical disequilibrium and detectable primary and secondary 

biogenic species, and research on the effect of the parent star’s UV flares on prebiotic chemistry 

for the origins of life will be useful for constraining P(life) (Airapetian et al., 2016). 

4.2  Climate and Geophysics  
 

The distribution of climate types and their variation in time results from star-planet orbital 

dynamics, and interaction between landmass and ocean configuration with circulation patterns.  

To address these nuances, in recent years 3D general circulation modeling (GCM) of rocky 

planet climates has emerged as a viable means to characterize circulation patterns on a planet and 

its potential to host detectable life (Leconte et al., 2013; Way et al., 2016).  While 1D models 

remain extremely useful (Schwieterman et al., 2017, this issue), GCMs offer a tool to explore the 
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variation in climate over a planet.  Their strengths are that they offer self-consistent, spatially and 

temporally varying treatment of moist convection, clouds, atmospheric/ocean transports, and 

surface ice. They can be used to investigate the effects of obliquity (Abe et al., 2005; Williams 

and Holloway 1982), eccentricity (Williams and Pollard 2002), and rotation rate, including tidal 

locking (Del Genio and Zhou 1996; Del Genio et al., 1993; Edson et al., 2011; Heng et al., 2011; 

Joshi 2003; Joshi et al., 1997; Merlis and Schneider, 2010; Pierrehumbert, 2011; Wordsworth et 

al., 2011; Yang et al. 2014), providing a direct way to model the impact of exoplanet observables 

on climate, necessary to constrain the values of P(data|abiotic) (and also P(data|life)). Where 1D 

models are subject to extreme responses, the circulation patterns in GCMs generally have 

moderating effects (Shields et al., 2013), broadening the expected range where P(life)Earth-like > 0 

compared to that predicted by average conditions alone (assuming P(life)Earth-like = 0 outside of 

the canonical habitable zone).  GCMs can be used to broaden concepts of super-habitability, 

defined whereby P(life) for a super-habitable planet is relatively larger than P(life) for Earth-like 

worlds, and habitability of less Earth-like planets (expanding the potential for life to worlds 

where P(life) would otherwise be assumed to be close to 0).   

 

The role of ocean/continental configuration in influencing the distribution of planetary surface 

conditions has yet to be explored, with existing studies limited largely to either Earth’s 

continents, or all land or aqua planet configurations. Some studies have experimented with 

having a planet with one hemisphere covered by land and the other ocean (Joshi 2003), 

continents at high or low latitudes at different obliquities (Williams and Pollard 2003), an 

equatorial super-continent, an aqua planet and planets with configurations similar to modern 

Earth continents (Charnay et al., 2013).  Life feeds back to a planet’s climate by altering the 
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composition of greenhouse gases in the atmosphere and changing surface albedo and water vapor 

conductance, which may reinforce or enhance the detectability of life.  The potential of GCMs to 

characterize the extent and temporal variability of surface conditions remains to be explored. 

Future directions should add more realistic physics for alternative planetary contexts than Earth 

and focus on generating large statistics for the likelihoods of a given set of observations for both 

living and non-living worlds. 

 

GCMs also offer a means to distinguish clouds from hazes (a potential biosignature) and to map 

climate zones over the planet’s surface to surmise potential productivity, providing models to 

predict P(data|life). For example, differential insolation on rocky planets can drive up-down 

circulations that cause large spatial differences in cloud cover and altitude, showing what 

windows through the atmosphere may be available to observe biosignatures for different stellar 

types and planetary rotation rates. Other questions to explore include whether a haze is 

universally a feature of homogeneous planets, or, in cases where atmospheric water vapor is 

detected, whether surface liquid water could be inferred through modeling, informing 

P(data|abiotic). Given the large parameter space, a perturbed parameter ensemble approach is 

often used with Earth climate modeling and could be used to establish a library of a large number 

of GCM simulations covering a wide range of conditions. From this data set, the probability that 

observed properties arise from specific features such as clouds or hazes can be inferred, 

generating the large statistics necessary for getting tight bounds on both P(data|abiotic) and 

P(data|life). Additionally, conditions conducive to observing biosignatures could be identified 

for target selection on future missions, or the large statistics may reveal patterns to classify 

planetary climates (Forget and Leconte, 2014).   
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Surface albedo plays a principal role in the surface energy balance of a planet, but exoplanet-

observing missions in the near future will not be able to measure this directly.  GCM studies 

typically prescribe the land surface albedo of a hypothetical planet to 0.1-0.3 (Abe et al., 2005; 

Abe et al., 2011; Wordsworth et al., 2011; Yang et al., 2014).  However, mineral shortwave 

albedos can range from black volcanic rocks to white salts.  A small change in albedo can 

significantly change climate.  For example, for an instellation S (W/m2) and albedo a, the stellar 

energy intercepted per surface area of a planet is E = S(1-a)/4. Therefore, a change in a of, say, 

da=0.01 with S=1361 W/m2 (the estimated solar constant; Kopp and Lean, 2011) gives an energy 

balance change of 3.4 W/m2.   There is currently lack of a theory for planetary evolution that 

would allow prediction of a planet’s surface albedo or distribution of albedos, which is a 

necessary parameter for P(data|abiotic).  A community effort is needed to develop such a theory, 

which would depend on element abundances, processed by mantle melting, crystallization, the 

presence of water, and other system factors.  

 

Other parameters difficult to constrain from observational data as well as theory include:  

atmospheric pressure, atmospheric mass, land/ocean ratio, land topography, and ocean depth.  

With near-term missions, it may be possible to measure obliquity, eccentricity, and rotation rate 

through photometric temporal variability (see Fujii, et al., 2017, this issue). Theory may also 

constrain rotation and obliquity in some cases: planets sufficiently far from their star will have 

had little tidal evolution, and rotation and obliquity will be hard to constrain from physics alone 

(Rodriguez, et. 2012). 
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Figure 4: Modeling methodology used to explore the effects of variable volcanic-tectonic activity on planetary 

climate. Solid planet dynamic models of coupled mantle convection and surface tectonics (Lenardic et al., 2016) are 

used to map out variations in volcanic and tectonic activity over time for a range of planetary parameter values (left 

image). Results from the solid dynamics models are then used to generate volcanic-tectonic forcing functions for 

zonal energy balance climate models (Pierrehumbert, 2010) that include volcanic degassing, topography generation, 

and CO2 drawdown from the atmosphere due to surface weathering (right image). 

4.2.1 Coupled Tectonic-Climate Models 
 

In addition to surface properties, determining the composition and internal structure of 

exoplanets from orbital and transit data is moving toward statistical approaches (Roger and 

Seager, 2010; Dorn et al., 2015). Composition sets the stage for quantifying life potential in 

terms of available biological building blocks and their likelihoods. How those building blocks 

are cycled over the geologic evolution of a planet to allow for conditions conducive to the 

development and evolution of life brings a temporal element, expanding the necessity of 

applying statistical approaches. GCMs are being used to investigate potential climatic states that 

may or may not be favorable for life. As GCMs perform time-slice equilibrium simulations, they 

are effectively instantaneous models when it comes to planetary evolution -- they do not track 
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variable greenhouse forcing due to volcanic-tectonic activity on geologic time scales. Climate 

variability, on a Myr timescale or greater, is influenced by a greenhouse forcing that is 

modulated by a balance between the rates at which CO2 is expelled from volcanoes and drawn 

down from the atmosphere via chemical weathering processes (Walker et al., 1981; Staudigel et 

al., 1989; Dessert et al., 2001; Coogan and Dosso, 2015). The global rate of CO2 outgassing is 

governed by the character and pace of a planet’s volcanic activity. Chemical weathering is 

mechanically paced by the rates at which new surfaces are created (Sleep and Zahnle, 2001; 

Whipple and Meade, 2004; Roe et al., 2008; Lee et al., 2013, 2015). The protracted clement 

climate of the Earth is, in part, a consequence of this long-term carbon cycle not having gone so 

far out of balance as to initiate a transition to a runaway greenhouse or a protracted hard 

snowball state. The degree to which this may be possible for planets beyond Earth, over a 

significant portion of their evolution, remains unanswered. Addressing that question has moved 

the community toward coupled tectonic-climate models, as shown in Figure 4.  

 

Using coupled tectonic-climate models to address life potential will demand a statistical 

treatment given the number of parameters associated with coupled models and given the 

potential of planetary scale transitions over time. The capacity of the global climate of a planet to 

transition between multiple stable states has long been acknowledged (Budyko, 1969). Such 

climate transitions were initially investigated in terms of how orbital forcings could trigger them. 

However, volcanic-tectonic forcings can also trigger transitions in the climate state of a planet 

(Lenardic et al., 2016), and it has been argued the volcanic-tectonic state of a planet can itself 

also transition between multiple states (Sleep, 2000). The potential of bi-stable tectonic behavior 

(multiple tectonic states existing under similar parameter conditions) has now been demonstrated 
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by several studies (Crowley and O’Connell, 2012; Weller et al., 2015; Becovici and Ricard, 

2016). Tectonic and climate transitions, over timescales of planetary evolution, bring historical 

thinking into the mix in a direct way for models that explore planetary conditions over time, 

permitting the possibility of constraining P(data|abiotic) and P(data|life) for different stages of 

planetary history and for different histories. This introduces the potential of variable paths for 

planetary evolution springing from initial conditions that can be very similar: acknowledging this 

in a modeling framework moves us away from a classical deterministic approach aimed at 

prediction. Instead, the objective is to map planetary potentialities in terms of their likelihoods, 

constrained within the bounds of physical and chemical laws. For example, a goal is to determine 

the likelihood a planet of a given size and composition (with uncertainties) orbiting a particular 

star in a particular orbital path, conditioned on a specified geologic time window, variable initial 

formation conditions and time variable climate forcings (orbital and/or volcanic-tectonic). 

Producing any kind of constraints on these planetary potentialities would yield a significant 

improvement in our ability to produce relative values of P(data|abiotic) and P(data|life) — and 

are crucial to maximizing detectability of biosignatures.  

4.2.2 Community GCM Projects for Generating Ensemble Statistics for 
P(data|abiotic) and P(data|life) 

Many of the planetary parameters to configure a GCM will not be measurable, or will be difficult 

to obtain given available observation technology, and require large computational resources. 

Furthermore, efficient sampling of the parameter space is necessary for climate sensitivity 

studies and generating statistical models.  Constraining the parameter space theoretically is much 

needed and provides avenues for cross-disciplinary research.  This may seem like a daunting 

task, but the initial steps are well within reach. GCM models, for example, can address long-term 
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temporal evolution through ensemble simulations that capture time-slice equilibrium climates 

along some evolutionary path. For example, Way et al. (2016) performed model experiments run 

under different solar forcings associated with different points along the Sun’s luminosity 

evolution. At the same time, models of volcanic-tectonic evolution have been progressively 

mapping potential volcanic-tectonic forcings that can be linked to simplified climate models 

(Lenardic et al., 2016).  

 

As the use of GCMs becomes more common to explore climates of exoplanets as well as of 

Solar System planets, model intercomparison studies will be necessary to gain confidence in 

their predictions.  These complex models are subject to their own biases as a result of particular 

choices in numerical resolution and representation of physics.  The Earth climate modeling 

community has coordinated projects for model intercomparisons that the exoplanet community 

may consider emulating.  The Palaeoclimate Modelling Intercomparison Project (PMIP) (Saito et 

al. 2013; Joussame et al., 1999; Pinot et al., 1999) began in the 1990s, to compare studies of the 

Holocene.  These studies also contribute to the Climate Model Intercomparison Project (CMIP), 

established in 1995 under the World Climate Research Program (WCRP) (Meehl, et al. 2000), 

which coordinates studies covering pre-industrial, current, and future climate scenarios. These 

experiments serve as important material for the Intergovernmental Panel on Climate Change 

(IPCC).   The MIPs serve to define common climate scenarios, compile data sets for model 

inputs and evaluation, and agree on common model diagnostics to aid intercomparison (Eyring et 

al., 2015).  Modeling groups contribute ensembles of simulations that are archived for 

community analysis, providing insights into model biases, and strengths and weaknesses in 

scientific understanding of specific aspects of climate. The exoplanet community could utilize 
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similar methods.  

4.3  Geochemical Environment 
As discussed above, the simplest approach for identifying a promising biosignature would be to 

search for a ‘smoking gun’ (which we discussed is unlikely to exist); something that on its own 

provides strong evidence for a biosphere (e.g., for which P(data|life) >> P(data|abiotic)). 

However, this type of signal is intrinsically vulnerable to ‘false positives’ as discussed in Section 

4.1 (see also Meadows et al., 2017, this issue): contextual information about the geochemical 

environment is critical for accurately evaluating P(data|abiotic). Another challenging problem is 

that of false negatives (Reinhard et al., 2017), or scenarios in which biological activity at the 

surface is overprinted by internal recycling and thus remains cryptic to characterization through 

atmospheric chemistry. Oxygen again provides an instructive example (see Meadows et al., 

2017, this issue) - it may have taken hundreds of millions of years or more (Lyons et al., 2014) 

subsequent to the emergence of oxygenic photosynthesis on Earth before O2 (or O3) could be 

remotely detectable in Earth’s atmosphere. The mechanisms underpinning the timing of this 

biogeochemical disconnect are still not entirely understood, but doubtless involve large-scale 

planetary processes unfolding on protracted timescales, such as hydrogen escape from the upper 

atmosphere (Catling et al., 2001), secular differentiation of Earth’s upper crust (Lee et al., 2016), 

and potentially a range of other factors. An important challenge moving forward will be to 

distinguish between the P(data|life) values of false negatives and the P(data|abiotic) of truly 

lifeless worlds for a range of potential biosignatures. This provides strong impetus for the 

development of robust models for the range of geochemical environments produced by sterile 

planets.  
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An alternative, or complementary, approach toward evaluating individual biosignature species is 

to search for chemical disequilibrium within a planetary atmosphere, or between an atmosphere 

and a planet’s surface (Hitchcock and Lovelock, 1967). For example, it has become common 

wisdom that atmospheric chemical disequilibrium on a planet can be a strong indication of life 

(Lovelock 1965). However, free energy from stellar irradiance as well as from volcanic 

outgassing, tidal energy, and internal heat all lead to disequilibrium even on a dead 

planet. Rigorous efforts to quantify disequilibria specifically associated with life are an active 

area of research. Different metrics that have been proposed, including kinetic arguments with 

regard to the power or fluxes required for maintaining disequilibrium (Gebauer et al. 2017; 

Seager et al. 2013; Simoncini et al. 2013), and topological measures of the directionality of 

chemical reaction networks in an atmosphere (Estrada, 2012).   Krissansen-Totton et al. (2016) 

use a metric of thermodynamic disequilibrium for solar system planets, quantified as the 

difference between the Gibbs energy of observed atmospheric and (in the case of Earth) surface 

oceanic constituents and the Gibbs free energy of the same atmosphere and ocean if all its 

constituents were reacted to equilibrium, under prevailing conditions of temperature and 

pressure.  This measure is able to show that Earth’s atmospheric chemical disequilibrium is 

orders of magnitude greater than that of the other solar system planets, and is characterized less 

by the simultaneous presence of O2 and CH4 than by the disequilibrium between N2, O2, and a 

liquid H2O ocean.  It is important to note that the diagnostic potential of this thermodynamic 

biosignature on Earth relies to some extent on being able to delineate both the presence and basic 

characteristics (e.g., ionic strength) of a surface ocean (Krissansen-Totton et al., 2016), which 

provides another example of the type of broader contextual information required for evaluating 

both P(data|abiotic) and P(data|life). 



 
 

42 

 

Interpreting atmospheric chemical disequilibrium as a biosignature depends very much on the 

geochemical and planetary system context.  The disequilibrium may be tipped in different 

directions if the extant life primarily derives its energy from the available chemical 

disequilibrium or from an endergonic utilization of stellar energy for photosynthesis.  An 

observed disequilibrium maintained by the star or photochemistry may also be interpreted as an 

anti-biosignature, indicative of available energy that is not being exploited by life. An 

antibiosignature is a signal that indicates the absence of life. The counter-argument to suggesting 

a given disequilibrium is an anti-biosignature is of course the evolutionary one that life on that 

world has not evolved mechanisms to exploit the relevant enery source; alternatively, the kinetics 

of consumption via microbial metabolism may be outpaced by abiotic production fluxes because 

it is limited by some other factor.  Future exploration of disequilibrium metrics are needed to 

investigate other atmospheric compositions, unusual gases, surface (liquid bodies and rock) 

reactions, orbital temporal effects, planetary evolution pathways that affect outgassing and 

internal heat, alternative coupled ecosystem-planet interactions, kinetic metrics to deduce surface 

fluxes of biogenic and abiotic gases, and the uncertainties in determining species abundances, 

temperature, and pressure in future remote observations. Generating statistical data sets 

quantifying how different planetary parameters and living processes affect atmospheric 

disequilibria will place new constraints on P(data|abiotic) and P(data|life). 

4.3.1  Anticipating the unexpected: Statistical approaches to characterizing 
atmospheres of non-Earth-like worlds  

 
One approach that sidesteps the need to either define the biosignatures produced by life or the 

processes that produce them is to search for any signal that is unexpected from an abiological 
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model of a planet. Recalling Eq. (5), we can maximize detectability by either maximizing the 

numerator, P(data|life), or minimizing the denominator, P(data|abiotic). Even if there is an 

extremely small probability that a signal is consistent with life, we can still identify it as a 

biosignature if we can demonstrate there is yet a smaller (perhaps zero) probability for the signal 

to be consistent with an abiotic origin. As highlighted above (and in Catling et al., 2017, this 

issue) there are many challenges associated with modeling abiotic production of biosignatures on 

Earth-like worlds. The next frontier challenge to address is that most work so far has assumed we 

know what gases we are modeling, with a bias toward gases that are potential biosignatures for 

life on Earth. We must develop strategies to avoid this Earth-centric approach if we are to 

determine P(data|abiotic) and P(data|life) for the many worlds that do not fit the narrow box of 

Earth-like parameters. 

 

Expanding beyond Earth-like worlds was the impetus behind Seager et al. (2016)’s ‘All Small 

Molecules’ project. This project, explicitly aimed at volatiles that could be atmospheric 

signatures, seeks to determine all gases that could stably accumulate in any atmosphere. There 

are a very large number of such molecules, and so filters are necessary to reduce this to a 

manageable number. In their initial study, Seager et al. limited the data set to molecules with no 

more than six non-hydrogen atoms that were likely to be stable in the presence of liquid water. 

The size limit was imposed because the number of possible molecules goes up more than 

exponentially with the number of non-hydrogen atoms, and so this made the problem 

computationally tractable: seven- and eight-atom molecules could be added in future iterations. 

Water stability was required as any molecule made by life which diffuses to the atmosphere has 

to be stable to passage through the water in that life, and must be stable in the presence of 
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oceans, rain etc. This is a constraint that could be relaxed if non-aqueous solvents were 

considered a realistic option for future searches for life. 

 

The goal of the project is not the ~14,000 molecules in the initial database in itself; this is a 

starting point. The goal is twofold: to provide a database for future work on biosignatures and to 

provide a database of potential molecules to probe biochemical ‘laws’ proposed to govern life on 

other words. We discuss the first here, and the second in Section 5.4 on universal approaches to 

biosignatures below. To provide a database for future work on biosignatures, work currently 

planned includes estimating from thermodynamic and kinetic parameters those molecules that 

might be formed geologically, and hence would be weak as evidence for life, e.g., because 

P(data|abiotic) is nonzero and detectability is potentially low. For those molecules that are 

highly unlikely to be geologically formed on a planet, NIR signatures could be calculated to see 

if they are detectable.  This requires thermodynamic and kinetic modeling of each molecule in a 

planetary context, calculation of NIR signatures, and integration of that with the atmospheric 

composition of the target planet. This is a substantial task in its own right, and rapid methods for 

estimating kinetic parameters, NIR spectral features etc. are a research goal for this program. 

 

A major gap in atmospheric modeling pointed out particularly by the Seager et al. work is lack of 

measured kinetic data for reaction rates of the vast array of possible biosignature molecules with 

plausible atmospheric or surface components. Even thermodynamic data for nearly all the 

molecules in Seager et al.’s list (2016) have neither been measured nor accurately estimated. 

Moreover, solubilities in water are unknown, and atmospheric reaction chemistry and kinetics 

are unknown. As a consequence, modeling the atmospheric chemistry of these molecules will be 
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an exercise in expert-informed guesswork. A major issue is not only that these measurements 

have not been done, but also that there is little community interest in carrying them out. 

Measuring the kinetics of gas reactions at different temperatures and pressures is exacting work, 

but is not rewarded by high-profile publications; at best, the data becomes one set of points in a 

large database and it is the database curators who get the citation. A topic for future research is 

therefore to find new technologies for making kinetic and thermodynamic measurements on 

gases, gas mixtures and solutions substantially faster and easier, so the collection of meaningful 

data sets becomes a single experiment in its own right rather than a decade-long program for an 

entire laboratory (an analogy is DNA sequencing, which can only be used to compile the 

databases mentioned above for evolutionary studies because sequencing a bacterial genome is 

now a high school project, and not, as it was 20 years ago, a feat worthy of a major publication). 

5 P(data|life) 
 

Moving from a product-based to processed-based search strategy will better bridge biosignature 

research with other active areas of research regarding universal features of life. Product-based 

biosignatures are practical: due to the limitations of current detection methods it is ultimately the 

chemical products of life that we will directly observe. To interpret data on chemical products 

and assess biogenicity, the likelihood of a given signature to be the product of life must be 

determined. A process-based approach is necessary to quantify these likelihoods. Therefore, to 

constrain P(data|life), we must understand the living processes generating a given observational 

signal. By better constraining observables based on the kinds of living processes present, it will 

be possible not only to detect life, but begin to infer its properties to achieve the longer-term goal 

of characterizing it on other worlds.  
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5.1  Black-Box Approaches to Living Processes  
In the absence of knowledge about the processes of life on exoplanets, models typically assume 

biological sources based on production rates for biology on Earth. These are what we term 

Input/Output models of biosignatures. The steady-state concentration of any atmospheric gas is a 

function of its source and sink fluxes. For life detection, we are interested in inferring the 

existence of biological sources. Sinks can be studied using chemical models of atmospheric or 

surface chemistry and photochemistry. Nothing need be assumed about the internal workings of 

life on a planet – it is a black box that consumes some gases and emits other gases.  

 

To enable expanding our search beyond looking for Earth-like life on Earth-like worlds, new 

approaches are necessary. One proposed framework from Seager et al. (2013) advocates 

classifying biosignatures based on the processes which produced them, with the idea to use this 

as a guide to whether those processes could be predicted to be different in a different 

environment.  Their classification scheme still regards life processes each as a ‘black box’ of 

unknown mechanism. It is taken as a given that life requires free energy to operate, and mass to 

grow and replicate. Their classification therefore considers the potential inputs and outputs of the 

system that could provide energy and mass to that system.  Potential biosignature waste products 

are considered as the output from processes that (1) capture chemical energy, (2) capture 

biomass, or (3) other processes.  They conclude the first two can be constrained (if not predicted) 

by the chemistry of the planet, while the third cannot. Here we briefly summarize their 

classification scheme. While this scheme does not have consensus in the community, it serves as 

a useful jumping off point for further exploring process-based biosignature classification 

schemes.    
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5.1.1 Type classification of Seager et. al. (2013a) 
 

Energy capture (Type I). Energy capture can be achieved through life’s exploitation of chemical 

gradients in the environment, as well as through harvesting of light energy.  Biogenic molecules 

signaling such energy capture include gases as waste products, as well as pigments that provide 

the mechanism for light energy harvesting (in some cases these could be classified as other 

below, due to their role in photoprotection).  Examples of biogenic gases on Earth are CH4 from 

methanogenesis, and H2S from sulfate reduction.  

 

In principle, the Type I gas products can be predicted from knowledge of the chemical 

environment of life, thus providing a methodology for building statistical databases of expected 

products as a function of environment, needed for calculating P(data|abiotic). For example, 

Seager and co-workers predicted that ammonia could be a detectable atmospheric biosignature 

on a terrestrial planet with a hydrogen-dominated atmosphere on the basis of the 

thermodynamics of the atmospheric and crustal chemistries (Bains and Seager, 2012; Hu et al., 

2013; Seager et al., 2013a), combined with a hypothetical energy yielding metabolism in that 

environment, with N2 + 2H2 → 2NH3. One challenge for this approach is the diverse range of 

chemical environments on Earth, as illustrated by the production of a reduced waste product 

(CH4) by life on Earth, which has a generally oxidized surface. On an ‘averaged Earth’, methane 

cannot be a Type I biosignature gas, but in reduced environments it can be produced as a 

byproduct of energy capture from methanogenesis or from biomass fermentation.  Earth has 

many reducing niches today because it has biology producing oxygen. Electrons are conserved, 

and oxidation does not exist without reduction. Organic matter produced by oxygenic 

photosynthesis serves as the substrate for methane production during decay processes. Buried 
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organic matter then creates anoxic subsurface environments conducive to the production of 

methane. Future work should take the diversity of coupled environmental sources and sinks into 

account. The values of both P(data|life) and P(data|abiotic) may not only be a function of the 

bulk composition of a planet, but also the number and variety of distinct environments on its 

surface (see also Scharf and Cronin (2016) for a discussion of the role of diverse environments in 

potentially increasing P(life)). 

 

Seager et al. (2013b) have demonstrated that it is possible to extend the Type I concept to 

estimate not only whether a gas could be the result of exploitation of a redox disequilibrium on a 

planet, but also whether that source is a plausible source of a detectable biosignature gas. The 

pilot study of Seager et al. suggests that further research on life’s need for energy would help to 

focus which Type I products are plausible as detectable biosignatures.  

 

Biomass capture (Type II). The carbon on planet-sized bodies with thin (Earth-, Venus- or Titan-

like) atmospheres is likely to be mostly oxidized (CO2) or mostly reduced (CH4), as these are 

thermodynamic minima for carbon in an oxidized or reduced environment, respectively. Life 

needs to convert this into carbon in intermediate redox states to build complex molecules; this is 

a chemical universal, deriving from the nature of chemical bonds to carbon (Bains and Seager, 

2012). This requires the oxidation or reduction of an environmental material, respectively. The 

input is an environmental chemical and environmental carbon, the output is biomass and a 

material out of thermodynamic equilibrium with the abiotic environment. The possible inputs 

and hence outputs are, again, predictable in principle allowing the possibility of constructing 

probabilities for the products of biomass capture, informing P(data|life).  
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The case of photosynthesis illustrates both the power and the limitation of considering a whole 

organism as a black box, which considers only looking at the net reaction rather than the 

individual components being reacted (for example, in a biochemical pathway). Considered as a 

whole, the net mass balance for an oxygenic photosynthetic organism can be expressed as input 

of CO2, H2O, and light and output biomass and O2 as an oxidized waste product of the reductant 

H2O: 

 

(6)  CO2 + H2O + light → CH2O + O2 

 

Here, CH2O is a simplified representation for a carbohydrate or sugar. In this context, oxygen is 

the principal output gas, and is Earth’s most notable Type II biosignature (indeed, Earth’s most 

notable biosignature of any sort). Similarly, other oxidized (non-gaseous) waste materials are 

generated by anoxygenic photosynthesis (see Kiang et al., 2007a; Schwieterman et al., 2017, this 

issue). The same logic can be applied to any life in any environment – indeed in principle the 

same logic could be applied to non-carbon-based life.  Using just the overall stoichiometry and 

thermodynamics of the net process of taking in environmental carbon and energy and outputting 

biomass, other oxidized (Haas, 2010) or reduced (Bains and Seager, 2012) products have been 

suggested for other worlds. Thus this ‘organism-level black box’ approach has power in 

providing a framework for suggesting overall inputs and outputs before understanding of internal 

mechanism is available for any biomass capture process.  

 

Other uses (Type III). Life on Earth produces a wide range of volatiles for signaling, defense and 
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other functions. Here a ‘black box’ approach is relatively powerless as an explanatory tool as 

these processes are highly contingent. There is no known way to predict what signaling or 

defense chemicals an organism will make, starting only from the overall physics and chemistry 

of its environment. The production of Type III gases is a result of the ecological or physiological 

demands on the organism, themselves the result of evolutionary contingencies and of 

relationships with other organisms: data that is not accessible for exoplanets. As a result, in 

principle we might consider any chemical to be a Type III biosignature, which was the 

motivation behind Seager et al.’s compilation of all possible small molecule, volatile 

biosignatures (Seager et al., 2016).  

 

Products of modification of gases (Type IV). Gases produced by life can be modified by the 

environment, providing a source of secondary signatures of life. Examples include ozone (the 

photolytic product of oxygen) and DMSO (the oxidation product of DMS). These could in 

principle be predicted if the environment and products of life are known, e.g., for Type I and II 

biosignature gases, but are will not be predictable for Type III.  

 

5.1.2 Alternatives for Type classification 
 
Seager et al.’s original classification (2013a) was introduced as a pragmatic approach to the 

specific task of extending our understanding of the input/output model of biosignature 

generation, permitting moving beyond basing models solely on terrestrial production rates. 

Suggestions at refinement do not necessarily converge on agreed classification systems, 

suggesting that there may be no exhaustive categorization method. The goal of devising such 

process-based classification schemes is to probe why life might evolve to produce a given 
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chemical signature, as the Seager et al. classification was explicitly devised to do. A process-

based classification particularly is needed for systems modeling to simulate the production of 

biosignatures as well as to explore possible novel biosignatures resulting from complex 

interactions along the entire pathway from metabolism through biosynthesis to post-processing 

in a given planetary biogeophysicochemical system.  This approach is also useful for formalizing 

conditional probabilities in a Bayesian framework as it can inform the likelihoods of producing a 

particular gas conditioned on a given environmental context.  

 

Other disciplinary perspectives pose alternatives to the Seager et al. approach, expanding our 

ability to calculate P(data|abiotic) and P(data|life) based on black-box methods. For example, 

while the Seager et al. Type classes focus on gaseous biogenic products and their secondary 

products in the environment, the classification could be further generalized to include surface 

biosignatures that also result from these Type processes, or properties of the chemical networks 

that generate them (see Section 5.4.1 below).  Possible surface biosignatures include pigments, 

or even morphological features.  Suggestions for generalizing and making the Type 

classifications more precise include the following: 

 

Type I, Energy capture.  Light harvesting pigments can be included as a Type I biosignature 

molecules; although they are not the products of energy capture, they are the means to energy 

capture.  These include pigments of oxygenic photosynthetic organisms, bacteriorhodopsin of 

Archaea, and other light absorbing molecules, as summarized in Schwieterman et al. (2017, this 

issue).  Fluorescence as a result of excess energy release or waste product from light harvesting 

could also be considered a Type I biosignature. Moving from the level of individual molecules to 
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the networks of their interactions, certain chemical networks may be better at energy capture 

than others, suggesting yet another metric for assessing the potential for life (see Section 5.4.1 

below).  

 

Type II, biomass capture. Biomass capture could be elaborated further.  The biomass itself can 

be a biosignature and produce waste products that also can be biosignatures. Biomass capture 

can be through autotrophy (reducing inorganic carbon, CO2) but also through heterotrophy 

(incorporation of already reduced carbon).  Reduction of CO2 into biomass does not necessarily 

produce waste products immediately, but only after that biomass itself is involved in other 

activities.  Incorporation of inorganic carbon into biomass can be highly complex, and the “black 

box” approach to metabolism can be insufficient for identifying biosignatures. If, for example, it 

was found that the use of reducing equivalents generated by photon capture to reduce CO2 

necessarily produced by-products or required other detectable properties of an organism, then 

these would be candidate Type II biosignatures (see Section 5.1.3 below for more details on the 

subtleties of Type classification). This requires an understanding of what aspects of 

photosynthesis are requirements of the steps in the chemical processes, and which are 

evolutionarily contingent, posing challenges for constraining P(data|life) (see Section 6.2 

below).  

 

Another candidate Type II biosignature is seasonal oscillations of atmospheric CO2 content due 

to shifting balances of autotrophic carbon fixation versus respiration.. This is exemplified by the 

observed ~2% seasonal amplitude in CO2 concentration in the northern hemisphere caused 

primarily by the growth and decay or senescence of land vegetation (Keeling, 1960; Keeling et 
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al., 1976, 1996; see Figure 12).  

 

Type III, “Other uses”. The Type III classification is a catch-all to describe compounds whose 

production is not predictable on the basis of planetary chemistry, and as such includes 

biosignatures with diverse functions other than metabolic ones. These can include 

ecophysiological functions such as nutrient capture and heat tolerance (e.g. isoprene), ecological 

functions such as anti-bacterial and anti-microbial compounds (e.g. methyl bromide), and intra- 

and inter-organismal signaling (e.g., ethane). Schwieterman et al. (2015) summarize a variety of 

ecophysiological and ecological functions of numerous types of biological pigments, which 

include phototrophy, anti-oxidants, photoprotection (screening), thermal tolerance, nutrient 

acquisition, growth regulation, and ecological functions like antibiotics and signaling.   Even 

non-chemical properties of organisms, such as bioluminescence, used for signaling, can be 

classed as ‘Type III’ (see Schwieterman et al. 2017, this issue). The Type III classification is 

therefore one that provides a “catch-all” for cases where the biosphere (considered as a black 

box) modeled only in terms of metabolic processes cannot be predicted to produce that signature. 

This is important in estimating the probabilities P(data|life): for Type III biosignatures our 

uncertainties in biological origins mean that the signal-to-noise will not be sufficient for 

unambiguous detection and more context will be necessary to confirm biogenecity.  

 

Type III could be extended in two ways. It could be subdivided into biosignatures likely to be 

produced for specific purposes. An example are retinal pigments that are unlikely to be used as 

visual signaling molecules in an exclusively microbial biosphere, although they may function in 

related activities such as phototaxis or ion transport. It could also be divided into functional 
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classes in cases where modeling of a biosphere was sufficiently sophisticated to infer functional 

roles for particular class of signatures.  

 

Type IV, Products of modification of gases were originally considered to be the products of 

environmental modification of gases, which in turn produce other gases. This could be 

generalized to products of environmental modification and degradation of biogenic molecules, 

including gases, liquid, and solid molecules to produce other gases, liquids or solids. For 

example, the terrestrial “Black Earth” Chernozem soils are the result of substantial modification 

of local geology by biology, and would not be found on an uninhabited world.  

 

Some biosignatures may be of more than one Type.  For example, marine algae produce 

dimethyl sulfide (DMS) as a byproduct of the breakdown of a complex biochemical 

dimethylsulfoniopropionate (DMSP). DMS can be classified as a Type IV product. However, it 

is also probably the principal energy source for the predatory zooplankton that feed on DMSP-

containing algae, and so for them it produces a Type I biosignature (see Schwieterman et al. 

2017, this issue, for more details). There is some debate what Type O2 should be classified as, 

depending around what process(es) one draws one’s black box.   For example, Seager et al. 

(2013) classified O2 as a Type II biosignature involved in carbon or biomass capture, for reasons 

outlined above: considering the organism as a single system, photosynthesis involves input of 

CO2 and light, production of biomass and output of O2. However, oxygen is produced as a result 

of oxygenic photosynthesis, which is achieved through several steps in series.  In the “light 

reactions,” photon energy is used to acquire electrons from water, whereas biomass capture 

through fixation of carbon from CO2 occurs in a separate subsequent step in the Calvin-Benson-
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Bassham cycle, which is the same process used by anoxygenic phototrophs. These steps are 

detailed in Schwieterman et al. (2017, this issue).  Photon energies in series drive successively 

more oxidized states  of the oxygen evolving complex (OEC), a highly oxidizing metallocluster 

that, upon reaching a critical state, catalyzes oxidation of water, thus generating oxygen.  Part of 

that photon energy is further used to excite the electron to a lower redox potential, the energy of 

which can then be used in redox reactions for storage of that energy.  Photosynthesis self-

generates its own chemical gradients, both to acquire electrons from water, as well as to support 

redox reactions for energy storage.  In this more detailed analysis, oxygen is a byproduct of the 

step of energy capture and excitation of electrons; it is in effect the byproduct of capture of 

energy from an internally generated redox gradient, and so is a Type I product.   

5.1.3 When is it appropriate to deconstruct a black-box? 
 

The black box method can be used as a first approach to understanding biosignature production 

when the underlying biological mechanism(s) are unknown. However, the final example in the 

previous section highlights the potential ambiguities involved in such a classification scheme. 

Further challenges arise when the black box fails to work entirely, and more detailed resolution 

of the mechanisms ‘hidden’ in the black box may be necessary.  

 

For example, Eq. 6 is a net mass balance equation for an oxygenic photosynthetic organism, in 

which similar terms on both sides of the equation have been canceled.  It does not express the 

stoichiometry when other oxidized (non-gaseous) waste materials are generated by anoxygenic 

photosynthesis.  Applying a black box to the inputs and outputs for anoxygenic photosynthetic 

organisms reveals some terms that cannot be canceled, which can then motivate further 
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investigation to explain these extra terms.  As just one example, drawing black boxes around 

many similar organisms and finding that some things about them are common while others fail to 

fit the same net reaction model would motivate dissection of the mechanism(s) of photosynthesis 

(dividing the black box into smaller black boxes, defined by our understanding of mechanisms) . 

This is necessary, for example, to generalize for both oxygenic photosynthesis and the several 

types of anoxygenic photosynthesis,.   

 

It turns out that photosynthesis involves processes that separate the activities of energy capture 

and biomass capture in sequence, so a more generalized black box is expressed in the equation: 

 

(7)  CO2 + 2H2A + light → CO2 + 4H+ + 4e- + 2A → CH2O + H2O + 2A 

 

The intermediate reaction reveals that the reductant H2A must first be split to donate electrons, 

and the CO2 is reduced subsequently. When the reductant is H2O then the equation yields: 

 

(8)  CO2 + 2H2Ow + light → CH2O + H2O + Ow
 2 (gas) 

 

where the superscript “w” denotes that the molecules in the produced oxygen gas come from the 

water molecules and not from the CO2.  In the simpler black box equation, the H2O on the right-

hand side canceled with one on the left, but in fact it is not the same, since the source of the 

oxygen atom is different.  If the reductant is instead, for example H2S, in anoxygenic 

photosynthesis, then the net reaction is: 
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(9)  CO2 + 2H2S + light → CH2O + H2O + 2S (solid) 

 

This shows that specific waste products can be viewed as obeying a common set of processes. 

Both the O2 and S are the results of oxidation of an input reductant from input for light energy to 

obtain electrons. In this context, they can be seen as the Type I product of energy extraction from 

an internal redox gradient. Even our last generalized equation is still a simplistic black box, 

depending on one’s question.  For example, as discussed in Schwieterman et al. (2017), this 

equation does not reveal how the light energy is partitioned, and in fact only a fraction of it is 

used in oxidizing the reductant.  If addressing what wavelengths of light can be used in different 

types of photosynthesis, the black boxes must be dissected further.  The reader is directed to 

Schwieterman et al. (2017), which provides more details and literature.  Understanding more of 

the process by which photosynthesis occurs changes our perception of how oxygen is produced. 

(”Why” it is produced, the final cause in an Aristotelian sense, then depends on how one asks the 

question)  

 

The example of photosynthesis exemplifies the value of an interdisciplinary discussion to 

address biosignatures, wherein the approaches of physicists, chemists, and biologists are together 

leveraged to identify the useful level of parsimony versus complexity. The power of the black 

box type of input/output model of life is that it can be implemented on the basis of environmental 

parameters alone. This is also its limitation, in that it says nothing about process or mechanism – 

it assumes that these are unknowable at interstellar distances. It remains an open question to what 

extent this last point is indeed true, and to which either universal ‘laws of life’ or more detailed 

understanding of the necessary chemistry of specific processes could unpack the black box (both 
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discussed more extensively below).  

5.2  Life as improbable chemistry 
 

A different kind of “black box” approach focuses on the complexity of chemical products of life, 

rather than classification of how they are produced. One major observable that discriminates 

living things from inanimate matter is their ability to generate similar, complex or non-random 

architectures in large abundance, or to affect the background. Abiotic distributions of organics 

tend to be smooth, and dominated by low-molecular weight species, whereas in life, natural 

selection yields distributions that are more “spikey” as a result of selection of functional sets of 

molecules (Lovelock 1965, McKay, 2011). Life also reliably produces high molecular-weight 

biopolymers, whereas abiotic processes do not. Relating to the Bayesian framework, the idea of 

searching for low probability chemistry is the same as guiding our search for life by high 

detectability D: we should look for life where we expect no abiotic system could produce such a 

signal.  

 

One potential biosignature could be the entropy of a distribution of molecules, distributions that 

are very unlikely to occur abiotically (e.g., ones that require natural selection) are less probable. 

In this case, the biosignature is itself the probability of a molecule or a distribution of molecules 

occurring abiotically: if the probability is very low (low entropy) we can be confident the signal 

arises due to life. Caution must be taken in assigning biological origins to non-random processes, 

however. An example is the periodic distributions of masses of peptides displayed in living 

organisms, which have a mathematical rather than biological explanation: rather than being a 

product of natural selection, this pattern can be shown to arise purely as a result of the properties 
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of finite ordered sums combining 20 natural numbers (corresponding to the 20 or so biological 

amino acids) (Hubler and Craciun, 2012).  

 

 

Figure 5: Schematic illustrating the difference between abiotic (smooth curve) and biological (spikes) distributions 

of organic molecules. Non-living systems tend to produce smooth, thermodynamic distributions, whereas in living 

processes only a subset of molecule species are selected (through natural selection) to form a functional set. Figure 

from McKay (McKay, 2011).   

 

Based on the probabilistic framework, complex artefacts are themselves biosignatures, since they 

can potentially be discriminated from an abiotic background. For example technetium (Tc) is a 

rare element, not produced naturally, and has been proposed as a possible indicator of a 

technological civilization, since creating it requires knowledge of nuclear physics (Paprotny, 

1977; Whitmire and Wright, 1980). Computers are also biosignatures for the same reasoning, it 
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is unlikely that a laptop would form spontaneously without the long sequence of evolutionary 

steps necessary to evolve intelligence capable of constructing such technology. While highly 

improbable structures are most often discussed as biosignatures in SETI research (Sagan and 

Shklovskii, 1966; Drake, 1965) the concept of improbability is equally applicable to molecular 

signatures of life. The challenge is that we must threshold a minimum complexity above which 

we can be confident P(data|life) > P(data|abiotic) for the molecule of interest. 

 

It is not obvious how it might be possible to generalize an approach that aims to evaluate 

complex objects as possible biosignatures, particularly with respect to chemical signatures of 

life. In the context of exoplanet searches for life, achieving this on a planetary scale requires the 

probabilistic search for anomalies that themselves have in-built structure. Marshall et al. (2017) 

have recently developed one possible complexity measure, they call Pathway Complexity, which 

quantifies the complexity of a any given object as the shortest pathway for its assembly. The 

measure identifies the shortest pathway to assemble a given object by allowing the object to be 

dissected into a set of basic building units, and rebuilding the object using those units.  Pathway 

Complexity bounds the likelihood of natural occurrence by modeling a naïve synthesis of the 

observation from populations of its basic parts, where at any time pairs of existing objects can 

join in a single step. An object of sufficient complexity causing an observable feature, if formed 

in the absence of life, would have its formation competing against a combinatorial explosion of 

all other possible features that are equally probable. Pathway Complexity can be seen as a way to 

rank the relative complexity of objects made up of the same building units on the basis of the 

pathway, exploiting their combinatorial nature. The motivation for the formulation of Pathway 

Complexity is to place a lower bound on the likelihood that a population of identical objects or 
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observations could have formed or occurred abiotically, i.e., without the influence of any 

biological system or biologically derived agent. Thus, it is assumed that objects with high 

Pathway Complexity will only be observed if produced by life. Conceptually, the measure is 

similar to Bennett’s logical depth, a measure of complexity based on the number of 

computational steps necessary to recreate a piece of information (Bennett, 1988). The key 

difference is that Pathway Complexity looks at the intrinsic routes for connecting objects based 

upon the resources within the system. Locally, Pathway Complexity could be used to rank 

molecules in order of complexity, enabling identifying a threshold above which the molecule 

must have been produced by a biological system. 

 

For exoplanets, we are unlikely to remotely detect large macromolecules, and the Pathway 

complexity for remotely detectable small molecules is in general low. In principle, exceptions to 

low Pathway Complexity could include molecules such as dimethyl sulfide (DMS) and dimethyl 

disulfide (DMDS). These volatile gases are produced as indirect metabolic and decay products of 

both eukaryotic and prokaryotic organisms, require several independent enzymatically mediated 

steps to produce, and consequently have no known abiotic sources (see overview in 

Schwieterman et al., 2017, their section 4.2.5). In its current formulation, Pathway complexity 

cannot account for biogenecity of small molecules such as DMS and DMDS, as it is necessarily 

a combinatorial measure to be computable from only knowledge of the object. Since DMS and 

DMDS are below the threshold complexity set for origins from living processes (above which we 

can be confident life produced it), they would have low Pathway Complexity despite their 

complex biological synthesis pathways. Additionally, these specific example gases are unlikely 

to build up to detectable levels in planets orbiting stars other than inactive M dwarfs, but could 
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be indirectly indicated by a C2H6 over abundance relative to that expected for the photochemical 

processing of CH4 (Domagal-Goldman et al., 2011).   

 

Despite current limitations, the concepts driving Pathway Complexity are promising for 

exoplanet research, and there are potential ways forward for characterization of small molecules. 

Expanded versions of pathway complexity can account for the occurrence of many small 

molecule species occurring simultaneously, by analyzing the number of possible network 

pathways. This might provide fruitful new directions for assessing biological origins, or at least 

bound P(data|life).  More broadly, Pathway Complexity should be able to be used to connect 

spectroscopic signatures looking for patterns of improbable ‘complex’ behavior. An example 

could be exoplanets that have Complex ‘LED-like’ spectroscopic signatures that occur in 

abundance yet cannot be explained without technology. The key to expanding this will be using 

the Pathway Complexity to develop thresholds that are accessible by current technology or 

inspire the development of new technologies, experiments and approaches. 

5.3 Life as an evolutionary process 
The “black box” approaches of the previous sections are not concerned with the specific 

mechanisms mapping the planetary input to biological output, which is both their strength and 

primary limitation. The internal mechanisms of biological processes inside the ‘black box’ are 

driven by evolution, necessitating a better understanding of the universals of evolution to 

determine the universals in an input/output framework. In applying Earth life as the standard of 

reference, we have only one past and one present to guide inferences of how integration over 

microscopic effects produces specific macroscopic biosignatures. One challenge is disentangling 

contingent events (which take the form of temporal conditional probabilities) in the evolution of 
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life on Earth from universal constraints that we might expect to apply to life anywhere. Using 

Earth’s history of evolution, we are effectively substituting timing, frequency, and diversity for 

likelihoods applicable to the study of exoplanets. 

 

The universality of the genetic code and central dogma indicate all known life on planet Earth 

originated from a last universal common ancestor (LUCA) (Koonin and Novzhilov 2009). 

However, components of LUCA, such as archaeal and bacterial cell membrane components and 

metabolic capabilities, may have arisen independently multiple times. Our understanding of early 

evolution is complicated by the common occurrence of horizontal gene transfer (Lombard et al., 

2012; Woese, 2004, Mushegian 2008). For example, respiratory chain components needed for 

aerobic respiration may have been laterally transferred between bacteria and archaea, and the 

origins of these genes are unclear (Kennedy et al., 2001, Boucher et al., 2003). As a result, it is 

conceivable the last common ancestor of each extant gene may or may not have been present 

within the LUCA population.  With respect to the origins of life on Earth, the existence of a 

LUCA implies our sample size is N=1, which does not provide enough data for statistical 

inference about the processes or likelihood of abiogenesis (see Section 6.1). However, the 

evolutionary process on Earth has driven innovations over many temporal and spatial scales, 

permitting the possibility of understanding more universal features of evolutionary processes by 

studying many events. Generalities could then be extrapolated to other chemistries. Thus, when 

taken in light of the diverse biogeochemical contexts for life on Earth, we might consider that we 

have N=many examples for calculating P(data|life) for evolutionary processes, rather than being 

restricted to N=1, as is the case for the origins of life (see discussion on P(life) below for 

cautions in assuming independence of evolutionary innovations for constructing likelihoods).  
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Extinction has been a hallmark feature of life on Earth. Therefore, in calculating P(data|life) we 

must not only consider the probability of an evolutionary innovation emerging, but also its 

persistence in time. It would be worth knowing whether a planet being observed has extant life 

or, if not, is otherwise suitable for the emergence of future life, or if observables indicate that life 

was once present in the past. Better understanding of evolutionary processes and how they 

couple to planetary scale signatures is necessary to make progress on these unknowns.  

 

 

Figure 6: Life on Earth radiated from a last universal common ancestor with a single standard genetic code. With 

respect to core biochemical components of life, this common ancestry leaves a sample size N=1. However, the 

subsequent evolution of diverse metabolic capabilities and evolutionary lineages has resulted in diverse trajectories 

allowing the possible of mapping N=1 to N=many, considering the varying coupled environmental and biological 

states over geological timescales and the number of independent, convergent evolutionary innovations and 

transitions (only a few of which are shown for illustrative example). It is unknown how frequently these 

evolutionary events, including the origin of life, should be expected to occur on other worlds. 
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5.3.1 Life as a co-evolution with its planet: Earth as an example 
 

In the years since Des Marais et al. (2002), the community has increasingly recognized the 

fundamental importance of understanding biosignatures as resulting from the coupled evolution 

of a planet with the life upon it. Life is a phenomenon that manifests and maintains itself at 

molecular and microscopic scales, and, through evolutionary processes tightly coupled to 

geochemical cycles, has led to macroscale changes in the Earth-system. Again, using 

atmospheric O2 as the standard example, oxidation of water by photosynthesis occurs at the 

molecular scale, and the evolution of oxygen and the growth of organisms may be observed in 

the lab and field in situ, but the expression of O2 as an exoplanet biosignature requires planetary-

scale accumulation over geologic time scales. Due to the co-evolution of the biosphere, 

lithosphere, hydrosphere and atmosphere of Earth, life itself may be considered as a planetary 

process (Smith and Morowitz, 2016). 

 

Planets are not static, but evolve in response to stellar context and planetary feedbacks: for living 

worlds, these feedbacks include those between a biosphere and geosphere. As evidenced by 

Earth’s transitions, it is possible for precursors to biotic processes to emerge on an abiotic planet, 

mediating the transition to a living world, and for a living world to transition through different 

phases. Because Earth life has been exclusively microbial for the majority of Earth’s history, it is 

possible that primitive unicellular life forms are the most common and longest lasting stage of 

life on a planet (Whitman et al., 1998). Microorganisms are thought to have evolved on Earth 

after catalytic and genetic macromolecules were compartmentalized into membrane envelopes 
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(Lombard et al., 2012). The degree to which these early life forms may have metabolic activities 

like modern microbes, such as lithotrophic or photosynthetic processes, is currently unknown. It 

is still not well understood how feedback between the biosphere and the geosphere shaped the 

gases that would have been detectable in our own atmosphere during the period after life first 

emerged on Earth (>3.8Ga), but before the rise of oxygen in the Earth’s atmosphere made O2 a 

remotely detectable biosignature (Reinhard et al., 2017). 

 

What we do know is that biological innovations on Earth have driven major changes in the redox 

state of our planet, leading to distinct observable states and planetary biosignatures (Kaltenegger 

et al. 2007).   The prime example is the dramatic global scale transition to an oxidizing 

atmosphere resulting from oxygenic photosynthesis carried out by ancient cyanobacteria, 

detectable in the fossil rock record in the Great Oxidation Event (GOE) at 2.3-2.4 Ga (Luo et al., 

2016).   Innovations like this are dependent on the environmental conditions that allow them to 

arise and in turn drive the environment, leading to successional innovations and planetary 

geochemical states that co-evolve in a history-dependent manner. These states may be stable 

locally or globally at different temporal scales. Because life and the planet’s redox state co-

evolve, a complication for building probability distributions for P(data|life) is that the 

probabilities are time-dependent in a manner that depends on the states (e.g., the dynamics are 

state-dependent, regarded as a hallmark feature of life (Goldenfeld and Woese, 2011; Walker and 

Davies, 2013), that is the probabilities we must construct are necessarily conditional. 

 

On Earth, the changes in oxygen content of the Earth’s atmosphere through geologic time 

corresponded with biological innovations of oxygenesis, nitrogen fixation, eukaryotic cells, 
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multi-cellularity, and the arrival of plants on land (Ward et al., 2016; Gebauer et al., 2017; 

Berner et al., 2003). Each may have been made possible by the changing geochemistry of the 

planet, sometimes fostered by earlier life, and there are a number of hypotheses to support this 

idea. For example, the input of H2O2 to the oceans from the thawing of a Snowball Earth state 

has been proposed to serve as a transitional electron donor in the emergence of oxygenic 

photosynthesis (Liang et al., 2006). Another hypothesis is that the scarcity of ammonium as a 

nutrient in the face of oxidation at the GOE may have necessitated the development of nitrogen 

fixation (Blank and Sanchez-Baracaldo, 2010). The availability of oxygen allowed by aerobic 

respiration drives increases in organism size and productivity (Catling et al., 2005). Additionally, 

the formation of the ozone layer from atmospheric oxygen altered the spectral quality of surface 

irradiance, protecting it from ultra-violet radiation and allowing the emergence of advanced life 

on land, as well as altering the color balance of light for photosynthesis (Kiang et al., 2007a).  

Many of the evolutionary developments that brought about these transformations remain 

enigmatic.  Some of these innovations have arisen independently multiple times, while others 

appear unique, some with evidence of an evolutionary pathway, but others without a clear origin.  

The probability of these innovations is a separate term in our Bayesian framework, P(life), to be 

treated in more detail below in Section 6.2. 

 

For other planets, surmising evolutionary path and geological epochs for life that are not Earth-

like offers a rich challenge for interdisciplinary science.  One question is what false positives 

(high values of P(data|abiotic)) and negatives (low values of P(data|life)) arise over 

time).  Oxygen and water on a young planet orbiting a flaring M star could be a false positive, or 

ambiguous where the age of the star and time scale for life’s evolution are unknown (Luger and 
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Barnes 2015).  False negatives may result when biosignatures are not detectable until long after 

initial development of the producing organisms. This could occur when time is required to build-

up a biogenic product in an atmosphere, and for the planet’s climate and geochemistry to shift to 

a different equilibrium, as exemplified by the possible 2 billion years between the first 

emergence of oxygenic photosynthesis and its detection in the Great Oxidation Event (Cole et 

al., 2016; Lyons et al., 2014).  Astrobiologists must accept that they are unlikely to detect 

marginal biospheres that have little detectable impact on a planet (e.g., where P(data|life) << 

P(data|abiotic), even if we expect P(life) >0). In many cases, we may be unable to detect 

biosignatures from earlier organisms that are subsequently suppressed by later organisms and 

evolving chemical and climate conditions, those that may exist only in obscure niches such as 

deep hydrothermal vents, or are relicts in refugia toward the end of a planet’s life (O'Malley-

James et al., 2013).  Yet, these marginal biospheres might explain extant life, being its precursor, 

or relict planetary chemistry. They are also important in estimating the prior probability of life 

P(life), and in obtaining reasonable estimates of the distribution of life on other worlds.    

5.3.2 Calculating conditional probabilities in biological evolution from past 
biogeochemical states 

  

From the foregoing discussion, it is clear that our planet has gone through many different states 

as Earth and its living systems have co-evolved with one another over geological time scales. 

Extending our understanding of life through its history, our N=1 sample permits the study of 

many distinct biophysicochemical modes that differ from the current configuration of the 

coupled biosphere, geosphere and atmosphere. Within the exoplanet biosignature community it 

is often noted that life represents at least two end-member examples of an inhabited planet; the 
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early Earth (low or absent oxygen) and the modern Earth (high oxygen) (e.g., Lyons et al., 2014; 

see also Meadows et al., 2017, this issue). Expanding this idea, each time life has radiated into a 

new geochemical niche could be considered as an additional data point: each example provides 

new insights into how selective processes can yield new biochemical mechanisms for energy 

acquisition and generation of biomass.   

 

To understand potential biosignatures and their likelihoods requires linking the history of 

different modes of biological innovation and environmental states on Earth to their potential 

planetary-scale signatures. By extension, it is only by piecing together the histories of key 

molecular components that couple metabolic activity to planetary reservoirs that we may begin 

to estimate the temporal frequency and distribution of comparable biosignatures on other planets 

(Lyons 2014, Catling 2011). Two datasets, the geologic record and the genetic content of extant 

organisms, provide complementary insights into this history of how key molecular components 

have shaped or driven global environmental and macroevolutionary trends (Caron 2017; Kacar et 

al., 2017; Fisher 2016). Changes in global physiochemical modes over time are thought to be a 

constant rather than ephemeral feature, as life has continuously evolved protein functions for the 

>3.8 billion years of life’s history on Earth. Organismal survival depends on how well critical 

genetic and metabolic components can adapt to their environments, necessitating an ability to 

adapt changing conditions. These adaptations can produce viable biosignatures where biological 

rates exceed abiotic ones, e.g. where P(data|life) > P(data|abiotic).  

 

The geologic record provides a number of biologically dependent indicators of macroscale 

atmospheric and oceanic composition, but provides little information by way of the exact 
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behavior of the molecular components that altered the compositions of these reservoirs. One 

proposed way to infer the activity of ancestral molecular components is to reconstruct protein 

sequences that might have been present in ancient organisms, downselecting to a subset of 

possible sequences that may have been adapted to these ancient environmental conditions. It 

should be noted that such sequences are inferred based on the most parsimonious ancient 

sequence(s), given the diversity of modern ones, and are subject to historical ambiguity (Benner 

et al., 2007; Kacar and Gaucher, 2012). With that caveat, reconstructing ancestral phenotypes 

that can lead to large-scale planetary biosignatures can be accomplished by identifying primitive 

biomolecular protein sequences that have impacted the cycling of C, N, S, O or P through global 

reservoirs (Kacar et al., 2017). Studying the interface of past molecular behavior and 

environmental conditions may provide new insights into the interpretation of deep time 

biosignatures on Earth. For example, organismal and community fitness can be studied in the 

lab, as well as rates of production of biosignature gases. Data reconstructed through these studies 

may then be compared and contrasted with independent data obtained from primitive organic 

material for which there is a suspected or known biological imprint. Such findings may be 

critical for establishing biosignature baselines that are persistent and thus considered more 

broadly ‘universal’, or to identify cases where protein activity was not uniform in Earth’s past. 

However, experiments incorporating these methods also require careful design to rule out signals 

from other potential artifacts impacting biosignature assessment, such as sequence reconstructive 

biases or organismal responses to non-adapted substituted components. Properly accounting for 

these ambiguities, the data generated from these approaches can inform how likely a given 

biosignature signal is within the space of understood catalytic proteins, contributing to our 

understanding of P(data|life).  
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There is an analogous approach searching for ancestral metabolic pathways by comparing 

modern pathways, and in turn reconstructing putative ancient ancestors. This has been an 

established approach to studying the evolution of metabolic capabilities for over 70 years (see 

e.g., Waley, 1969). Smith and Morowitz argue this approach can probe the pre-genetic epoch of 

biogenesis, and be used to understand the chemistry from which life arose (Smith and Morowitz, 

2016).  While our ability to reconstruct the exact history of life-on-Earth is debated, these 

approaches illustrate that a combination of genetic, structural and chemical analyses of the 

product of 3.5 billion years of evolution can provide insights into intermediate states in that 

evolution.  

 

Understanding the function of ancestral components can also provide a novel means of gaining 

access to configurations of life that deviate from extant norms. For example, it is possible that 

life could have started with, evolved from, or subsisted by uptake of a different set of monomers 

than those utilized by current life on Earth (Forterre, 2007; Braakman, 2012). By engineering 

modern organisms with the behavioral properties of these ancient components, we may explore 

variations of so-called “weird life,“ which can yield yet more significant insights into the 

essential requirements for life as a universal phenomenon. This is a common approach in the 

field of synthetic biology, and indeed components of organismal genetic machinery have been 

successfully replaced with synthetic parts in functioning organisms. Examples include expanded 

genetic alphabets (Malyshev et al., 2014), synthetic minimal bacterial genomes (Hutchison et al., 

2016) ancient genes inside modern bacterial genomes (Kacar et al., 2017) and alternative nucleic 

acids (XNAs) (Taylor et al., 2015). 
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5.4  Insights from Universal biology 
 

All of the candidate biosignatures discussed thus far in this review have focused on chemical 

signatures of life.  Searching for “life as we know it” implies searching for “biochemistry as we 

know it,” e.g., DNA, proteins and metabolisms like Earth’s, such as oxygenic photosynthesis. 

Therefore, moving beyond “life as we know it” to “life as we don’t know it” with unknown 

biochemistry will require developing new frameworks that address universal aspects of living 

processes. The idea of “universal biology” has been proposed with the intent of transcending the 

chemistry of life as we know it to uncover universal organizational properties of living systems 

(Goldenfeld and Woese, 2011, Davies and Walker, 2016) – perhaps associated with patterns in 

information flow or energy transfer – that should apply to any kind of life, even if it is based on a 

radically different biochemistry. Of the candidates for universal biology, chemical disequilibria 

has been the most widely discussed as a potential biosignature. But, it is unclear if disequilibria 

associated with life quantitatively differ from other planetary disequilibria, as discussed above. 

Additionally, some have argued that life exists to facilitate a more rapid approach to equilibrium 

than would be possible with geochemical processes alone (Shock and Boyd, 2015), such that 

living planets should be closer to equilibrium rather than farther as compared to non-living 

planets. Other candidates include universal scaling laws (West et al., 2002; Okie, 2012), 

collective behavior (Goldenfeld and Woese, 2011), network structure (Jeong et al., 2000), or 

informational structure (Davies and Walker, 2016). Although we are only in the early stages of 

developing a universal biology, insights into common organization properties of biological 

systems gained over the last decade hold promise for providing novel approaches to 

biosignatures in near-term searches for life and for longer-term mission planning, providing new 

frameworks for constraining P(data|life).  
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5.4.1 Network biosignatures  
Networks are used to quantify the properties of living systems across all scales of organization, 

from the chemistry within cells (Jeong et al., 2000) and the structure of food webs (Dunne et al., 

2002), to the organization of cities (Bettencourt, 2013). A network is most simply described as 

the pattern of connections among a system of interacting entities. Mathematically, networks are 

studied using the tools of graph theory, where entities are represented by nodes and their 

interactions by edges. Familiar examples include social networks, such as Facebook, where 

individuals are represented by nodes and their friendships by edges (e.g., an edge is present if 

two individuals “like” each other). Likewise, chemical species reacting with one another in a 

planetary atmosphere can be represented graphically with a network, where one node type 

represents molecular species and a second node type represents the reactions that occur among 

these species (left panel, Figure 7). Other graphical representations are possible, such as ones 

involving only molecular species (and no reaction nodes), which are connected if they participate 

in the same reaction (right panel, Figure 7).  

 

 

Figure 7: Two different graph-theoretic representations of the same chemical network, consisting of the reactions: 

H + HCl → H2 + Cl, HCl + O → Cl + OH, and HCl + OH → Cl + H2O. Network examples adopted from Sole and 

Munteanu (Sole and Munteanu, 2004). 
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Network representations have been used to study biochemical networks associated with 

metabolism. Jeong et al. (2000) demonstrated that the metabolic networks of 43 organisms, 

representing all three domains of life, are scale-free networks, meaning their degree distributions 

follow a power law P(k) ~ k-α, where P(k) is the probability that a given molecular species 

participates in k reactions (in network parlance k is the degree of the node, corresponding to the 

number of edges connected to that node). Earth’s metabolic networks are therefore highly 

heterogeneous in that there exist a few highly connected nodes (hubs) that link numerous less 

connected nodes together. This property has been explained in terms of enhanced robustness: 

heterogeneous networks are known to be more robust to the loss of random nodes than random 

networks. It is therefore a candidate signature of evolutionary processes at work, providing new 

ways to potentially constrain the value of P(data|life). 

 

The universality of metabolic network organization suggests that life on other worlds might 

evolve to exhibit similar network topology to that of Earth’s metabolic networks, and therefore 

that network topology is itself a biosignature. One hypothesis is that life could additionally leave 

a topological imprint on atmospheric chemistry. To test this hypothesis, several studies have 

examined the network topology of Earth’s atmosphere (Figure 8) and compared it to that of other 

worlds in our solar system (Gleiss et al., 2001; Solé and Munteanu, 2004; Holme et al., 2011; 

Estrada, 2012). The results of these comparative analyses indicate the Earth’s atmospheric 

reaction network structure differs from other planetary atmospheres, and specifically that it is 

more like biochemical metabolism in its topological structure than it is like other atmospheres. In 

particular, Solé and Munteanu showed that Earth's atmospheric chemical reaction network 

exhibits scale-free topology, much like biochemical networks (Solé and Munteanu, 2004), 
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whereas other planetary atmospheres, including Mars, Venus, Titan, the Jovian planets, are 

structured more like random networks. These results resonate with the view that life is indeed a 

planetary process and is deeply embedded in the Earth system, to the point that even the network 

arising from the chemical dynamics of the atmosphere is driven by life (and not just its molecular 

constituents such as O2). 

 

Figure 8: A network representation of Earth’s stratospheric chemical reaction network. High degree nodes are 

highlighted in warm tones, and lower degree nodes in blue. Data from DeMore et al. (1997). 

 

There are observational biases that must be accounted for in network analyses, as we know 

Earth’s chemical constituents and its reaction network to a much greater level of detail than we 

do other planetary atmospheres. However, even the major constituents contained in Earth’s 

atmosphere may require a more complex network to fully explain them. The fundamental reason 
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for this is the same as the foundations of traditional thinking on “non-equilibrium” or non-

steady-state biosignatures that has been in the minds of the exoplanet community for decades 

(Lovelock, 1965; see also Section 4.3). The introduction of non-steady-state gases by biology 

leads to additional atmospheric reactions that would otherwise not take place. Conversely, the 

presence of these same gases in a steady-state condition that does not require biological fluxes to 

maintain them implies that the chemistry of the atmosphere is such that their destruction rates are 

slow, a result of the atmospheric chemistry being less complex. We can consider the classic 

example of O2 to illuminate this. The known mechanisms for accumulating detectable amounts 

of O2 in a planetary atmosphere are all associated with atmospheres that are deficient in H. The 

results of this are atmospheres with chemical networks dramatically less complex due to the lack 

of H-bearing species and their reactions. Similarly, a planet without biological O2 fluxes would 

not have the additional reactions that are caused by its presence in the atmosphere. The network 

complexity would instead be greatest when O2 is present in an atmosphere that would otherwise 

destroy it rapidly. Similar trends are hinted at in studies of alternate biosignatures as well, such 

as the additional chemistry resulting from biogenic sulfur gases that causes C2H6 to be detectable 

in exoplanet environments (Domagal-Goldman et al., 2011). 

To validate this proposal, and utilize network-theoretic biosignatures for remote detection, 

several lines of research must come together. The properties that are unique to inhabited worlds 

need to be fully explicated. Recent work has shown that scale free topology is not as common as 

previously claimed (Clauset et al., 2009), and requires rigorous statistical tools to confirm. In 

particular, relatively few molecular species are confirmed to be present in many planetary 

atmospheres, meaning atmospheric networks are small making it difficult to obtain statistically 

rigorous fits for the degree distribution. For exoplanets we will have even less data. Other 
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topological properties must therefore be studied to determine in what ways Earth’s atmosphere 

differs from other worlds. Topological properties should be analyzed across a range of kinetic 

and dynamic models, varying T, P and composition to determine how physical effects influence 

atmospheric reaction network topology to isolate possible biological origin, and constrain 

P(data|life) for network topology. A systematic analysis of the topology of different models for 

planetary atmospheres could be used to determine the likelihood of specific features, given 

planetary and stellar context. Additionally, deeper analysis should be done for Earth to determine 

how biology is driving the distinctive topological properties observed. Finally, if validated as a 

biosignature, it remains to be demonstrated how we can extract large-scale statistical properties 

of an atmosphere’s network from the limited data we will obtain through remote observation. 

One possibility is to use Bayesian retrieval methods, used for extracting cloud properties from 

atmospheric data (Line et al., 2012). 

This concept is relatively new - to the exoplanet field at least - and thus warrants further 

investigation. Studies of the kinetic properties of various terrestrial worlds can test the 

overarching hypothesis that Earth’s network is more complex, and that the increased complexity 

is due to biology. The application of this approach to multiple inhabited planets - including that 

of Early Earth - should also be conducted. This will allow us to understand how well this 

hypothesis holds, how useful it is to constraining P(data|life), and in turn how useful it will be to 

future exoplanet astrobiology missions. 

This illustrates one example of how considering the general, chemistry-independent properties of 

life may lead to specific research proposals in life detection strategies. Deeper research questions 

should also examine whether there are other, equally fundamental properties of life that can 

potentially lead to remotely detectable consequences.  
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5.4.2 Universal scaling laws, applicable to other worlds? 
 
Another candidate for universal biology is the scaling laws associated with trends across 

different biological organisms. Familiar examples from physics include critical phenomena near 

phase transitions, where physical properties such as heat capacity, correlation length, and 

susceptibility all follow power-law behavior. Scaling relationships take the form 𝑌(𝜆𝑁)  =

 λ!𝑌(𝑁), where 𝜆 is an arbitrary scaling parameter with scaling coefficient 𝛽, 𝑁 is typically a 

measure of the size of the system, and 𝑌 measures a property characteristic of the system. Thus 

the scaling relation provides a direct mapping from the value of the parameter of interest, 𝑌, for a 

system of size 𝑁, to the value of the same parameter measured on a system of size 𝜆𝑁. The 

scaling 𝑌(𝜆𝑁)/𝑌(𝑁) is then parameterized by a single dimensionless number, the scaling 

exponent 𝛽. A simple solution is the power law relationship associated with scale-free network 

topology as discussed in the previous section. In addition to power laws in networks, scaling 

relations have been studied in biology in phenomena as varied as patterns in species diversity 

(Locey et al., 2016), the organization of cities (Bettencourt, 2013), and the structure of neural 

systems (Zhang and Sejnowski, 2000). A scaling relationship of interest for identifying universal 

patterns in biology, applicable to other worlds, are the allometric scaling relations, which relate 

features such as metabolic rate to body to size (West et. al., 2002; Okie, 2012). These scaling 

relations change through the major transitions in biological architecture (e.g, from prokaryotes to 

protists to metazoans, see Figure 9) and appear to be universally held across life on Earth 

(Delong et al., 2010). 
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Figure 9: Empirically bserved scaling laws for metabolic rate as a function of body-mass exhibits three major 

regimes, associated with prokaryotes, protists and metazoans (Delong et al., 2010). If these trends are universal and 

can be derived from an underlying common theory, it may be possible to apply the universal scaling relations to 

inform P(data|life) on other worlds. Figure adopted from Okie (2012). 

 

Scaling relations, due to their ability to “predict” the values of system parameters based on other 

measured quantities, represent one of the closest approaches so far to a predictive theoretical 

biology, akin to theoretical physics. Using the observation that cells and organisms are 

constrained in their growth by resource distribution networks, predictive models can be 

generated that accurately provide values for the scaling exponents observed in a number of 

diverse biological systems (West et al., 1999). However, there is as-yet no unified theory that 

explains the observed allometric scaling relations across different level of organization, nor when 

transitions in scaling regimes should occur. Nonetheless, the existence of these scaling relations 

suggests integrative frameworks for constraining P(data|life). For example, modeling flux rates 

of biosignature gases on exoplanets could be informed by fundamental bounds on flux rates for 
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given biomass estimates provided by universal scaling (given minimal assumptions of a 

particular biological architecture), allowing us to extrapolate to metabolisms that might exist in 

non-Earth like environments. It should be noted that the universal properties associated with 

scaling laws and network structure are both statistical constraints on P(data|life), providing 

fundamental chemistry-independent bounds on our expectations for life to generate a given 

observable. 

6 P(life) 
 
So far, we have focused discussion on calculation of P(data|abiotic) and P(data|life). The final 

term necessary for calculating the posterior likelihood of life (apart from knowledge of 

experimental noise) is the prior probability for life to exist in the first place, P(life). This is the 

least constrained and most challenging term to quantify.  As we pointed out above, it is not 

sufficient to simply assign a probability that life-as-we-know-it exists on another world (which is 

unknown), but instead P(life) should be considered as decomposable into a family of conditional 

probabilities for the existence of different living processes on other worlds. Life is a path-

dependent process, so each new biological innovation is dependent on those that preceded it, thus 

P(life) takes the form of conditional probabilities for each evolutionary step (which itself may be 

difficult to define, what are the relevant steps?). As an example, in assessing the probability for 

multicellularity to evolve, we might decompose it into the following series of conditional 

probabilities: 

 

P(multicellularity) = P(multicellularity|eukaryogenesis)P(eukaryogenesis|emerge)P(emerge) 
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where we have here considered only two of the most significant “major” steps. There are many 

more unspecified steps that will be necessary to articulate to map the limited observables of 

exoplanets to a reasonable estimate of the prior probabilities of living processes. The prior 

probability of every living process will ultimately depend on P(emerge), the probability for life 

to originate. Thus, how well we can constrain P(life) depends on how well we can constrain the 

probabilities for the candidate living processes that may have generated the signal, its 

evolutionary history, and ultimately the origins of life.  

6.1  P(emerge): Constraining the probability of the origins of life  
 
As noted in Section 3 introducing the Bayesian approach, attempts have been made to constrain 

P(emerge) within a Bayesian framework by Carter and McCrea (Carter and McCrea, 1983) and 

more formally by Spiegel and Turner (Spiegel and Turner, 2012), with the conclusion that 

P(emerge) could be arbitrarily close to 1 or zero. In other words, P(emerge) is currently 

unconstrained (apart from the trivial statement that it is not identically zero). In Spiegel and 

Turner (Speigel and Turner, 2012), it was estimated that the likelihood for the emergence of life 

follows a Poisson distribution, such that life was most likely to arise early in a planet’s evolution. 

However, for M dwarf stars the early stellar environment may not be conducive to life (see 

Section 4.1 on stellar context) and in general it is unknown if life must arise early in a planet’s 

evolution, or whether it could occur at any time. Ideally, we would be able to calculate 

P(emerge) from theory, but there currently are no theoretical bounds -- we do not have a 

quantitative definition for life nor a theory of the emergence of life from which to do such ab 

initio calculations (Walker, 2017).  We must better understand the mechanisms underlying the 

origins of life to make a case for P(emerge). 
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If the emergence and evolution of life requires time, then knowing the age of the star is valuable 

to assessing the potential for life, and thus avoiding systems where P(life) might be too low to 

confidently detect life. Measuring the ages of stars is more accurately done for the youngest ages 

when the youth diagnostics (such as spectroscopy, photometry, kinematics, chemistry, etc.) are 

more clearly measureable.  For stars much older than a billion years we must rely on less precise 

techniques.  However, from statistical studies of many stars in various regions of our galaxy, we 

are able to better refine the ages of old stars by their location in the galaxy (i.e., disk or halo), by 

the composition of the stars (high or low metallicity) and by their level of stellar activity as most 

stars tend to be less active (i.e., less flaring, slower rotation) as they age.  

 

In Scharf and Cronin (2016) a formalism akin to the Drake equation was proposed for estimating 

P(emerge) at a planetary scale. The mean expected number of abiogenesis events on a planet in a 

given time interval was suggested to depend on four parameters: the number of potential building 

blocks, the mean number of building blocks per organism (acknowledging ambiguities in the 

definition of “organism”), the size of the subset of building blocks available to life during a fixed 

time interval, and the probability of assembly of those building blocks.  The latter term, based on 

the probability of assembly, was intended as a “catch-all” that does not require detailed 

knowledge of mechanism and could, for example, include the probability per unit time of vesicle 

self-assembly, or a sequential series of steps leading to an evolvable system. In this formulation, 

this probability is the least constrained parameter, necessitating input to constrain it from in vitro 

and in silico research.  
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One potentially fruitful path for estimating these probabilities is “messy chemistry”, where the 

goal is to study the statistical properties of chemical systems and their interactions with other 

compounds, formation structures, etc. in cases where precise composition and mechanism are not 

known (Guttenburg et al., 2017). Here “messy” refers to high diversity of products, 

intermediates, and reaction pathways that cannot all be precisely identified. Analysis of the bulk 

properties of geochemical organic samples provides one example, where the Petroleum industry 

has developed methods for classifying crude oils quickly by measuring a small subset of its 

properties.  Applied to chemistries relevant to the origins of life, the emergence of ‘life-like’ 

features could be studied statistically to estimate the likelihood of functional polymers emerging 

from random mixtures, as just one example. This could in turn be tied to different environmental 

contexts through explorations of a diversity of environmental parameters. One such parameter is 

the rate of hydration-dehydration cycling, where wet-dry cycles have recently become a 

prominent mechanism in origins of life research for driving the abiotic synthesis of far-from-

equilibrium biopolymers (Hud and Anet, 2000; Walker et al., 2012; Mamajanov, et al., 2013). 

For polypeptide synthesis, the duration of the dry-phase has been shown to affect product yield, 

along with other environmental parameters such as temperature, number of cycles, initial 

monomer concentrations and pH (Rodriguez-Garcia et al., 2015). For cycling driven by tides, or 

day-night cycling, this type of data could place bounds on P(emerge) for exoplanets based on 

their rotation rate. These and other environmental parameters should be explored in large-scale, 

parallel chemical experiments to generate the necessary statistics.  

 

In Scharf and Conin (2016), it was also suggested that multiple planet systems would have a 

higher value of P(emerge), because impact ejecta exchanged between neighboring planets with 
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parallel chemistry and parallel chemical evolution could enhance rates for development of 

molecular complexity. Future modeling will need to determine if rates for the origins of life (or 

its persistence and evolution) are enhanced for worlds that are closely neighboring other 

habitable worlds or not.           

6.2  Biological innovations and the conditional probabilities for living 
processes  

Since the emergence of life on Earth, life has undergone a number of different stages of 

evolution (Szathmary and Maynard Smith, 1995, Braakman and Smith, 2012; Bains and 

Schulze-Makuch, 2016). Tracing the history of biological innovations allows the possibility of 

leveraging the diverse history of life on Earth, where N=many (see Section 5.3), to infer the 

likelihood of evolutionary events based on their frequency of independent origins. However, care 

must be taken to determine what is meant by ‘independent’. For example, the probability of 

evolving multicellularity is dependent on the prior probability of eukaryogenesis (at least for 

Earth life), since all multicellular organisms are eukaryotes (as in the example above). It is also 

dependent on the prior probability of photosynthesis, since complex life evolved in the presence 

of O2, and because O2 is widely believed to be a precondition for large, multicellular animal life. 

There are many more such conditional probabilities we could assess. Thus while the transition to 

multicellularity is itself a common occurrence in the history of life on Earth, multicellularity may 

not be universally common on inhabited planets if either the probability of eukaryogenesis or 

oxygenic photosynthesis, or any other steps in the pathway to multicellular life are rare. We also 

must consider that all life on Earth shares a common ancestry, so when considerations of 

evolutionary ‘independence’ get blurrier the further we trace conditional probabilities for 

evolutionary events into deep history. Until we discover another example of life with 
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independent origins (or have a guiding, universal theory), it will be difficult to say with certainty 

what the likelihood of similar evolutionary events would be from a different starting point (e.g., a 

different biogenesis, with different chemistry).  

 

Rare events in evolution are often associated with major transitions or innovations. Maynard 

Smith and Szathmary identified eight major transitions, with respect to changes in units of 

selection, in the history of life on Earth, each associated with transitions in the nature of 

information transfer between and within individuals (Maynard Smith and Szathmary, 1995). 

These include the transitions of: replicating molecules to populations of molecules in 

compartments, unlinked replicators to chromosomes, the RNA to DNA-protein world (genetic 

code), prokaryotes to eukaryotes, asexual clones to sexual populations, multicellularity,  

eusociality and linguistic societies. Missing from Maynard and Smith’s scheme are metabolic 

innovations that did not necessarily change what constitutes a selectable individual, but 

nonetheless had a significant impact on the biogeochemical evolution of the Earth-system, such 

as the origins of photosynthesis and nitrogen fixation. An important question for understanding 

the evolution of life on Earth is whether or not we should expect the same innovations to occur 

again if we “rewound the tape of life” (Gould, 1989). A more critical question for exoplanet 

biosignature research is: how frequently should we expect these same, or different biological 

innovations to happen on other inhabited worlds?    

 

In Bains and Shulze-Makuch (2016), three possible hypotheses were proposed for the 

conditional probabilities of evolutionary innovations to occur: the critical path hypothesis, the 

random walk hypothesis, and the many paths hypothesis. In the critical path scheme, innovations 
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require preconditions that take time to develop (determined by the nature of the event and the 

geological and environmental conditions of the planet), but once the preconditions exist the event 

happens on a well-defined timescale. In the random walk hypothesis, the innovation is unlikely 

to occur (being based on one or more highly improbable events) thus significant time must 

elapse (on average) before the event occurs (a complication arises in interpreting this hypothesis 

in the event of post-selection, where the event already occurred, in which case a rare event could 

have happened rapidly, see Carter (2008) for discussion). In the many paths hypothesis, the 

innovation requires many random events to create a complex new function, but many 

combinations can generate the same functional output, so the chance of the innovation is high. 

The key steps in the evolution of life, development of prebiotic chemistry, synthesis of 

cellularity, and the invention of metabolism and what pathway they took is not entirely clear. 

While modern geological, chemical, and genomic methodological approaches are extremely 

powerful, there nevertheless remain considerable challenges to precise understanding of the 

events leading to the expansion of life on our planet. Considerable effort may be required to 

understand the detailed history of evolution from methods as varied as radiocarbon dating, 

paleobiology, and molecular evolution.  

 

We summarize here some critical gaps in our knowledge of early events in the evolution of life 

on Earth. The formation of a cell envelope serving as a permeability barrier and preventing the 

free diffusion of chemicals into and out of cells and ability to produce and store cellular energy 

was probably an essential prerequisite of the emergence of life on Earth. It is unclear if life is 

necessarily ‘cellular’, although it is difficult to envision possible alternatives. Our current 

knowledge of how chemiosmotic coupling and cellular energy metabolism evolved from 
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cellularity and set the stage for evolution of the last universal common ancestor (LUCA), most 

likely with an universal genetic code already established, which subsequently evolved into all 

life on earth is sketchy at best (Weiss et al., 2016). 

  

The very early appearance of the electron transport chain, membrane complexes responsible for 

fundamental respiratory processes in all prokaryotic cells, also remains an enigma. While they 

are found in both Bacteria and Archaea on Earth and may be used for redox reactions of 

nitrogen, sulfur, and oxygen gases, the precise evolutionary steps taken in their development still 

confound modern molecular phylogenomic analysis (Castresana and Saraste, 1995). Similarities 

between a variety of chromophores – e.g. porphyrins with different metal ion centers within 

membrane proteins of the electron transport chain and photosynthesis – remain tantalizing (see 

review in Schwieterman et al., 2017, this issue).  Generation of an electrochemical gradient used 

to drive ATP synthesis via chemiosmotic coupling is a common nearly universal theme (Racker 

and Stoeckenius, 1974), the basis of which deserves further attention. 

 

The emergence of oxygenic photosynthesis involved conservation of photosystem structures that 

evolved in earlier organisms but also added a unique molecule, the oxygen evolving complex 

(OEC), which is responsible for oxidation of water but whose origin remains elusive. A number 

of hypotheses have been forth, though none yet has reached consensus. . These hypotheses span 

approaches from the biophysics of transitional electron donors, generally in the context of 

geochemical environment (Blankenship & Hartman, 1998; Dismukes et al., 2001; Sauer & 

Yachandra, 2002; reviewed at the time by Blankenship et al., 2007; Fischer et al, 2016); 

phylogenetics to constrain lineage and timing (Xiong and Bauer, 2002; Soo et al., 2017); and 
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reconstruction of evolutionary relationships among the reaction center proteins and their 

biosynthesis pathway (Cardona et al., 2015; Cardona, 2016). This work to date advances 

knowledge of the origins of oxygenic photosynthesis on Earth.  However, the likelihood of the 

OEC capability arising given a conducive geochemical setting, that is, the likelihood of another 

planet developing oxygenic photosynthesis by the same method is difficult to constrain. 

 

Biological innovations may be classified through disciplinary perspectives in addition to that of 

biologists, raising the question of where to draw the black box for biosignatures.  For example, 

light-capturing chemistry is not unique to photosynthesis, but a range of other structurally and 

evolutionarily unrelated pigments are used for the capture of light energy (DasSarma, 2006).  

The key pigment in terrestrial photosynthesis – the family of chlorophyll molecules – is 

structurally related to a number of other porphyrin derivatives such as haeme used in energy 

transfer and oxygen handling (see summary in Schwieterman et al., 2017, this issue). However, 

other light-capturing pigments include a range of isoprene pathway derivatives such as 

carotenoids and retinal, although not all of these are used to for obtaining electrons for carbon 

reduction on Earth. This both suggests that the evolution of light-capturing chemistry is not a 

unique event and opens questions about what features are universal (as opposed to evolutionarily 

contingent) that we might search for signs of on other worlds. At the same time, whether some 

types of pigments had to evolve first or were completely independent, and their evolution, 

relative abundance, and byproducts are of significant interest for detection of biosignatures. 

7  A Bayesian Framework Example: Surface Biosignatures 
 
We next provide an illustrative example of how one might apply the Bayesian framework, 
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considering a hypothetical case where the observational data exhibit a surface spectral feature, 

𝑆!"#. Let’s assume 𝑆!"# indicates an observed surface spectral signal that appears anomalous 

compared to P(data|abiotic), while gaseous signals are ambiguous about the possibility of life.  

Therefore, we wish to know if the surface feature is a sign of life. Our general equation is 

(excluding noise for simplification in Eq. 2): 

( 10 ) 𝑃(𝑙𝑖𝑓𝑒|𝑆!"#)  =  !(!!"#.|!"#$)  !(!�!")
!(!!"#.  |!"#$%#&)(!!!(!"#$)) ! !(!!"#.|!"#$) !(!"#$)

 

 

We next briefly outline the data, modeling and challenges to overcome to gain quantitative 

understanding of each of the terms in the right-hand side of Eq. 10 for the surface biosignature 

example (other biosignatures would likewise require a convergence of better data and models to 

realize the goal of quantifying the likelihood of life in a given observational signal).  

 

𝑷 𝑺𝒐𝒃𝒔 𝒍𝒊𝒇𝒆 , the likelihood of the observed data given life is present.  As reviewed in 

Schwieterman et al. (2017, this issue), “edge spectra” are characteristic of the reflectance of 

many basic biomolecules (Poch et al. 2017) and a wide variety of known pigmented organisms 

that exhibit spectral features  throughout the visible and near-infrared range, including oxygenic 

and anoxygenic phototrophs, as well as non-photosynthetic organisms (Hegde et al., 2015; Kiang 

et al., 2007b; Schwieterman et al., 2015). The best known “edge” feature and the only one 

clearly vetted as an unambiguous biosignature on Earth is the “vegetation red edge” (VRE): the 

steep increase in reflectance between red and near-infrared wavelengths in plant leaves (Des 

Marais et al., 2002; Gates et al., 1965; Sagan et al., 1993; Seager et al., 2005; Tucker, 1979).  

Pigments whose function involves selective interaction with radiation at particular wavelengths, 

such as for light harvesting or photoprotection, are partly governed by efficiencies that can help 
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to constrain their likely spectral expression (Larkum and Kuhl, 2005; Stomp et al., 2004; Stomp 

et al., 2007a). But a confident predictive capability still requires additional research on 

evolutionary path and efficiency limits (Li and Chen 2015; Marosvölgyi and Gorkom 2010; Milo 

2009; Punnoose et al., 2012).  Other pigments can have colors that are fortuitous independent of 

their primary function in the organism, such as with carotenoids in haloarchaea (Schwieterman et 

al., 2015), and the community has barely begun to vet these as biosignatures.  In general, all 

pigments can have variable spectra tuned within different pigment-protein complexes.  Not just 

one surface biosignature may present itself, but a combination may be present, such that P(Ln)>0 

for more than one living process, as observed by Parenteau et al. (2015) in the reflectance of 

microbial mat communities.  Thus, science is still at a beginning stage for quantifying 

P(Sobs|life), which must be expanded into the sum of probabilities for a large number of possible 

life processes that can generate surface spectral signatures that accounts for acclimation and 

adaptation to the local environment. 

 

𝑷 𝑺𝒐𝒃𝒔 𝒂𝒃𝒊𝒐𝒕𝒊𝒄 , the likelihood of the observed data given life is not present.  There are 

known abiotic ‘edge’-producing minerals, including elemental sulfur and cinnabar (Seager et al., 

2005).  To rule out false positives or ‘edge spectra’ as biosignatures, there is need for a 

systematic compilation and classification of ‘edge’ wavelengths in minerals and other abiotic 

materials. Already, 10,000+ reflectance spectra exist in disparate databases from multiple groups 

(e.g. Baldridge et al., 2009; Clark et al., 2007). A collation of these spectra, and consideration of 

their likelihood on a given planetary surface, could be used to construct probability distributions 

for the likelihood of an abiotic ‘edge’ at different wavelengths. A putative biosignature candidate 

could be compared with this distribution as one estimate of biogenicity. This approach could be 
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combined with a Bayesian framework applied to the evaluation of gaseous biosignatures (for 

example, see Catling et al. (2017, this issue)). It is important to note that this technique would 

require incorporation of a physical understanding of planetary surface processes, and a method 

for adjusting probabilities given planetary observables such as density, instellation, observed 

atmospheric composition, etc., while considering uncertainties in each variable.   

 

The search for polarization signatures could also assist in fingerprinting a biogenic “edge” 

signature (Sparks et al., 2009a, 2009b; Berdyugina et al., 2016; Patty et al., 2017). Both linear 

and circular polarization measurements may aid in this effort with the tradeoff being that circular 

polarization signatures are more uniquely biological, but yield fainter signals, while linear 

polarization signatures are generally stronger, but more susceptible to false positives. Ultimately, 

the degree of polarization measured may be considered an input variable in a more robust, 

probabilistic framework for evaluating surface biosignatures.  

 

𝑷(𝒍𝒊𝒇𝒆) the prior probability of life.  The prior probability for living processes will depend on 

the particular process and the evolutionary paths permitting its emergence. An example is 

oxygenic photosynthesis. One of the greatest challenge in calculating P(OP), the probability of 

oxygenic photosynthesis, is the unknown origins of the oxygen evolving complex (OEC), the 

key molecule in oxygenic photosynthesis.  P(OP) can be further expanded into conditional 

probabilities on the origin of other key processes and on the origin of life P(emerge). The 

probability of all living processes ultimately depends on the prior probability for life to emerge 

in the first place.  For oxygenic photosynthesis, the probability of the observed state if oxygenic 

photosynthesis is or is not present will depend on several angles of understanding of what 
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oxygenic photosynthesis is and does. For example, can its existence be surmised from black box 

net fluxes of gases, or is a process-based understanding required? And, at what stage it could 

appear in life’s coevolution with the planet (what predecessors are necessary and likely)? As 

Meadows et al. (2017, this issue) cover in detail, we may see false positives or negatives for 

oxygenic photosynthesis.  This example is by no means comprehensive of all the nuances of 

biophysics, biochemistry, biogeochemistry, ecophysiology, ecology, and evolutionary history 

that play a role in the emergence and expression of a surface signature of oxygenic 

photosynthesis.  However, it highlights some of the many challenges the community will face in 

coming decades to constrain priors for the probabilities of life processes. 

 

From the above examples of factors that will contribute to our ability to assess 𝑃 𝑆!"# |𝑙𝑖𝑓𝑒  and 

𝑃 𝑆!"# |𝑎𝑏𝑖𝑜𝑡𝑖𝑐  it is clear that many processes must be known to constrain these likelihood 

functions and to constraint P(life). The conditional probabilities 𝑃 𝑆!"# |𝑙𝑖𝑓𝑒  and 

𝑃 𝑆!"# |𝑎𝑏𝑖𝑜𝑡𝑖𝑐  can be expanded using the law of total probability: 

( 11a ) 𝑃 𝑆!"# 𝑙𝑖𝑓𝑒 =  𝑃(𝑆!"#! 𝑙𝑖𝑓𝑒 ∩ 𝐿! 𝑃(𝐿!|𝑙𝑖𝑓𝑒) 

( 11b ) 𝑃 𝑆!"# 𝑎𝑏𝑖𝑜𝑡𝑖𝑐 =  𝑃(𝑆!"#! ¬𝑙𝑖𝑓𝑒 ∩ 𝐴! 𝑃(𝐴!|¬𝑙𝑖𝑓𝑒) 

where Ln are all of the types of living processes which could, in principle, generate the surface 

signal, and likewise An, are all the abiotic processes that could generate the signal in the absence 

of life. Since 𝐿! ∈ 𝑙𝑖𝑓𝑒, we can write 𝑃 𝐿n =  𝑃(𝐿n|𝑙𝑖𝑓𝑒), and the above simplifies to 𝑃 𝑆!"# 𝑙𝑖𝑓𝑒 =

 𝑃(𝑆!"#! 𝐿! 𝑃(𝐿!) (likewise for the abiotic expansion where we use the fact that 𝐴! ∈ ¬𝑙𝑖𝑓𝑒). Sobs 

could arise due to one of the processes Ln or a combination (note any living process that does not 

generate the observed signal Sobs will drop out of the sum in Eq. (11)), likewise for An. The 

processes Ln and An will in general be conditional probabilities, and depend on the likelihood 



 
 

93 

function of a particular series of biological or planetary evolutionary events, respectively. 

Ultimately these will depend on the data available to us such that:  

(12) 𝑃 𝐿! =  𝑓(𝑆𝑡𝑎𝑟,𝑀,𝜌, 𝑜, 𝑐) and 𝑃 𝐴! =  𝑓(𝑀,𝜌, 𝑜, 𝑐) 

where Star, M, ρ, o, and c are the planet’s parent star characteristics, mass, density, orbital 

parameters, and expected elemental composition, respectively – that is, parameters which we can 

observe, but that we do not expect to depend on the presence of life.  

Additionally, P(life) could decomposed into a sum of probabilities of all living processes for 

which we expect to have a nonzero prior on the planet of interest. Ultimately these will all 

depend on the prior for the origins of life on that world, so we here approximate 𝑃 𝑙𝑖𝑓𝑒 ≅

𝑃 𝑒𝑚𝑒𝑟𝑔𝑒  (where 𝑃 𝑒𝑚𝑒𝑟𝑔𝑒  is also a function of Star, M, ρ, o, and c), which assumes that 

the largest evolutionary bottleneck is the origin of life itself.  Given we do not know the prior 

probability for life, this seems as reasonable a starting assumption as any (e.g., we cannot detect 

life if it has not emerged). A goal for future research must be to better constrain the priors for 

particular evolutionary events (or sequences of events) and for the origins of life (e.g., the 

limiting event may not be the emergence of life, but the evolution of oxygenic photosynthesis or 

some other evolutionary outcome).  

 

Our final equation, accounting for the signal, S, is: 

( 13 )  𝑃(𝑙𝑖𝑓𝑒|𝑆!"#) =  𝑃(𝑆𝑜𝑏𝑠𝑛 𝐿𝑛 𝑃(𝐿𝑛) 𝑃(𝑒𝑚𝑒𝑟𝑔𝑒)
𝑃(𝑆𝑜𝑏𝑠𝑛 𝐴𝑛 𝑃(𝐴𝑛) (1−𝑃 𝑒𝑚𝑒𝑟𝑔𝑒 )+ 𝑃(𝑆𝑜𝑏𝑠𝑛 𝐿𝑛 𝑃(𝐿𝑛) 𝑃(𝑒𝑚𝑒𝑟𝑔𝑒)

 
 

For any putative evidence for life, the above will contain many terms with many conditional 

dependencies. It is a challenge for the community to synthesize many research areas to constrain 

the probabilities for observational signals from both abiotic and living systems. In Figure 10 we 

map out just a few constraints on the components of the above equation for the surface 
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biosignature example according to current knowledge.  

 

Figure 10: An example application of Bayesian framework for assessment of the likelihood of life due to the 

measurement of surface spectral signal, which is a putative biosignature.  

 

 

8 Tuning search strategies based on the Bayesian Framework  
 

The continued rapid increase in discovered planets in the coming years will make it necessary -- 

as well as possible -- to calculate the likelihood of a given observation being produced by an 

inhabited planet. This, in turn, requires a concerted effort to build comprehensive systems 

models of planets that include the myriad interactions of the biosphere with other planetary 

systems. Such models must also be flexible to be applicable to planets with a variety of 

compositions, sizes, orbital properties, orbiting stars with a variety of properties, etc. In this 
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paper, we will have presented a discussion of the necessary tools, disciplines, and methodologies 

necessary to build, assess, and improve such models and improve our estimates of P(data|life), 

P(data|abiotic) and P(life).   

 

Based on the statistical framework provided by the Bayesian approach, there are two strategies 

that can be employed in the development of future missions to search for life: the first is to 

maximize our confidence in P(data|life) and the second is to maximize our confidence in 

P(data|abiotic). These are not necessarily mutually exclusive, and we provide two examples to 

provide insights into how our confidence in these terms, coupled with constraints on P(life), 

should inform mission design. 

 

The likelihood that a given observed signal is a product of life, P(data|life), is best improved by 

observing a single target over long periods of time. We might expect that over time, observations 

of an inhabited planet would lead to an increase in P(data|life). Conversely, subsequent 

observations of an uninhabited world would lead to a decrease in P(data|life). As an example, we 

can consider the case of an inhabited planet, observed with a UV-Visible-Infrared mission such 

as HabEx or LUVOIR (see Fujii et al., 2017, this issue). Over time, either of these missions 

would provide continued accumulation of knowledge of the exoplanet system. In terms of 

biosignatures, such a mission might first detect O3, then O2, then CH4. This would be followed 

by tighter constraints on the compositions of each of these gases, and detection and measurement 

of the surface distribution of oceans, continents, and potentially a red edge-like effect from 

pigments. Eventually, we may see seasonal variations in gases (Fig. 11) produced or consumed 

by biology. And with subsequent missions operating at different wavelength ranges, the surface 
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climate could be determined, isotopic measurements made, and trace gases identified. In each of 

these steps, our confidence in the presence of life, P(datalLife), would increase.  

One of the advantages of a well-developed Bayesian framework is that it can quantitatively 

inform observational strategies. For example, in the above scenario, Bayesian analysis would 

provide metrics to determine the more valuable observations for placing tighter constraints on 

the concentrations of biogenic gases, or observations of the temporal variability of those gases 

over seasonal time periods. 

 

Figure 11: Seasonal variation in pCO2 as an enhancement in P(data|life).  Volume mixing ratio measurements CO2 

are sourced from the National Oceanic and Atmospheric Association (NOAA) at Mauna Loa, Hawaii, USA for the 

1995-2000 time interval (Thoning et al., 2017). The seasonal change in CO2 in the northern hemisphere is mostly 

reflective of the seasonal growth and decay/senescence of land-based vegetation (Keeling et al., 1996). These data 

were obtained from the NOAA’s Earth System Research Laboratory (https://www.esrl.noaa.gov/). 
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Another scenario is that the observational spectra do not match our models, which could occur 

either for P(data|life) or for P(data|abiotic). Although there are challenges with constraining 

both P(data|abiotic) and P(data|life), arguably the latter term is the one that will provide the 

greater statistical uncertainty. One question is then, how can we best constrain P(data|abiotic) 

based on our planetary models to maximize our confidence that deviations from the expected 

observations arise due to life?  

The best way to constrain P(data|abiotic) will be to conduct large statistical surveys of 

uninhabited worlds, as discussed in Section 4. So far, data sets of this nature are scarce for 

exoplanets and non-existent for Earth-like worlds. One notable example for hot Jupiters is the 19 

transiting examples with published transmission spectra obtained with the Hubble/WFC3 G141 

near-IR grism. A majority of these (10 of 19) report a detection of H2O in their atmosphere (see 

list in Iyer et al., 2016). Recently, it was shown that the individual spectral of these planets 

coherently average to produce a characteristic spectrum (Iyer et al., 2016), which is reproducible 

with simple forward models, providing confidence that there exists a representative spectrum for 

at least a significant fraction of hot Jupiter exoplanets (Fig. 12).  In this case, individual spectra 

do not fit our models well, due to stochasticity in planetary evolution, and in our measurements. 

However, the characteristic, averaged spectrum can be reproduced by models. It is an open 

question whether representative spectra will also accurately describe ensemble spectra of Earth-

like worlds. Given the limited data we can collect on exoplanets (see review of observation 

capabilities in Fujii et al., 2017, this issue), and the stochasticity of planetary evolution 

(Lenardic, et al., 2012), it may be that we are only able to predict exoplanet spectra with high 

confidence probabilistically.  
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Figure 12: Left: Normalized HST/WFC3 IR transmission spectra of 10 exoplanets with reported H2O-detections 

combined with a weighted mean to create a representative spectrum of H2O-bearing exoplanets. Right: Comparison 

of representative spectrum (black) to single planet models (see Iyer et al., 2016 for details).  Figure from Iyer et al. 

(2016). If this turns out to be the case, the community may need to shift focus to thinking about also detecting life 

deterministically, by analyzing coherently averaged spectra of many candidate worlds.  

 

An advantage of a statistical approach to life detection is that it allows for the combination of a 

range of observations, including integrating over time and sampling large statistical data sets and 

can place bounds on the three terms of the Bayesian framework. For example, we can sum 

observations across planets and ask how our confidence that life exists on an exoplanet is 

changed by a new observation. If P(life) = 0.25 for an ensemble of 11 exoplanets, then a 

simplistic calculation suggests that we have a 95% confidence that life exists on at least one of 

them. Here a null result is almost as significant as a positive one. If we survey a sample of 

planets that are candidates for supporting a particular life process, and we find no evidence of 

that process on those worlds, we gain important information for constraining P(life). This kind of 

analysis can also provide a guide to direct how many planets we must survey to detect life 

depending on how frequently we expect life to occur. The actual (as yet) unknown value of 
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P(emerge) is critical to determining the most effective search strategy. If life is common (P(life) 

>> 0), it makes sense to target individual worlds and obtain high-resolution spectra, as is the 

proposed search strategy for JWST. However, if life is uncommon, we may be highly unlikely to 

be so lucky as to stumble on the right target. In this scenario, a more optimized search might, for 

example, take lower resolution spectra of more worlds to generate high-confidence 

representative spectra. Signatures of living processes might then be inferred from large statistical 

data sets of planet observations in cases where our expectations do not match averaged spectra 

(in cases where life is uncommon, but not rare). This has the advantage of enabling searching for 

“life-as-we-do-not-know-it”, which is a challenge for current search strategies.  

9 Conclusions 
 
In this paper we set possible future directions for research on exoplanet biosignatures, 

highlighting promising directions that are not yet mainstream methods, but hold potential to 

revolutionize our search strategies in years to come. A major hurdle to be overcome in the 

coming decades is our lack of constraints on P(life), and in particular P(emerge), the likelihood 

for the origins of life. This is one area where exoplanet science will need to interface with new 

communities, including those studying evolutionary biology, the co-evolution of Earth and life, 

and the origins of life. Exoplanet scientists will gain knowledge of constraints on the relevant 

terms in the Bayesian framework, informed by Earth’s life and attempts to attract universal 

principles. In turn, our expanding observational searches for life should take advantage of the 

ensemble statistics we will be able to generate in the coming decades to inform our 

understanding of the distribution of life, placing additional observational constraints on 

P(data|abiotic), P(data|life) and possibly even P(life), for example, by identifying planetary 
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environments where no life is found (P(data|abiotic) matches well with observations) and those 

environments where life may be generating the observed spectra (eight P(data|abiotic) is not 

explanatory, or P(data|life) is). By combining the efforts of these diverse communities, 

combining deep knowledge of Earth and its life, with constraints afforded by the plurality of 

exoplanets, we have the first opportunity in history to put quantitative bounds on the distribution 

of life in the universe. As emphasized in this paper, this will require a concerted 

multidisciplinary and international effort, as should be expected from the enormity of the task of 

discovering life beyond Earth.  
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