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Progress and potential

Among the alternatives to

conventional silicon-based

computers, chemical reactions

have the potential for high

information density and massive

parallelization while remaining

accessible and cost-effective.

Previous work in this field has

focused on using chemistry and

biology to emulate circuit

components, such as logic gates,

or to explore a combinatorial

space in parallel. These

approaches can be limited in their

scalability, ease of programming,

and applicability to a wide range

of computational problems. The

molecular computer presented
SUMMARY

The search for novel forms of computing to the dominant von Neu-
mann model-based approach is important as it will enable different
classes of problems to be solved. Molecular computers are a prom-
ising alternative to semiconductor-based computers given their po-
tential biocompatibility and cost advantages. The vast space of
chemical reactions makes molecules a tunable, scalable, and en-
ergy-efficient computational vehicle. In molecular computers, mem-
ory and processing units can be combined into a single, inherently
parallelized device. Here, we present a microdroplet array molecu-
lar computer to solve combinatorial optimization problems by em-
ploying an Ising Hamiltonian to map problems heuristically to
droplet-droplet interactions. The droplets represent binary digits
and problems are encoded in intra- and inter-droplet reactions.
We propose two implementations: first, a hybrid classical-molecular
computer that enforces inter-droplet constraints in a classical com-
puter and, second, a purely molecular computer where the problem
is entirely pre-programmed in the nearest-neighbor droplet reac-
tions.
here attempts to address these

challenges by drawing inspiration

from the Ising model for

magnetism. Ideal for tackling

combinatorial optimization, the

device is an array of microdroplets

subjected to pre-programmed

droplet-droplet interactions that

encode a given problem. This

molecular computer offers the

opportunity to use chemistry to

overcome barriers in classical

computers, such as high energy

consumption, the von Neumann

bottleneck, and the combinatorial

explosion of computational

problems.
INTRODUCTION

For science and technology to continue progressing at the current pace, we need

our computational processing capabilities to keep growing. Conventional tran-

sistor-based computers follow the von Neumann architecture, where information

is stored in memory units and processed in a central processing unit. Different logic

gates, each acting on a single bit or multiple bits of information represented as a 0 or

1, are activated sequentially to perform an operation. However, as transistors are

approaching tens of nanometers, i.e., the size of large molecules,1 high heat

dissipation, and slow transfer rates between processors and memory are bringing

about the breakdown of Moore’s law.

The search for alternatives to classical computers includes quantum computing, in

which quantummechanical phenomena allow information to exist as a superposition

of states, not just individual binary bits.2,3 For classical systems, computing with

molecules is an attractive avenue given the vast chemical space and the relatively

low energy dissipated in chemical reactions compared with transistors.4–6 Proposals

for computers that exploit chemical processes have taken one or both of two broad
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approaches: (1) using chemistry and biochemistry to emulate circuit components or

cellular automata, and (2) employing a large number of molecules to explore a

combinatorial space in parallel. Examples for the first include reaction-diffusion

systems,7 Belousov-Zhabotinsky oscillatory reaction,8 memristive polymers,9 and

transcription regulation for cellular signaling,10,11 and other chemical and

biochemical analogs of logic gates.12,13 In the second category of parallelized

computing, we find microfluidic devices,14 nanofabricated networks,15–17 and adap-

tive amoebal networks.18 DNA computers have explored both approaches, from

early work that involved sifting through combinations of nucleic acid sequences to

recently using DNA self-assembly to carry out an algorithmic process.19–21 However,

each method presents challenges in programmability, scaling, and maintaining

accuracy in large calculations.

Here, we propose a new strategy for solving optimization problems using compart-

ments of chemicals, such as droplets, spatially localized in a lattice and linked by a

network of chemical reactions. Each droplet represents a binary variable that can

communicate with its neighboring droplets. We encode a problem in the intra-

and inter-droplet interactions. As the droplets’ contents evolve following the

thermodynamics, the system reaches a steady state where the ensemble of droplet

states corresponds to a solution of the given problem. As we explain in the following

section, optimization by simulated annealing, our proposed droplet-based com-

puter relies on an alternative approach inspired by the pioneering work of Kirkpatrick

et al.,22 which employs simulated annealing to solve combinatorial optimization

problems. The droplet array molecular computer functions as a heuristic Ising solver

and has the benefit of intrinsically combining both memory and processing units in

one device.

We ultimately envision a molecular computer that operates solely using chemical

processes and without the aid of classical computers. This implementation, which

we term the ‘‘purely molecular computer,’’ uses pre-programmable chemical cou-

plings, corresponding to a given problem, that determines neighboring droplets’

interactions. As a stepping stone to achieving complete autonomy, we have first

conceived a ‘‘hybrid classical-molecular computer,’’ where a classical computer is

used to enforce conditions that are then carried out by the droplet system. Both in-

carnations of the droplet array computer would be inherently parallelized, easily

scalable, efficient, specific purpose computing devices.

Following the description and requirements for the molecular computer, we present

the modeling and application of the hybrid classical-molecular computer and a

description of the purely molecular computer. In implementation, we explore

ways to physically realize our device, and finally, in discussion, we consider the

advantages of this approach and examine the scalability of the system.
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CONCEPT

Optimization by simulated annealing

The basic principle of the droplet array computer rests in the analogy between

combinatorial optimization and statistical physics.22 Similarly to the ensemble

behavior of physical systems, such as magnetic spins, an optimization problem is a

complex system of interacting variables. Such interactions are captured in a cost

function or Hamiltonian, where the constraints and requirements of the problem

correspond to interaction energies between variables. At a given temperature, the

equilibrium distribution of the configuration (ups and downs) of the spins follows a
1108 Matter 4, 1107–1124, April 7, 2021
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Boltzmann distribution, which favors the ground state of the Hamiltonian or the

optimal (set of) solution(s) to the objective function. As the temperature lowers,

the statistical weight (probability) of the ground state grows, which inspires the

idea of simulated annealing to emulate the effect of such an annealing process

due to cooling for finding or approximating the ground state of the Hamiltonian.

A canonical model for magnetic spins in crystalline materials is the Ising or lattice

spin Hamiltonian:

HIsing = � m
XN

i = 1

hisi � J
XN

i<j

sisj;

whose terms describe a tradeoff between the cost of flipping a spin si˛f � 1;1g in an

external magnetic field h and the interaction energy between neighboring spins, J,

and where m is the magnetic moment. For encoding general combinatorial optimi-

zation problems, however, we allow for more tunability between pairs of coupled

spins as well as the local fields on each spin, giving rise to the more general Ising

Hamiltonian:

Hgeneral =
XN

i = 1

aisi +
XN

i<j

bijsisj;

in which the a and b coefficients are given by the problem.

In other words, the computational problem is encoded in the coefficients ai, repre-

senting the local field for individual variables, and bij, representing the couplings

between pairs of variables. For the given values of the vector a and matrix b, the

optimal configurations of si represent one or multiple solutions that minimize the

Hamiltonian.

The model can be generalized for higher-order terms (k-local), where the

Hamiltonian is:

H= hð0Þ +
XN

i = 1

hð1Þ
i si +

XN

i<j

hð2Þ
ij sisj +

XN

i<j<k

hð3Þ
ijk sisjsk +.:

We shall proceed with this notation, where the hðkÞ is the tensor of rank k

representing the coupling between k variables.

To implement the Ising model in a programmable computer, we must be able to

control the local field and couplings (one-body and two-body terms) for a set of vari-

ables. While this approach for computation has been explored for various types of

devices, as we survey below, in this work we propose that chemical reactions can

be used to achieve these requirements, forming the basis of a molecular computer.

The Ising model paradigm for computation has inspired algorithm and hardware

development for both classical and quantum devices. In Table 1, we give an

overview of these optimization annealing machines and their characteristics. The

classical devices were chiefly based on traditional electronic components, such as

a network of coupled LC (inductor-capacitor) oscillators,23–25 and conventional

CMOS technologies, including the Fujitsu-led application-specific digital annealer26

and the Toshiba simulated bifurcation algorithm for field-programmable gate

arrays.27,28 Quantum annealing devices were argued to be superior to classical

annealing due to the availability of quantum effects, such as superposition and

tunneling.29,30 Notably, the D-Wave quantum annealer,31–33 using superconducting
Matter 4, 1107–1124, April 7, 2021 1109



Table 1. A survey of classical and quantum optimization Ising machines and their capabilities along with the chemical molecular computer presented in this work and anticipated future

implementations

Algorithm/approach Hardware No. of bits Connectivity

Typical time
to
solution Date

Optimization
problem Refs

Classical

Oscillator-based Ising
machine

subharmonic injection
locking

LC oscillators 8 and 32 oscillators 6 (Chimera) N/A March 2019 MAX-CUT 24

Coupled nonlinear
oscillators

Euler-Maruyama
method for SDEs

LC oscillators 4 oscillators full 10�4 s June 2019 MAX-CUT 25

Fujitsu Digital
annealer

digital annealing application-
specific
CMOS

1,024 variables full 1–102 s April 2019 spin glass 26

Toshiba simulated
bifurcation

simulated bifurcation FPGAs and GPUs 2,000 variables full 5 3 10�4 s April 2019 MAX-CUT
(NP-hard)

27,28

Quantum

Coherent Ising
machine

adiabatic quantum
computation, quantum
annealing

optical parametric
oscillators; laser
pulses

2,000 spins full 5 3 10�3–
5 3 10�2 s

May 2019 MAX-CUT,
spin glass

34–36

D-WAVE 2000Q
Chimera

quantum annealing superconducting
qubits

2,000 qubits 6 (Chimera) 102–104 s January 2017 numerous
applications

32

D-WAVE ‘‘next gen’’
Pegasus

quantum annealing superconducting
qubits

5,000 qubits 15 (Pegasus) N/A April 2019 numerous
applications

33

Chemical

Hybrid classical-
molecular computer

simulated annealing,
stochastic gradient
descent

droplet array +
classical computer

12 droplets–
10,000 droplets

full 103–105 s; to
be reduced
with smaller
dropletsb

2019 k-SAT, lattice
protein

this work

Purely molecular
computer

chemical annealing droplet array 10s of droplets–
10,000 droplets

4–6a 103–105 sb 2-local k-SAT,
2-local lattice
protein, TSP

Long-term molecular
computer

chemical annealing droplet array �1.5 million droplets40 4–6a N/A

Inkjet printer chemical annealing microscopic nozzle
(600 dpi)

�30 million droplets 4–6a N/A

The time to solution (TTS) is the product of the average time for one run and the average number of runs required to solve a problem. The TTS depends on the technology and performance of the device and

typically scales with the size of the problem (e.g., the number of problem variables).

FPGA, field-programmable gate array; N/A, not applicable.
aThe connectivity is based on square and hexagonal lattices (see Figure S5).
bThe time estimate for themolecular computer is based on preliminary experiments of polymerization inmicrodroplets, where one run requires�10min38 (although we expect this time to vary significantly with

the choice of chemical reaction and droplet size) and a scaling of expðb ffiffiffiffi
N

p Þ for the number of runs.39
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qubits, and the Coherent Ising Machine,34–36 implemented with laser pulses, have

shown promise in the number of qubits and speed of calculation. Recently,

bifurcation-based quantum annealing was proposed as an alternative to standard

quantum annealing.37–40

Adiabatic quantum computing and quantum annealing provide us with a method of

solving for the Ising ground state, by evolving a system from the ground state of an

accessible problem to that of a more difficult problem.29,30,41 Although a molecular

computer remains a classical device, unable to avail itself of quantum tunneling

across barriers in the potential energy surface relating to the problem Hamiltonian,

the rationale can still be extended to simulated annealing.

In adiabatic quantum optimization, a system is initially in the ground state of a

Hamiltonian H0. To solve for the ground state of a problem Hamiltonian Hp, the

Hamiltonian H is adiabatically changed over time following a function aðtÞ:
HðtÞ = ½1� aðtÞ� H0 + aðtÞ Hp:

For simulated annealing, H0 represents kinetic or thermal energy and Hp the

potential energy, corresponding to the problem we would like to solve. Just like

annealing metals, as the temperature of a system decreases, the spins or variables

reach an optimal configuration.

For any classical optimization algorithm that can be mapped to the classical Ising

system, the time to solution to find the ground state asymptotically grows at most

exponentially in n, i.e., OðcnÞ, as it is needed to explore all possible outcomes,

and finding an approximate solution grows as polynomially in n, i.e., OðngÞ, where
g is a problem-dependent constant.41 By the Church-Turing thesis,4 the molecular

computer should not have any exponential speedup over any classical computing

devices.

Simulated annealing was found to be well suited to tackle NP and NP-hard combi-

natorial optimization problems.42 These are problems whose computational

complexity increases exponentially with the number of variables, and for which no

efficient (polynomial-time) algorithm is presently known. Nevertheless, since solving

the Ising model was shown to be NP-hard, a good heuristic Ising model solver will be

beneficial for solving real-world problems that are often NP-complete, such as

the traveling salesperson problem, graph coloring, and Boolean satisfiability.43

(NP-complete problems belong to both NP and NP-hard classes. They are defined

as decision problems where a polynomial-time reduction exists from every other

problem in NP.44) Barahona showed that solving the states of the Ising model45

on a two-dimensional (2D) lattice with arbitrary interactions is NP-complete. Since

every instance of a problem in NP can be efficiently encoded as an instance of an

NP-complete problem, Barahona’s work42 implies that all problems in the NP

complexity class can be mapped to instances of 2D Ising model, and thus can

potentially be solved efficiently with a heuristic Ising solver. The work of Barahona

and others,46 summarized in Table 2, also includes the complexity of solving

different Ising models.

Description and requirements

As described earlier, the proposed molecular computer consists of an array of

droplets arranged in a lattice, which is shown in Figure 1. To apply the concept of

adiabatic quantum optimization described above to the molecular computer, we

begin with the random initialization of the droplet states. We can program the
Matter 4, 1107–1124, April 7, 2021 1111



Table 2. The complexity of the Ising ground state problem in one, two, and three dimensions

Dimension and graph Restrictions on coupling Solving for the Ising ground state

1 D none P

2 D (planar graph) hi = 0 P

his0 NP-hard

Non-planar graph Jij˛f � 1;0; 1g NP-hard
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problem Hamiltonian in the computer by setting the local field terms hi and

couplings Jij. The droplet array molecular computer enforces these parameters so

that, as the system anneals, it reaches the ground state of the problem, which can

be read out and interpreted. Since it is not a quantum computer, the system will

not tunnel between local minima in the potential energy surface that is associated

with the problem Hamiltonian. Instead, we will require multiple initializations to

attain the global minimum, thus solving a given problem.

To achieve molecular computing by annealing as described above, the chemistry

taking place in the droplet array must fulfill several requirements. First, the system

should exhibit physical properties that can be manipulated, read, and mapped as

two states, so that each droplet can correspond to a binary variable. Second,

changes of the states must be reversible and controllable by the state of their

neighboring droplets. Third, to implement interactions between the states that

correspond to coupling terms of the Ising model, there must be connections

between the droplets that allow for programmable positive and negative coupling

interactions.

We propose two approaches to implementing such a system: first, a hybrid classical-

molecular computer in which an array of droplets is connected to a classical

computer; and second, a purely molecular computer. In Table 1 we compare the

two approaches and give the roadmap to scale to millions of droplets, as is currently

achievable with inkjet printers at 600 dots per inch (dpi) resolution.40

In the hybrid classical-molecular computer, measurements of each droplet’s state

will be passed to a classical computer software that computes the interaction based

on a given problem Hamiltonian and outputs instructions for the droplet array to

implement the calculated coupling, using, e.g., electrodes or optical excitations

(see implementation). In the case of the purely molecular computer, the coupling

between nearest-neighbor droplets is pre-programmed in physical or chemical

interaction between the droplets that take the form of mass or energy exchange

(see purely molecular computer).

The reversibility of the chemical reaction is essential to maintaining the symmetry of

the problem. For instance, two droplets that are positively coupled to each other

have a coefficient J>0. The contribution to the Hamiltonian �Js1s2 is minimized

when the two droplets are in the same state, either both 0 or both 1, which means

both reactions 0 / 1 and 1 / 0 must be achievable. (This symmetry is broken as

interactions with other droplets are taken into account, leading to possible

frustration as they all compete with each other.)

We must emphasize that the molecular computer does not have a priori knowledge of

the solution to the problem. It merely imposes the problemHamiltonian on the droplets

via a local field and droplet couplings. As the chemical system evolves under these con-

ditions, it will attempt to minimize its thermodynamic free energy, which is the physical
1112 Matter 4, 1107–1124, April 7, 2021



Figure 1. Schematic of the droplet array-based molecular computer

(A) A hybrid classical-molecular computer in which measurements of droplet states are sent to a

computer that calculates the gradient on each droplet and directs the changes to be implemented

in situ.

(B) A purely molecular computer where the droplets interact via nearest-neighbor couplings, either

‘‘positive’’ or ‘‘negative’’. The couplings are programmed into the device in the initiation stage.

(C) The scaling of the number of droplets for different optimization problems: lattice protein

folding (quadratic/2-local and quartic/4-local forms), traveling salesperson, Boolean satisfiability

(3-SAT reduced to 2-local and k-SAT k-local).

(D) The number of variables in these problems that a given droplet array size can address.
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impetus to explore distinct solution states associated with the problem Hamiltonian,

imposed by the couplings. Depending on the given problem, it may have degenerate

ground states corresponding to multiple optimal configurations.

We expect that the kinetics of the problem, as well as imperfections in the settings of

the molecular computer, will result in trapping in local minima for particular experi-

ments, requiring the repetition of the computation to sample from the low-energy

states of the problem. The alternative approaches mentioned earlier, namely the

simulated annealing, quantum annealing, and simulated bifurcation algorithms,

share this challenge.25,27

MODELING AND APPLICATION OF THE HYBRID CLASSICAL-
MOLECULAR COMPUTER

Tuning the intra- and inter-droplet chemical reaction to satisfy the requirements

described above is not a trivial task. To test chemical systems for the droplet-based com-

puter, we propose first developing a hybrid classical-molecular computer. A hybrid de-

vice also has the benefits of non-local interactions, full connectivity between all droplets,

and higher-order couplings that involve k droplets (k-local interaction).

Our proposed implementation of a hybrid classical-molecular computer uses an

array of microdroplets containing various chemical compounds. Manipulation of

droplets can be achieved with electrostatic fields and electrochemical transforma-

tions induced by electrodes or optical stimuli induced by light sources. The change
Matter 4, 1107–1124, April 7, 2021 1113
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in the states of droplets should be detectable by optical means, which allows for a

convenient readout of the states. For the sake of simplicity in this concept paper,

we use an abstract nomenclature of states 0 and 1. We assume that the droplets fluc-

tuate within this range of states as a result of external stimuli controlled by a classical

computer. We discuss possible experimental schemes to build such a system in

purely molecular computer. One can think of the value associated with each droplet

as the droplet’s progress along an arbitrary reaction coordinate.

To explore the capabilities and potential application areas of the hybrid classical-

molecular computer, we implemented an in silico model of it. The model is

composed of two parts, a set of readable and writable states that represents the

droplet array in the molecular computer and a computer algorithm that, given a

model Hamiltonian, calculates and applies stepwise changes to these states. The

model are described below in simulation by stochastic gradient descent.

We applied the in silicomodel of the hybrid classical-molecular computer to two appli-

cations that we discuss in application 1: Boolean satisfiability and application 2: lattice

protein model. The first application is Boolean satisfiability (in particular 3-SAT), which

was proven to be NP-complete.47 The second application is a simplified protein model

consisting of six types of amino acids on a 2D square lattice. To solve these problems

using themolecular computer, wemap them to IsingHamiltonians, encode the coupling

elements of the Ising Hamiltonian in the couplings between the droplets, and initialize

the droplets in random states. Annealing of the system leads to a local optimum, from

which a solution can be read out and checked on validity. Repetition of this procedure

allows us todetermine if a Boolean satisfiability problemhas a solution that fulfills all con-

ditions or that identifies low-energy conformations of the protein. An extensive list of

mappings from NP problems to the Ising Hamiltonian is presented in Lucas.45

Simulation by stochastic gradient descent

Wemodeled the annealing process of the hybrid classical-molecular computer using

a stochastic gradient descent simulation. As shown in the supplemental information

(sections A and B), it is possible to convert Boolean satisfiability problems, as well as

the lattice protein folding model, to an Ising model that can be represented in the

form of tensors hð0Þ; hð1Þ;::: ; hðnÞ. The first term, hð0Þ, is an offset to the global energy

that does not influence the states of the system, hð1Þ is a vector of bias terms to the

states of each droplet, hð2Þ is a matrix of two-droplet coupling terms, hð3Þ is a tensor

containing three-droplet coupling terms, and so on. The 3-SAT problem can be con-

verted to an Ising model with up to three-body interaction terms, while the lattice

protein model contains up to four-body interactions. As discussed earlier, the hybrid

classical-molecular computer can handle interactions of any order (requiring n drop-

lets for n-body terms), while the purely molecular computer will be limited to near-

est-neighbor two-droplet interactions due to the limited connectivity between the

droplets. It is, however, possible to convert higher-order interactions, such as three-

and four-droplet to two-body interactions by introducing ancillary states in the sys-

tem.48 While our model of the hybrid classical-molecular computer can process any

order of many-body interactions, we used the two-body representation of the lattice

protein model that includes ancillary states.

In the simulations of the hybrid classical-molecular computer, we have the possibility

to run the procedure as a mixture of two extreme modes, an ensemble annealing

mode and a trajectory mode. In the ensemble annealing mode, we run many short

and independent annealing simulations from random initial states and analyze the

statistics of all final states to search for the global optimum as well as the distribution
1114 Matter 4, 1107–1124, April 7, 2021
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of local optima. In contrast, in trajectory mode, we run one instance of the molecular

computer over a large number of steps and add a certain level of noise

(‘‘temperature’’) on the gradients to overcome barriers between local optima. In

practice, we are using a mixture of both modes to obtain enough statistics with

limited computational time, i.e., we run multiple instances of independent

trajectories with a medium noise level that is high enough to overcome small barriers

and set a convergence criterion to end the trajectories and record the results. A

systematic optimization of the hyperparameters (number and length of trajectories,

noise level, convergence criterion, etc.) is beyond the scope of this work.

Application 1: Boolean satisfiability

To solve Boolean satisfiability problems, such as the 3-SAT problem, with our computa-

tional model of the hybrid classical-molecular computer, it is necessary to convert it from

its conjunctive normal form to an Ising model (see supplemental information section A

for a description of onemapping and section B for an example on a four-droplet system).

In the case of 3-SAT problems, the Ising model will contain up to three-body coupling

terms, which requires connectivity that goes beyond that of a purely molecular com-

puter. We evaluated the satisfiability of random 3-SAT problems with N variables and

M unique clauses of k = 3 literals and compared the results with solutions obtained using

the Davis-Putnam-Logemann-Loveland (DPLL) algorithm49 (see Figure 2A). The results

are shown in Figure 2B, where we observe a transition from a high probability of a prob-

lem being satisfiable when the clause density (the ratio of M=N) is small to a low prob-

ability at large M=N ratios. The results obtained with the simulation are in good agree-

ment with the results obtained using the (exact) DPLL algorithm.

Application 2: Lattice protein model

As a second application, we applied the simulated hybrid classical-molecular

computer to the 2D lattice protein model presented in Perdomo-Ortiz et al.50 and

Babbush et al.51 The proteins in this model consist of a sequence of amino acids

that can fold onto a 2D square lattice. The protein conformation is represented as

a sequence of turns, where each turn is encoded by two bits (00, down; 01, right;

10, left; 11, up; see Figures 3A and 3B for a description and an example of a folding).

The energy of each conformation contains two terms: clashes of two amino acids are

penalized with positive terms of size l, whereas attracting interactions between

specific amino acids (i and j, ji � jj>1) are rewarded with negative energy terms εij in

cases where amino acids i and j are direct, non-diagonal neighbors (native contact).

We can construct an Ising Hamiltonian with up to four-body interactions that encodes

both types of interactions. This requires ancillary bits that activate and deactivate de-

pending on the state of the bits that encode the physical conformation of the protein.

The overlap parameter l can be chosen in a way that the energy spectrum of the protein

model and thus of the Ising Hamiltonian has negative or zero energies for all conforma-

tions without clash and positive energies for all other conformers. The global ground

state of the Hamiltonian yields the protein conformation in which the highest possible

number of native bonds are formed. Non-clashing conformers with fewer or less strong

native bonds are local optima with energies smaller than zero, whereas non-clashing

conformers without any native bond formed have zero energy (‘‘unfolded’’).

As described in simulation by stochastic gradient descent, the simulated hybrid

classical-molecular computer is capable of solving Isingmodels with four-body inter-

actions, whereas any purely molecular computer will only have local connections that

can encode up to two-body interactions. There, the four-body Ising model of the

protein was converted to a two-body Ising model, which requires the introduction
Matter 4, 1107–1124, April 7, 2021 1115



Figure 2. Comparison of the simulated hybrid classical-molecular computer to an exact algorithm

for Boolean satisfiability

(A) Illustration of two methods to solve the 3-SAT problem: the exact Davis-Putnam-Logemann-

Loveland (DPLL) algorithm and the simulated hybrid classical-molecular computer (HCMC).

(B) Probability of satisfiability as a function of clause density (ratio of clauses and variables) for a

random 3-SAT problem, showing agreement between the HCMC (solid lines) and the solutions of

the DPLL algorithm (dotted lines). Each point is the average of up to 10 000 3-SAT problems.
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of further bits (‘‘reduction bits’’). This procedure is described in Davis et al.49 The re-

sults of annealing simulations of the lattice protein model are shown in Figure 3C.

Selected trajectories that ended at low-energy conformations show the energy as

a function of the step number. Formation of native contacts, as well as annealing

of the ancillary bits, reduce the total energy of the system. The final states shown

in Figure 3C are local optima of the Hamiltonian. The barriers between these local

optima are considerably higher than the energy differences between the local op-

tima (further details are provided in section C of the supplemental information),

which makes it impossible for a (stochastic) gradient descent algorithm to overcome

the barrier between local and global optima. To find the global optimum and, thus,

the ground state of the protein, it is necessary to run many instances of the molecular

computer. No speedup can be expected compared with an algorithm that searches

through all 2K states of the protein, with K being the number of bits that encode the

physical conformation of the protein (K = 7 in our example).
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Figure 3. Lattice protein model simulated on the molecular computer

(A) Encoding of each link in the amino acid chain as two bits, (B) an example five-link chain with the

corresponding sequence of bits, (C) results of a simulation for a six-link chain, where each curve

corresponds to an instance of random initialization followed by annealing to a local minimum, with

the corresponding folded configuration. The ground state configuration, with an energy of �6, is

shown in the lower right corner.
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PURELY MOLECULAR COMPUTER

Ultimately, we envisage a purely molecular version of the droplet array computer that

anneals to a ground state configuration solely by the physical and chemical interactions

between droplets. In the absence of an external classical computer to enforce droplet-

droplet couplings, the problemmust be pre-programmed into the contents of the drop-

lets and the interactions of neighboring droplets. These programmable couplings can

take place via mass exchange (diffusion, biological membranes) or energy exchange

(excitons, Förster resonance energy transfer [FRET]52,53).

Such a system benefits from the complete parallelization of the problem. For a

quadratic unconstrained binary optimization (QUBO) problem, a hybrid computer

still requires that, at regular intervals representing a step of the optimization, a

classical computer calculates up to nðn�1Þ=2 terms representing the pairwise en-

ergies of the n variables, and even more for problems with higher-order terms. A

purely molecular computer would implement these couplings Oðn2Þ times faster

since all pairwise interactions occur simultaneously, in Oð1Þ time.

Rather than using a classical computer to perform stochastic gradient descent, as

we did in the hybrid version of the device, the system is driven, kinetically and

thermodynamically, to its ground state. The key is to select the appropriate
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Figure 4. Chemical reactions to implement the droplet states

Two approaches to representing a droplet as a binary variable: in (A) polymerization and

depolymerization giving different molecular weight distribution, and in (B) redox reactions altering

the pH of the droplet.
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reactions and chemicals. A few proposed mechanisms are detailed in

Implementation.

While the hybrid computer does not make use of the spatial arrangement of the drop-

lets, in the purely molecular version, each droplet is connected only to those droplets

with which it can physically interact. A problemmust therefore bemapped to this graph

using minor-embedding techniques to address the sparse connectivity.54,55

In addition, this device can only implement two-body terms, which means auxiliary

ancilla droplets are needed for reducing k-local problems (PUBO) to a QUBO.

Such algorithms are commonly used to map problems to various quantum devices,

such as the D-WAVE quantum annealer and the Rigetti quantum computer.39,48

H= c +
XN

i = 1

hisi +
XN

i<j

Jijsisj

In the following section, we discuss practical considerations for building a physical

device.

IMPLEMENTATION

Given the requirements above for the hybrid and purely molecular computers,

numerous chemical systems can be considered as viable candidates. A physical sys-

tem capable of implementing either the hybrid classical-molecular computer or the

purely molecular computer should have properties that can be precisely defined and

measured. While these measurements often lie on a continuum, they can be used to

assign a binary state to a droplet using, for example, a threshold value. Since each

droplet will be subjected to changing constraints from neighboring droplets (two-

body terms, hð2Þ) as the computation progresses, changes in these properties

must be reversible so as to enable droplet states to flip between 0 and 1.

Figure 4 gives two examples of inter-droplet reactions and the respective physical

properties that can be represented as a binary state. In Figure 4A, the contents of

the droplets undergo polymerization and the resulting polymer weight distribution

is used to determine the droplet state. Recent experiments have demonstrated

the ability to optically monitor the extent of polymerization in microdroplets.38
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(Section D of the supplemental information details a simple, idealized model of a

system based on polymerization within droplets.) Another versatile property to

form the basis of computing bits for the hybrid classical-molecular computer is the

pH of a droplet, as illustrated in Figure 4B. The pH of a droplet can be reversibly

adjusted using several chemical reactions, such as addition of acid or base or by

tuning electric potentials to drive redox reactions that generate or consume H+.

Other candidate properties include the concentration of a reagent, oxidation states,

and color. The state of each droplet can be read out in a non-interfering manner via

optical or electrochemical means. For example, pH-sensitive dyes or ion indicators

can be used to read out a fluorescence signal proportional to the pH or ion concen-

tration in each droplet in the array.56 Functionalized electrode arrays can be used to

address individual droplets and determine their pH. Fluorescent dyes sensitive to

gelation or viscosity changes can be used to indicate the presence of polymer.57

In the hybrid classical-molecular computer, the inter-droplet couplings, whose nature

and strength correspond to the problem being optimized, are enforced by an external

control algorithm. In the purelymolecular computer, these couplings should be pre-pro-

grammed into the inter- and intra-droplet interactions. Information between neigh-

boring droplets can be shared via mass transfer or energy transfer. The former relies

on the movement of molecules across the droplet boundaries, which can take place

through passive diffusion across the interface, by electrophoretic motion, or via pores

installed in the membranes to enhance the rates of transport between droplets.58,59

The latter energy transfer-based system could eliminate these considerations by allow-

ing for inter-droplet communication without mass transfer, such as via FRET. (See sup-

plemental information section E for an example showing how bits can be mapped to

both a hybrid classical-molecular computer and a purely molecular computer.)

To execute either version of the molecular computer, we must achieve precise control

over droplet placement. Microfluidic-based robotic platforms, as well as inkjet printers,

can be used to generate droplets with precise compositions and to place them in square

or hexagonal packed arrays. In this way, the droplets can be situated on electrode arrays

for external control of droplet couplings or the read out of droplet states. The states of

the droplets can be determined via optical or electrochemical readout taken at regular

intervals using the means mentioned above. For the hybrid classical-molecular com-

puter, this readout can be sent to a classical computer that can implement the necessary

couplings. The classical computer can perturb the droplets through external stimuli

(optical and electrochemical control) based on the set couplings. This control loopwould

continue until the problem reaches a minimum energy state. For the purely molecular

computer, the couplings are pre-programmed into the droplet interactions, removing

the need for a classical computer to impose these couplings.
DISCUSSION

Problem scaling analysis of the molecular computer

An essential factor in the choice of problems to solve on the microdroplet array com-

puter is how the droplet array size scales with the number of variables in the problem.

Compared with quantum annealers, which are constructed using Josephson junc-

tions cooled to near absolute zero temperature, the cost of adding droplets to the

molecular computer is negligible compared with the overall cost of the setup.

Since the molecular computer takes Ising parameters as input, any problem that can

be efficiently encoded in a spin Ising system can also be efficiently implemented on a
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microdroplet array computer. As far as we know, the parallelization of chemical

reactions across all droplets could give the molecular computer an advantage

over numerical gradient evaluations in a classical computer or GPU.

In Figures 1C and 1D, we plotted the scaling behavior of three types of problems that

can be solved on either the hybrid or the purely molecular computer.45 The problems

include the two examples given in the main text, Boolean satisfiability (SAT) and lattice

protein folding, aswell as the traveling salesperson problem (TSP), an important logistics

optimization problem in which we seek the shortest path between a set of points (e.g.,

Uber driver scheduling passengers’ pickup and drop-off). Recall that the hybrid version

of the molecular computer is fully connected and allows for higher-order expressions

involving k variables, or k-local terms. The purely molecular computer, on the other

hand, is limited to two-body (2-local) nearest-neighbor connections. Scaling relations

must take into account the locality reduction algorithms and ancilla droplets required

to overcome this limitation and solve any general problem.

On the hybrid computer, Boolean satisfiability for k variables per clause (k-SAT) scales

linearly with the problem size, as OðnÞ, since each variable corresponds to one droplet

and all droplets are connected to each other via the control hardware. For three ormore

clauses kR3, the problem isNP-complete. To reduce a 3-SAT problem to a 2-local Ising

Hamiltonian for the purely molecular computer, ðn� 1Þ2=4 ancilla droplets are

required.48 For the traveling salesperson problem involving n points or nodes,

n2 droplets are needed to label the sequence of points visited, thus the number of drop-

lets scales as Oðn2Þ.45 Since the Ising Hamiltonian for this problem comprises only

quadratic terms (2-local), it can be implemented on the purely molecular computer

without locality reduction. Finally, the lattice protein problem is the most complex of

our examples. To find the minimum energy 2D structure for a string of n amino acids,

the 4-local Hamiltonian must encode interaction energies between neighboring amino

acids and self-avoidance, scaling as n2logðnÞ.50,51 We note that the scaling of the

described problems is at most polynomial in the length of the input size. Also, it has

been shown that embeddingQUBOproblems on a sparsely connected graph scales lin-

early with the number of variables in the problem.39

As the number of variables in a problem increases, so does the number of droplets and

the expectation that errors will accumulate as a result of noise, control, and readout.

Albash et al.60 recently examined the errors in analog Ising machines, which scale as

power-law with problem size. While classical bit repetition schemes could be used for

molecular computers, we can also draw inspiration from quantum annealing correction

schemes, such as those employed by D-WAVE.61,62 One such scheme is the nested

quantum annealing correction which makes C copies of each bit and increases the cou-

plings byC2.61 Once the device has performed the computation, majority vote over the

C copies of each bit determines its final state. While error correction schemes ensure a

higher probability of reaching the ground state solution, it does involve increasing the

number of bits, or droplets, in the molecular computer.
Advantages of the molecular computer

With a fully realized molecular computer, there will be many advantages compared

with conventional silicon-based computers, as well as compared with many other

recent proposed computing architectures. If some of the proposed mechanisms in

previous sections could be realized, we believe that a molecular computer to be

particularly well suited to solving combinatorial optimization problems, including

some NP problems.
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Comparison with classical computation: since the rules of classical physics still

govern the operation of a molecular computer, we do not believe it will be more effi-

cient than classical conventional computers in terms of time or space scaling. There

are nevertheless many advantages to using chemical reactions for solving specific

types of problems, such as discrete optimization. The approach described here re-

moves the need for physically defined, atomic-sized circuits. The molecular com-

puter benefits from the intrinsic parallelization of chemical reactions, effectively solv-

ing a system of differential equations of motion in parallel and eliminating the

storage in memory of each step of the optimization process. Molecular computers

also offer the possibility of reducing the energy consumption and heat dissipation

of computing, two issues that affect the performance of computer chips. Inspired

by biological processes, neuromorphic and biochemical computers were found to

be 1,000 times more efficient than classical computers, in part due to their inherent

massively parallelized processes.15,63,64 For the molecular computer described

here, which also benefits from mass parallelization and a built-in memory, using

chemical reactions for the bit interaction to replace multi-gate solutions potentially

reduces the operation energy usage. A promising classical, CMOS-based alternative

are digital annealers; while they use a similar approach and algorithms to those of

the molecular computer described here, digital annealers would also be affected

by the aforementioned issues. In molecular computers, the computation speed is,

however, limited by the intrinsic speed of droplet motions and chemical reactions,

nuclear rearrangements being orders of magnitude slower than electronic rear-

rangements in the Born-Oppenheimer approximation.

Comparison with biomolecular computation: the droplet array molecular computer

also has advantages over biomolecular methods, such as DNA computing and

cellular signaling, with faster operation speed, fewer errors, and significantly less

complexity than biological cells. There is no need for post-processing or offline

analysis of the chemical content, allowing for immediate readout. Droplet array

initialization, computation through annealing, and optical readout are all fast and

automatable processes. The phase space of chemical reactions, mechanisms, and

reagents, is extensive. The contents of each droplet can be cost-effective, widely

available, and safe materials.

Comparison with quantum computation: in recent years, quantum computing has

gained much attention due to the potential for solving problems that are intractable

for classical Turing machines. These include cryptography (prime factorization),

quantum chemistry, as well as the optimization problems described above. Howev-

er, with quantum entanglement and superposition come challenges in error correc-

tion, noise, decoherence, and qubit scaling, which must be overcome before quan-

tum computers attain their full potential. The droplet array, on the other hand, is

easily scalable through inkjet printing. The cost of adding additional droplets, rep-

resenting bits, is negligible compared with the cost of the overall experimental

setup.40 Also, there is little experimental overhead to operate the molecular com-

puter, since we can select for chemical reactions that take place at or near room tem-

perature. Information storage would also be trivial since the output of a calculation

can be printed onto a piece of paper for future readout.
CONCLUSION

In sum, we have proposed a new heuristic method for computation with programma-

ble droplet-arrays to solve combinatorial optimization problems. The device

consists of a 2D array of microdroplets that represents a set of interacting binary
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variables that evolve under an Ising Hamiltonian. Each droplet corresponds to one

variable, whose value is determined by measuring a specific property of the droplet.

A specific problem is solved by programming the intra-droplet contents and inter-

droplet interactions. As the system evolves collectively, the droplet states approach

the optimal solution of the problem through a process akin to annealing in materials.

D-WAVE first adopted a quantum version of this approach; more recently, a classical

digital annealer was introduced by Fujitsu. To our knowledge, this is the first pro-

posal of a molecular computer operating in annealing mode. In its purely molecular

version, the microdroplet array computer benefits from all of the advantages of

computing with molecules: concurrent information processing and storage, massive

parallelization of chemical reactions, energy-efficient processes, vast phase space of

molecules and reactions, cost-effectiveness, and scalability of the device.

As a stepping stone to a purely molecular computer, we first developed a hybrid

model where a classical computer imposes the parameters of the optimization prob-

lem, and the information processing and storage is carried out by the individual

droplets in the array. Throughout numerous iterations, the classical computer takes

in the set of droplet states and performs a stochastic gradient descent algorithm to

search for the optimal ground state using the droplets. A simulation of the hybrid

classical-molecular computer demonstrated its ability to solve two NP-hard prob-

lems, reproducing the phase transition in Boolean satisfiability (3-SAT) as a function

of clause density, and identifying the ground state configuration in a lattice protein

folding problem.

Our next step is to perform these calculations on a physical hybrid classical-molec-

ular computer. The challenge of identifying suitable chemical reagents and reactions

to program themicrodroplet array can be facilitated withmachine learning and high-

throughput experimentation. We would also employ robotics and computer vision

to operate the device. In due course, we shall tackle droplet miniaturization to scale

up to thousands and eventually millions of droplets. In the ultimate limit of this tech-

nology, we imagine a molecular computer operated by inkjet printing a problem

onto a sheet of paper; by the time the ink dries, the problem is solved and imprinted

onto the sheet. Applying the same concept to a 3D printed inkmay also open a novel

route for large-scale assemblies of matter.
Data and code availability

The code for the hybrid classical-molecular computer simulation, applied to the

Boolean satisfiability and lattice protein folding problems, is available at https://

gitlab.com/pascal_friederich/molecularcomputer.
SUPPLEMENTAL INFORMATION

Supplemental information can be found online at https://doi.org/10.1016/j.matt.

2021.02.020.
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