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We describe a chemical robotic assistant equipped with a curiosity algorithm (CA) that can 

efficiently explore the state a complex chemical system can exhibit. The CA-robot is designed to 

explore formulations in an open-ended way with no explicit optimization target. By applying the 

CA-robot to the study of self-propelling multicomponent oil-in-water droplets, we are able to 

observe an order of magnitude more variety of droplet behaviours than possible with a random 

parameter search and given the same budget. We demonstrate that the CA-robot enabled the 

discovery of a sudden and highly specific response of droplets to slight temperature changes. Six 

modes of self-propelled droplets motion were identified and classified using a time-temperature 

phase diagram and probed using a variety of techniques including NMR. This work illustrates how 

target free search can significantly increase the rate of unpredictable observations leading to new 

discoveries with potential applications in formulation chemistry. 

 

The investigation of multicomponent chemical formulation is a laborious and time-consuming effort. 

The combinatorial explosion, non-linear properties and rare events mean that even an expert 

experimentalist requires enormous resources to make significant discoveries. Although lab automation 

has shown a remarkable increase in experimental throughput1,2, it does not change the relative rate of 

discoveries (wrt. the rate at which experiments are done) because the paradigm used to select experiments 

does not change alongside it. An appealing alternative is to implement the curious and knowledge-based 

inquiry process inherent in scientific researchers within a reliable and high-throughput robotic system3–

5. Statistical methods were previously introduced to analyse the vast quantities of data generated by 
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laboratory robots6,7, and recently machine learning algorithms have started to be integrated into 

laboratory equipment8,9. However, most of these methods focus on the optimization of targeted 

properties10,11 or require prior knowledge12,13. 

 

Herein, we focus on exploration for its own sake. We describe an experimental method (Figure 1) that 

implements state-of-the-art curiosity algorithms (CA) into a laboratory robot (CA-robot, Figure 2). CAs 

have been developed to replicate curiosity-driven learning in humans15,16 and make use of  knowledge 

acquired from developmental psychology, neuroscience, artificial intelligence and robotics.14 CAs have 

previously been shown very efficient at exploring systems in simulated problems or constrained robotic 

scenarios17–19. Because CAs are designed to actively and autonomously select experiments that maximize 

the number of new and reproducible observations, applying CAs to the exploration of chemical systems 

could dramatically improve the rate of new scientific observations in the labs. 

 

Our CA (Figure 1), called random goal exploration,17,20 is the simplest of its algorithmic family, is easy 

to describe, and yet performs comparatively to other  implementations17 - making it an ideal candidate 

for this interdisciplinary didactic study. To select a new experiment, rather than deciding directly on 

experimental parameters, the CA generates a self-determined temporary target defined on the observation 

space. This temporary target represents an observation that the CA-robot will try to generate from the 

chemical system by defining a new experiment. To do so, the CA-robot refers to the dataset of previous 

experiments performed and builds a temporary model of the physical system using a regression 

algorithm. The model is used to infer the experimental parameters that are most likely to generate the 

self-determined target.  
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Figure 1. Description of the curious algorithm (CA) and the exploration methodology. Top-Left: Explanation 
of the research question and approach. Top-Right: Nomenclature of the terms used to describe our methodology 
using the droplet system in study as our example. Bottom: Flow chart of the CA algorithm. At each iteration (1 
iteration = 1 experiment), the CA first selects a new temporary target that represent a desired observation. It then 
collates all the experimental results collected so far and uses them to build a model, which is used to infer the 
experimental parameters most likely to achieve the temporary target. The said experiment is then tested, and the 
results are stored in the dataset. The CA repeats this process until the budget allocated to the exploration is used 
up, 1000 experiments in this work. 

The selected experiment is then undertaken leading to a new observation. The experiment results (both 

parameters and observations) are added to the dataset of previous experiments and will help improve the 

quality of the model, in turn improving the performance of the CA. The CA-robot repeats this process 

for a given number of iterations defined by the experimental budget allocated to the project. We highlight 

that the CA-robot always starts with zero experimental data and build the dataset at the same time as it 

explores and learns about the system. For the first experiment, the CA cannot use any previous 
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information. To define the N-th experiment, it will be able to reuse the N-1 experiments previously 

performed. We also clarify that the CA generates a new temporary target for each new experiment. A 

detailed description of the algorithm is available in Supplementary Information, section 2.2.2. 

To understand the benefit of this approach, consider the analogy with learning to play golf for the first 

time, with no tuition. With each shot, you can vary how you hit the ball and with what club (your 

experimental parameters).  Your aim is to learn a wide skill set and discover where you can send the ball 

(your observation space). Every time you play a shot, you learn from how it went, and apply that 

knowledge to your future shots (you are building a model from the dataset of past experiences). The 

exploration question is: How do you allocate your time? Should you try contracting your muscles 

randomly and observe where the ball lands (random parameter search) or should you try to set yourself 

a variety of targets to reach and observe how far from these targets the ball lands (our simple CA, called 

random goal exploration)? The problem is the same in experimental sciences, when faced with the task 

to decipher an unfamiliar system (hitting a ball with a club), should we try experiments at random and 

observe how the system reacts (contract your muscle randomly) or should we try to target specific states 

or properties and observe if we can generate them (set yourself different targets and learn from the 

process). In the first approach (random), many experiments will tend to produce no interesting or new 

effects (e.g. missing the ball), in the second approach (CA), many targeted states will tend to be out of 

reach of the system (e.g. putting the ball on the moon). However, the strength of the CA approach is that, 

even if many targets cannot physically be attained, the process of trying to reach them has been shown 

to generate more varied observations than the random approach without the need of understanding the 

system in study.17 

We tested our approach on dynamic oil-in-water droplets – promising protocell models21,22 displaying an 

astonishing range of life-like behaviours, including movement, division, fusion and chemotaxis.22–26 

Although these droplets are thought to be driven by Marangoni instabilities originating from surface 

tension asymmetry,27 to date, the understanding of even the most simple systems remains limited.28,29 As 
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such, oil-in-water droplets offer a great example of the challenges in studying complex and poorly 

understood systems where few components can lead to the emergence of a range of complex properties 

or behaviours, a topic of great relevance across many industries. Droplet experiments are performed by 

our CA-robot (Figure 2, Supplementary Movie 1) that can perform droplet experiments, record and 

analyse the droplets’ behaviours, and select the next experiments in full closed-loop autonomy. 

 

Figure 2. Diagram of the closed-loop workflow of the robotic platform. Top-Left: Schematic of new high-
throughput droplet generating robot developed for this work. The robot runs the experiments by first mixing the 
oils accordingly, then prepares the aqueous phase and places droplets in the petri dish using a syringe. The motion 
of the droplets video is recorded and analysed. Once the experiment is completed, the platform cleans the entire 
system. Top-Right: Droplet contours and positions are extracted from the video data. Middle-Right: From the 
trajectories, the average speed and number of droplets generated per experiment was determined. Middle-Left: 
Experimental parameters are the proportion of each oil composing our droplets, which are then used by the 
platform to perform the next experiment. Bottom: The curious algorithm learns from the observations and define 
new experiments to be tested, see Figure 1. 

Discovery of an anomaly 

The first objective of this study was to compare the efficiency in generating varied observations from a 

system between our CA approach and a standard random parameter search (also called screening) used 

in high-throughput automation. We gave ourselves a finite experimental budget of 1000 experiments and 
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compared the range of behaviours we could observe using the CA or the random algorithm – both 

algorithms being tested three times. Our parameter space is composed of all possible mixtures of four 

oils (octanoic acid, diethyl phthalate (DEP), 1-octanol and 1-pentanol) from which our droplets are made. 

We chose our observation space as the droplet’s speed and number of divisions, both selected due to their 

inherently interesting nature and similarity to the behaviours of simple lifeforms that can move and 

replicate.  

While these specific droplet behavioural metrics were relevant in this context, the methodology and 

principles applied herein are not specific and could apply to many other metrics or systems. For example, 

we could consider the shape of droplet as an additional dimension of observation. In pigment mixing 

experiments, the parameters space could be the composition of a mixture of pigments, and the 

observation could be the resulting colour after mixing – for example in the Red-Green-Blue space. 

To our surprise, during our first set of CA experiments, we noticed a drastic change in the observable 

outputs for our third repeat compared to the first and second repeats, namely at the third repeat no droplets 

were observed with speed above 5mm.s-1 (Supplementary Information 1.2). Our expectation was indeed 

to get roughly the same range of droplet behaviours at each repeat because we considered the same 

droplet system and the same algorithm. After careful investigation of all possible causes for this anomaly 

(change in chemicals, experimental conditions, robotic process, tracking algorithm, etc), we identified 

temperature as the most probable factor behind the observed phenomenon. The temperature in the room 

might have changed between the second and the third repeat. However, as in all previous reported work 

on this droplet system26,30, the temperature was neither recorded, nor controlled, and all experiments were 

simply performed at room temperature. A new set of questions emerged: (1) Can a change of only a few 

degrees Celsius really impact our droplet system? If yes, how and to what extend? (2) Was it the CA 

algorithm that allowed the observation of this anomaly? Or would it have been as likely to make our 

serendipitous observation with the random algorithm if the temperature had changed too? We answer 

first the latter questions and then characterize thoroughly the temperature effect on our droplet system. 
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Proving that the discovery was enabled by the CA algorithm 

To test whether our discovery was enabled by the CA algorithm, we ran three repeats of both algorithms 

(CA and random) at 22.6 ±0.5°C and 27.0 ±0.7°C (mean±std). At 27°C, and given the same budget of 

1000 experiments, the CA-robot generated significantly more varied droplet behaviours than the random 

parameter search (Figure 3 B and C - notice the higher speed and division of droplets observed using the 

CA versus the random methodology). We quantified this exploration (Supplementary Information 2.2.3) 

and found that the CA enables us to observe 73.4 ±15.2% of the total observable space, ca. 3.3x more 

(p=0.039 - Welch’s t-test) than a random parameter search (22.5 ±2.1%) within the same experimental 

budget. Interestingly, after only 128 experiments the CA-robot already generated more varied 

experiments than random parameter search did in 1000 experiments (Figure 3A), a 7-fold efficiency gain 

in time and resources given the same hardware setup. Supplementary Movie 2 illustrates the exploration 

over time using both the CA and random; notice how even after as few as 50 experiments the CA driven 

exploration is already identifying more extreme cases of droplet behaviour, and this differentiation only 

increases as more experiments are undertaken. Strikingly the number of active droplet experiments 

observed (speed > 3mm.s-1) is as low as 28.7 ±0.9 for random parameter search but jumps to 395.0 ±16.5 

for the CA, a 14-fold improvement (p<0.001), without explicitly asking the robot to generate high speed 

experiments. This is further visualised in Supplementary Movie 3, which shows videos of the 1st, 10th 

and 50th highest speed recipes from the two approaches.  
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Figure 3. A summary of the results generated using our CA-robot, illustrating how the CA enables both 
significantly greater exploration of the behavioural space and the discovery of temperature sensitivity of 
the droplets. Left: Comparison of the observed droplet behaviours after 1000 individual experiments for CA and 
random – average of 3 repeats with shaded area showing 68% confidence interval. (A) Evolution of the percentage 
of the behaviour space explored between the two methods. CA explored 3.3 times more within the same 
experimental budget (73% vs 22%) and generated as diverse observations as random after only 128 experiments 
– a 7-fold reduction in time and financial cost for equivalent results. (B, C) Visualisation of the observations made 
by each method for each repeat; each scatter dot represents the average speed and number of droplets for a single 
90 second droplet experiment. CA (B) leads to much more observations of rare and interesting droplets than 
random (C). Right: Effect of temperature (22.6 ±0.5°C vs 27.0 ±0.7°C) on the observations made using each 
algorithm. (D) Number of droplet experiments observed with a speed faster than 3 mms-1 for each method and 
temperature with error bar showing standard deviation. The CA-robot, by performing the same number of 
experiments, generated 14 times more interesting droplet recipes than random at 27.0°C (395 vs 28, p<0.001), and 
5 times more at 22.6°C (93 vs 19, p=0.13). A change of only ca. 4.4°C led to a large and significant difference in 
the observed droplet behaviours when using the CA (395 vs 93, p=0.005). This difference in effect could not be 
significantly observed when using random (28 vs 19, p=0.22). This is confirmed by (E) and (F) which show the 
distribution of observation respectively for CA and random. (E) The distribution of observations has a strong tail 
indicating a wider exploration from the CA-robot, and there is a significant difference between observations made 
at 27.0°C and 22.6°C that is not observable with random (F). By focusing on the output space, the CA-robot 
provides a more accurate picture of the system for the same experimental budget, which allowed the discovery of 
this delicate temperature effect. 

The above result shows convincingly that, at a given temperature of 27°C and with a given budget, the 

CA enables to observe more varied droplet behaviours that a random parameters search. But could the 

temperature effect still have been observed by the random parameters search?  Figure 3 compares the 

distribution of the speed of droplet experiments generated by both algorithms at 22.6 ±0.5°C and 27.0 
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±0.7°C. The ca. 4.4°C temperature change has a significant impact on the observations made using the 

CA (395.0 ±16.5 vs 93 ±43.1 active droplets, p=0.005) whilst a negligible change is observed with 

random parameter search (28.7 ±0.9 vs 19.3 ±7.6 active droplets, p=0.22). Notice the differences in the 

distribution of speed observed for each algorithm at both temperature in Figure 3 E and F. This key result 

allows us to claim that our initial observation of the temperature ‘anomaly’ was only feasible because of 

the exploratory benefits that our CA algorithm provides. By extension, we have shown that using a CA 

over a random parameter search to design exploratory experiments for an unfamiliar system is a better 

use of a limited experimental budget. 

Characterizing the temperature effect  

To study this newly observed effect in detail, we ran targeted droplet experiments within the range of 

temperatures accessible in the room (17-30°C). There were significant, unexpected and non-linear 

variations in the behaviour of the droplets of different compositions due to temperature (Supplementary 

Information 1.6). Such variations were highly reproducible as, for a given recipe, the observation of 

droplets’ behaviour is enough to infer the room temperature with high accuracy (prediction error of 0.05 

±0.66°C – Supplementary Information 1.7), a testament to both the reproducibility of the droplet 

behaviours and the existence of a delicate temperature effect. This is rather striking given the complexity 

of the system, the timescale of an experiment and the relative simplicity of our video-based analysis. One 

recipe of interest (composed of 1.9% octanoic acid, 47.9% DEP, 13.5% 1-octanol, and 36.7% 1-pentanol) 

was further analysed. The vast differences of speed observed with this recipe to small temperature 

changes are illustrated in Supplementary Movie 4.  To probe the causes behind these observations we ran 

longer (15 minute) droplet experiments at a range of temperatures (Supplementary Information 1.9). 

Surprisingly, as shown in Figure 4A and Supplementary Movie 5, the droplets were seen to exhibit two 

peaks in their speed-time profile – they accelerate to achieve a first maximum speed, decelerate, and then 

accelerate again to reach a second maximum speed. The temperature effect on droplet motion can clearly 



 10 

be seen in the variation of their speed profile, with the peak speed timing and magnitude exhibiting clear 

trends with temperature, with the peaks occurring earlier and with a greater magnitude for hotter 

experiments. 

Utilising droplet displacement data we identified six clear stages of droplet motion: initiation, fluctuation, 

irregular, deceleration, continuous and saturation, of which characteristic examples may be seen in Figure 

4G (P1 to P6). During the initiation stage, the droplet vibrates around a point, showing little locomotion 

and low speeds. During fluctuation, these vibrations extend and the droplet speed increases before 

peaking during irregular motion, in which the droplet moves short distances in alternating directions. 

This is followed by a deceleration stage, during which the droplets slow down and display smoother 

motion, which then develops into continuous motion, during which concerted movement is seen and 

resulting in a more circular motion of the droplets around the dish. Eventually the saturation stage is 

reached, in which the droplets slow down again and come to a halt. The peak speeds are observed for the 

irregular (purple) and continuous (orange) modes of motion, with the deceleration (green) period existing 

in between these two. A temperature-time phase diagram was derived showing the times at which each 

distinct phase of motion occurs at different temperatures (Figure 4C, Supplementary Information 1.10). 

The temperature-time phase diagram was created by calculating the intercept between cumulative 

distance travelled plots and linearly-fitted transition times (Figure 4B). The phase-transition times were 

each defined by characteristic points in the droplet acceleration-time plots. This phase diagram highlights 

the strong temperature dependence on the duration of each of the phases of motion and can be used to 

predict the mode of droplet motion observed at any time or temperature within the studied range. 
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Figure 4. A summary of the analysis undertaken on a focus recipe, which resulted in the classification of 6 
phases of droplet motion and the production of a time-temperature phase diagram. A) Temperature 
dependence of droplet speed vs. time. Each colour represents all experiments consisting of four droplets 
undertaken in a given temperature interval of 1°C. B) Temperature dependence of droplet cumulated distance 
moved vs. time. The black dashed lines show the phase transitions in droplet motion that are used to estimate the 
phase diagram and are calculated by linear fitting of maxima and minima in the acceleration profile at each 
temperature interval.  C) Temperature-Time Phase diagram of droplet motion showing different phases, initiation 
(P1), fluctuation (P2), irregular (P3), deceleration (P4), continuous (P5) and saturation (P6). The marked data 
points correspond to the intercepts shown in (B). D, E) The trajectory of a single droplet at 21.44°C (D) and 
27.39°C (E), with different motion phases highlighted by colour. G) Exemplar 36s segments of each phase of 
motion, with each point showing the droplet location every 0.25 s at 27.39°C (E). Each example trajectory contains 
the same number of points to emphasise the differences in distance covered during the different phases, which is 
quantified in the cumulative distance per phase plots (F) for the droplet trajectories seen in (D - left) and (E -right). 

Oil dissolution into the aqueous phase is hypothesised to play a major role in the observed droplet 

behaviours,27,29 with oil dissolution impacting the interfacial tension, leading to droplet motion induced 

by Marangoni instabilities. We utilized a previously reported 1H NMR spectroscopic method24 to quantify 

the aqueous phase oil concentration during droplet motion at 22.4 ±0.2°C and 27.7 ±0.2°C 

(Supplementary Information 1.11). A 5°C temperature increase is seen to accelerate the dissolution of all 

oils (Figure 5).  
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Figure 5. Oil concentration in the aqueous phase over time at 22°C (black) and 28°C (red), as quantified by 
1H NMR spectroscopy. Note how each oil dissolves faster at the higher temperature, whilst DEP and ethanol also 
dissolve to different final concentrations. Note differences in y-axis scale – pentanol dissolves around 5x more 
than the other oils. When regulated to a target of 22°C, temperature at the experimental location was 22.4 ±0.2°C. 
When regulated to a target of 28°C, temperature at the experimental location was 27.7 ±0.2°C. 

Pentanol dissolves fastest and to the greatest level, as expected by its relative solubility. Octanoic acid 

dissolves to a fixed level early in the experiment and then stays constant; this is unsurprising due to its 

low concentration in the formulation and the fact it will rapidly deprotonate at high pH. As previously 

reported,24 we note the presence of ethanol due to the base catalysed hydrolysis of DEP. Interestingly, 

DEP and ethanol have different final concentrations at the different temperatures, as temperature affects 

the equilibrium of the hydrolysis reaction, as opposed to only physical processes driving the other oils 

dissolution. Octanol, DEP and ethanol dissolution are delayed as compared to pentanol dissolution, 

suggesting that pentanol dissolution is the main contributor to the first peak of droplet motion. 

To confirm this hypothesis, we compared the oil dissolution rates with the droplet motion data, as shown 

in Figure 6A and B and detailed in Supplementary Information 1.12. The rate of pentanol dissolution is 

seen to be rapidly increasing during the fluctuation and irregular phases, before rapidly decreasing during 

the deceleration phase. This indicates that pentanol dominates the early stages of droplet motion, and that 
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its dissolution is the primary cause of the fluctuation and irregular forms of motion. As pentanol dissolves 

so fast in these early stages, it is not surprising that the motion is sporadic, as rapid dissolution in all 

directions (Figure 6C) prevents the initiation of structure, regular flows and a more continuous form of 

motion. Because pentanol dissolution has largely ceased by the time of the continuous phase of motion, 

whilst the other oils are still dissolving to significant levels, it appears that DEP/ethanol and/or octanol 

are the primary driving force of the continuous period of motion. We hypothesise (Figure 6D) that the 

more gradual rate of dissolution during the continuous phase of motion allows a positive feedback loop 

to be setup between oil motion, dissolution and Marangoni flows.31,32 As the droplet moves in this phase, 

it advects ‘fresh’ surfactant solution onto its anterior face (via collision with empty micelles and free 

surfactant molecules) and leaves a trail of oil filled micelles in its wake (via oil dissolution). Thus, the 

interfacial tension is higher at the posterior face as there are more oil filled micelles and less free 

surfactants in this zone. As there is an interfacial tension differential between the anterior and posterior 

faces of the moving droplet, a Marangoni flow is induced, supporting the forward direction of motion, 

providing a positive feedback loop for continued forward motion. This hypothesis is also supported by 

the observation that droplets often avoid following the recent path of other droplets. When the oil 

dissolution rates begin to saturate, the continuous motion slows and stops.  
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Figure 6. The correlation between oil dissolution and droplet behaviours and schematics illustrating the 
proposed mechanisms for the irregular and continuous phases of motion. A) The average oil droplet speed 
(coloured plot, left y axis) observed at 28°C (average across 8 experiments processed via a 10 seconds moving 
average), with the colour corresponding to the phase of motion (cyan-initiation, yellow-fluctuation, purple-
irregular, green-deceleration, orange-continuous and blue-saturation). The grey lines illustrate the rates of oil 
dissolution (right hand y axes) from the fitted 1H NMR spectroscopy dissolution data. B) The difference between 
the sum of the rates of DEP, ethanol and octanol dissolution and the rate of pentanol dissolution against time. Note 
the peak difference in favour of pentanol at 124 seconds, the point at which the rates are equal at 277 seconds and 
the peak difference in favour of DEP, ethanol and octanol at 405 seconds. These times are also marked in (A) and 
correlate closely with the irregular-deceleration transition, rapid acceleration in the continuous phase and the 
maximum droplet speeds in the continuous phase. C) Schematic illustrating the proposed mechanism for the 
fluctuation and irregular phases of motion. Rapid pentanol dissolution in all directions (black arrows) into a largely 
oil free aqueous phase containing many empty micelles and free surfactants leads to no concerted directional 
motion, but rather erratic motion in various directions (purple arrow). D) Schematic illustrating the proposed 
mechanism for the continuous phase of motion. At this time, total oil dissolution is slower. The front of the moving 
droplets contacts ‘fresh’ aqueous phase whilst the rear of the droplet leaves a trail of ‘filled’ micelles. Thus, the 
interfacial tension is lower at the front of the droplet leading to a positive feedback loop of forward motion via 
Marangoni flows. 

We cannot ascertain from the previously discussed data whether it is DEP, ethanol and/or octanol 

dissolution that is the primary cause of the continuous phase of motion. To discriminate between these, 

we varied the pH of the surfactant containing aqueous phase, which had a significant impact on the oil 

droplet behaviour. As the pH and temperature are increased, DEP hydrolysis is significantly accelerated,33 

leading to an earlier and larger second continuous motion peak (Supplementary Figure 36). With 
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increasing pH there is also a 106 fold increase in ionic strength, significantly reducing the aqueous 

solubility of alcohols,34 thus lowering the dissolution of pentanol and reducing the irregular motion peak. 

These results together indicate that DEP hydrolysis is the primary cause of the second movement peak 

and continuous phase of motion. A range of experiments in which the pentanol-octanol ratio, the alcohol 

chain length and the number of droplets placed were varied further confirmed the links between pentanol 

and the first speed peak and DEP and the second speed peak (Supplementary Information 1.13). 

As a proof of concept, we investigated the use of droplets as containers with temperature dependent 

release for active molecules, and showed that the dye methylene blue was released 2.5 times faster at 

28.6 ±0.6°C than at 17.6 ±0.2°C (Supplementary Information 1.8, Supplementary Movie 6). 

Conclusion 

By equipping a droplet generating robot with a curiosity algorithm (CA-robot), we were able to uncover 

the temperature sensitivity of our self-propelled droplet system. We demonstrated that, given the same 

experimental budget, this temperature effect could not have been observed using a random parameter 

search. This illustrates that CA-robots can be of significant advantage to assist scientists in revealing 

properties of unfamiliar systems. Using physical and chemical analysis, we characterized the discovered 

effect and derived a phase diagram of droplet motion through time and temperature which links to the 

underlying oil dissolution processes. This chemical analysis revealed the astonishing complexity that 

underlies the dynamics of our 4-component oil-in-water droplet system. This is the first time a curiosity 

algorithm has been used for the exploration of a physical system in the lab using a fully automated robotic 

platform. Future research will focus on constructing the observation dimensions autonomously from the 

droplet videos in an unsupervised way,20 as in this work the observation space was designed by the 

authors which potentially introduces human bias that can limit possible discoveries. 
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Methods 

Robotic Platform 

We designed a high-throughput droplet-generating robot (Figure 2) that can execute and record a 90 s 

droplet experiment every 111 s, including mixing, syringe driven droplet placement, recording, cleaning 

and drying. Such minimal overhead time was achieved by parallelizing all operations enabling our 

platform to routinely perform 300 droplet experiments per day in full autonomy. The platform and 

sequence of operations are fully described in Supplementary Information 2.1. 

Droplet Chemistry  

The oil-in-water system comprises four droplets composed of a mixture of four oils placed onto a 

surfactant containing aqueous phase in a petri dish26. An experiment consists of preparing a formulation 

of octanoic acid, diethyl phthalate (DEP), 1-octanol and 1-pentanol at a specific ratio determined by the 

algorithm and dyed with 0.5 mgmL-1 of Sudan Black B dye. The oil mixture is sampled by the robot 

using a 250μL syringe and delivered as 4 x 4μL droplets in a Y pattern from the center of a 32mm petri 

dish filled with 3.5mL of a 20mM cationic surfactant (myristyltrimethylammonium bromide, TTAB) 

solution raised to a high pH (ca. 13) using 8gL-1 NaOH. The droplet making procedures are fully 

described in Supplementary Information 2.3.1.  

Image Analysis 

The droplet activity is recorded at 20fps for 90 seconds and analyzed using computer vision. Droplet 

contours are extracted using a thresholding algorithm and tracked through frames using a proximity rule. 

The droplets’ average speed and the average number of droplets in the dish (droplets can split, fuse or 

leave the tracking area) are quantified and used as the observation space. The droplet tracking procedures 

are fully described in Supplementary Information 2.1.5. 

Algorithmic Implementation 
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Experimental parameters are generated as a 4-dimensional vector representing the ratio of each oil in the 

droplet mixture. Observations are represented as a 2-dimensional vector representing the average speed 

and average number of droplets in an experiment. For the random goal exploration algorithm, the forward 

model is built uniquely from previous observations using locally weighted linear regression and the 

inverse model is solved for each target using the CMA-ES algorithm on the learnt forward model. The 

CA implementation is fully described in Supplementary Information 2.2. 

Data availability  

Due to the large total size of the droplet videos (> 500GB of data), the experimental data used in this 

work are available upon request to the corresponding author at lee.cronin@glasgow.ac.uk. 

Code availability  

The code used to operate the robotic platform, generate and analyse results are available online in our 

group GitHub account at https://github.com/croningp and are fully described in the Supplementary 

Information. 

ASSOCIATED CONTENT  

Supplementary Information 

The Supplementary Information Appendix contains further results and discussion including more detail 

on related work, an in-depth comparison of the algorithms and a detailed explanation of the 

physicochemical analysis undertaken, the modelling of droplet behaviour and the phase diagram 

preparation. Additional experiments are presented studying the sensitivity of our system to pH, 

proportion of each oil, chain length of alcohol used and the number of droplets place in the dish, as well 

as detail given on the dye release and droplets as temperature sensors experiments. The Supplementary 

Information Appendix also provides detailed information (and the relevant GitHub repositories) about 

the materials and methods including the full droplet robot design and code, the droplet tracking 
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implementation, a formal description of the curious algorithm and its implementation, and the 

experimental procedure related to the chemical analysis. Finally, the Supplementary Movies are listed 

along with their explanatory captions. 
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1 Supplementary Results and Discussion 

1.1 Related Work 

A pioneering work on smart laboratory automation was the development of the ‘Robot 

Scientist’1,2 that can autonomously generate and perform experiments to discriminate between 

competing molecular biology hypotheses in an active learning3 scenario. This approach 

requires background knowledge of the biological problem for generating the hypotheses. 

Active learning strategies have also recently been used for the exploration of the crystallization 

conditions of polyoxometalates4 which required an initial training set of representative 

experiments to bootstrap the system.  

In this work, we describe a novel system that extends the level of autonomy of robotic lab 

assistants by integrating algorithms for intrinsically motivated learning to a robotic assistant 

conducting physicochemical experiments in the laboratory with no human intervention. We 

believe this is the first time intrinsic motivation is added to a laboratory robot to study a 

physical system. 

Intrinsic motivation is the self-desire to acquire new knowledge, skills, or experiences5. It 

pushes animals, including humans, to probe their environment without explicit immediate 

rewards, a drive characterized by engaging in playful and curious activities. Psychologists 

believe these activities are essential for sensorimotor and cognitive development throughout 

our lifespan5–8. Intrinsic motivation drives children, and scientists, to open-endedly experiment 

and play with the world around them.  

In the last two decades, fields at the intersection of developmental psychology, neuroscience, 

artificial intelligence and robotics9,10, have worked on modelling mechanisms of autonomous 

learning and intrinsically motivated exploration in humans11–15 (see also related work in the 

field of evolutionary computation16,17). Interestingly, principles derived from studying intrinsic 

motivation have been successfully applied to solve difficult problems in the fields of artificial 

intelligence and robotics, such as sensori-motor coordination in high-dimensional spaces18, 

playing ATARI games from raw pixels19,20 and curriculum learning on a real robot21. To our 

knowledge, however, these algorithms have never been studied outside computer simulations 

or structured robotic problems. 

Recently, in the physical sciences, there has been great interest in liquid droplets under non-

equilibrium conditions as simple systems that display an astonishing range of life-like 

behaviours22 including movement, division and chemotaxis23–28. These droplets are thought to 
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be driven by Marangoni instabilities originating from surface tension asymmetry29, but to date, 

the understanding of the driving forces influencing these droplets remains limited and 

computational models  restrained to simple systems (e.g. 2D, single oil, single droplet, 

simplified interfaces, unbounded fluid)30,31. This illustrates the challenges of studying complex 

systems where few components can lead to the emergence of complexs32.  

The field of evolution-in-materio makes use of artificial evolution to optimize such complex 

systems directly in the physical world33,34, with pioneering work on FPGA35 and X-band 

antenna design36. Evolution-in-materio principles have proven powerful for the optimization 

of a four-component self-propelled oil-in-water droplet system26,37,38. First, the authors 

designed a droplet-generating robotic platform equipped with image analysis and a genetic 

algorithm that, starting from a random droplet mixture, was able to autonomously optimize 

droplet recipes that maximized the movement, division, and vibration of droplets to levels 

never reported before26. In subsequent work it has been shown that the chemical and physical 

environment of the droplets could be valuable parameters in the optimization of the droplet 

behaviours37,38. 

 

1.2 Observations leading to the discovery of a temperature effect 

Initial experiments focused on evaluating the exploration power of the CA algorithm. These 

experiments were performed on our droplet system during the summer 2016. The droplets were 

dyed in red with Sudan Red and the droplet detection and tracking was using machine learning. 

The space of exploration was droplet speed and droplet dynamic deformation. The temperature 

was not controlled and not measured. At the time, this was consistent with our previous work 

and previously reported work on self-propelled droplets were temperature was not controlled 

neither reported. 

Our aim was to test our platform and study whether or not the CA algorithm was able to 

generate a wider variety of observation than a random parameters search. We performed 3 runs 

of the CA with a budget of 1000 experiments. Supplementary Figure 1 shows the results of 

these 3 runs. In both run A and B, the algorithm was able to generate droplets with speed above 

5 mm.s-1. However, and to our surprise, on run C no experiment could generate droplets with 

speed above 5mm.s-1. After careful investigation of the possible causes of this observation, we 

hypothesised that it might be due to temperature. We tested our hypothesis and indeed 
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uncovered a subtle effect where just a few degrees could dramatically alter the behaviour of 

droplets.  

 

Supplementary Figure 1 – Data from initial experiments leading to the discovery of an anomaly. On run A and B, the CA 
algorithm generated droplets with high-speed but did not on run C. After investigating all possible causes that might have 
induced the results of run C, we hypothesised that the temperature might have had an effect on this particular run. We then 
controlled the temperature precisely and studied its effect on our droplet system. One important contribution of our work is to 
show that this temperature effect could not have been observed if we were running a random parameter search. Indeed, because 
the CA is exploring significantly more, it provides us with more representative observations of our system which highlighted 
the temperature effect (see main manuscript for details). This also implies that to explore an unknown system, using a CA is a 
better use of a given experimental budget as it is more likely to generate unexpected and novel observations. 

However, this temperature effect is not the central claim of this work. We wondered if it was 

indeed the use of the CA algorithm that made this discovery possible. Was it the CA algorithm 

that allowed the observation of the initial anomaly? - which subsequently raised our curiosity 

and our will to investigate. In practice, we had to test whether the probability of making this 

observation was higher when running the CA than when performing a random search. 

Concretely, the question becomes: Could we have made this discovery using a random search 

algorithm if the temperature had changed too? 

To test this question, we had to test both algorithms at two different temperatures, which we 

selected to be close together (within 4°C) and within the range of the lab’s temperature in which 

experiments were typically performed, respectively 22°C and 26°C. 

To answer the question, we finally had to measure the difference in observation made by the 

two algorithms at 22°C and 26°C. If both algorithms would enable us to observe the 

temperature effect, our discovery could not be claimed to be due to the CA algorithm. The 

results, as detailed in the main manuscript, turned out to show that a significant difference in 

observation was made using the CA between 22°C and 26°C, but not with the random search. 

Hence validating that the discovery was indeed enabled by the CA algorithm. This further 

implies that to explore an unknown system, using a CA algorithm is a better use of a given 

experimental budget as it is more likely to generate unexpected and novel observations. 
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1.3 Algorithm Comparison 

Resources associated to this section: 

1. The code to reproduce each figure can be found at: 
https://github.com/croningp/dropfactory_analysis 

2. Larger files, including plots, data and Mathematica files, can be found in the 
associated release on Github named “SI”: 
https://github.com/croningp/dropfactory_analysis/releases/tag/SI 

3. Specifically, each type of plots shown in this section have been generated for all 
experimental runs and for each method, they can be found at: 
https://github.com/croningp/dropfactory_analysis/releases/download/SI/detailed_plots
.zip 

 

 

In this section, we provide a detailed analysis of the comparison between random goal 

exploration (called ‘CA’ in this section) and random parameter search (called ‘random’ in this 

section) algorithms. 

Each run consists of 1000 experiments. We ran three repeats for each method and condition. 

We had 2 methods (random and CA) and 2 conditions (air conditioning in the room set at 22°C 

or 26°C –referred to as AC22 and AC26 respectively). In practice, the temperature was 

recorded at the start of each experiments. For the AC22 condition, the average recorded 

temperatures were 22.6 ±0.5°C. For the AC26 condition, the average recorded temperatures 

were 27.0 ±0.7°C. 

For each repeat, the random number generator (used both to generate random experimental 

parameters and in the random goal exploration algorithm) was seeded, enabling the algorithm 

generating experiments to be restarted at any time in a reproducible way. We used the following 

random seeds: [110, 111, 112] for each AC26 experiments and [210, 211, 212] for each AC22 

experiments. You will see these seeds referred to in the legend or title of the following plots. 

In the following, we first compare the differences in terms of experimental observations and 

explored space between the two algorithms under the AC26 condition. We then compare the 

distribution of the experiments performed, both in the formulation space and in terms of the 

physical properties of the droplets. For this section, we focus on the experimental run with seed 

111, all the plots for all the runs/seeds are available in the detailed_plot.zip file available at: 

https://github.com/croningp/dropfactory_analysis
https://github.com/croningp/dropfactory_analysis/releases/tag/SI
https://github.com/croningp/dropfactory_analysis/releases/download/SI/detailed_plots.zip
https://github.com/croningp/dropfactory_analysis/releases/download/SI/detailed_plots.zip
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https://github.com/croningp/dropfactory_analysis/releases/download/SI/detailed_plots.zip. 

All runs have the same trends as the specific repeat presented in this section and statistical 

analysis between repeats are provided in the main manuscript. 

Before starting any analysis, we need to validate that the experiments were run at similar 

temperatures. Temperature was recorded just before droplets were generated thanks to sensor 

mounted on the robotic platform (more details available in section 2.1.2.16 Environment 

Monitoring).  

 

Supplementary Figure 2 – The experimental temperatures recorded for the random and CA algorithms for the run with seed 
number 111 under the AC26 condition. 

As explained before, the whole room was maintained at the desired temperature using air-

conditioning, such that all the liquids were kept at the experimental temperature. We can see 

in Supplementary Figure 2 the cycles of cooling and heating of the air conditioning system 

during the runs, which take several days. We remind the reader that around 300 experiments 

were run each day, usually starting around 9am and finishing automatically at 10pm. The 

temperature between these random experiments and CA runs are similar, with a respective 

temperature average of 27.37 ± 0.54 °C and 26.96 ± 0.35°C, thus a comparison of the 

exploration profile is meaningful. 

We start by observing the range of droplet behaviours each algorithmic method was able to 

generate within the 1000 experiments budget, as shown in Supplementary Figure 2. 

https://github.com/croningp/dropfactory_analysis/releases/download/SI/detailed_plots.zip
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Supplementary Figure 3 - Comparison of the observed droplet behaviours after 1000 individual experiments for random (left) 
and CA (right). Each scatter dot represents the average speed and number of droplets for a single 90 seconds droplet 
experiment, with 1000 points plotted on each subplot. 

Visually, the CA algorithm was able to generate much more varied observations. Note that the 

density of points in the random experiment (left) is very high on the bottom-left corner 

(particularly at 4 droplets and low speed, or 0 droplet and 0 speed) as many experiments 

produce the same outcome (droplets sinking at the bottom of the dish or dissolving 

immediatly). This can be better observed on density plots, as shown below on Supplementary 

Figure 3 and Supplementary Figure 4. The density plots were generated using a Gaussian kernel 

density estimation (see python library scipy.stats.gaussian_kde) with the bandwidth parameter 

set to 0.3. 
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Supplementary Figure 4 – Comparison of the observed droplet behaviours as a density map after 1000 individual experiments 
for random (left) and CA (right). 

 
Supplementary Figure 5 - Comparison of the observed droplet behaviours as a density map after 1000 individual 
experiments for random (left) and CA (right), with equally density-colour scales. 

 

Notice the difference of scale of the colours between the top and the bottom figures. A large 

majority of the experiments performed following the random experiment method have very 

low speed and do not divide (see left plot on Supplementary Figure 3, very intense and localised 

high-density area). The observations coming from the CA algorithm are much more spread. 

The same distribution analysis can be done on each individual dimension of exploration, 

respectively speed and division, as shown in Supplementary Figure 5. 
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Supplementary Figure 6 – A comparison of the spread of the average number of droplets (upper) and droplet speed (lower) for 
the random and CA algorithms. 

In both cases, we notice that the tail of the observation distribution is much stronger for CA, 
extending past 15 droplets in division and way past 5 mm.s-1 in speed. This difference between 
the patterns of exploration is confirmed by our exploration metrics as shown below. 
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Supplementary Figure 7 – The evolution of the exploration measure throughout experiments for the random and CA 
algorithms. 

After only 150 experiments the CA method has already explored more in terms of droplet 
behaviours than the random method did in 1000 experiments. We can look in the patterns of 
exploration into more details by plotting the results of the experiments at various iteration of 
the algorithms. Supplementary Figure 7 compares the exploration of random and CA 
algorithms through iterations, every 100 steps. CA already explored most of the reachable 
space after about 300 iterations. CA exploration dynamic also shows directional preferences, 
where at t=100 mostly high speed has been discovered and high division starting to be explored 
at t=200. Random exploration, however, generates mostly droplet that do not move and do not 
divide or dilutes entirely, only rare events lead to more dynamic droplets. 
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Supplementary Figure 8 – Comparison of the droplet behaviour observed at various iteration of the algorithm exploration 
procedure, here every 100 steps. Top is for random exploration and bottom is for CA. The CA method very quickly generates 
more observation that random, at t=300 the difference CA already explored most of the reachable space. 

The difference between the random and CA algorithms is that the former focuses on the 
parameters space while the latter focus explicitly on the observation space, in our case, droplet 
speed and division. However, in their respective space of interest, they generate targets at 
random. For example, in the space of oil formulation, the distribution of experiments performed 
is uniform. 

 
Supplementary Figure 9 – The distribution of experiments performed by the random algorithm in the recipe space – notice 
the uniform spread across all oils. 

 



13 
 

As seen above in Supplementary Figure 8, the distribution of the quantity of oils selected to be 
in each oil mixture by the random method is uniform. Similarly, as seen in Supplementary 
Figure 9, the CA algorithm selects experimental targets randomly in the goal space.  

 
Supplementary Figure 10 - The distribution of experimental targets generated by the CA algorithm in the goals space – 
notice the uniform spread across the whole goal space. 

The distribution of goals (the targeted observation generated in terms of droplet speed and 
average number of droplets) is distributed uniformly in the output space. The algorithm then, 
given the past observations it has made of the system, selects the best experimental 
parameters (oil quantities) to try and achieve these targets. The powerful idea of the CA is 
that it drives the exploration towards areas that are hard to explore and discover by chance. 
As a result, the distribution of experiments actually performed in the oil space becomes much 
narrower, yet leading to a wider variety of droplet behaviours. 
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Supplementary Figure 11 - The distribution of experiments performed by the CA algorithm in the recipe space – notice that 
specific parts of the formulation space are explored in more detail. 

The distribution of experiments performed by the CA algorithm is indeed not uniform as shown 
on Supplementary Figure 10. CA focuses its experimentations on a smaller subspace of the 
experimental oil formulation space. High levels of DEP and low levels of octanoic acid are 
comprehensively explored, for example, whilst the reverse case is barely explored at all. This 
effect is much more visible when we compare the ratio of each oil in the final formulation and 
between the two methods, as seen on Supplementary Figure 11.  
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Supplementary Figure 12 – The distribution of the ratios of each oil explored by each algorithm during a 1000-experiment 
run. Notice how the distribution are different between the two algorithmic approach, the CA focused on a narrower part of 
the formulation space. 
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The above plots highlight the fact that a simple change of focus from the experimental (input) 

space to the observation (output) space can impact significantly the patterns and distribution of 

experiments performed. Of high interest for this research, the CA algorithm can observe much 

more varied droplet behaviours despite performing experiments on a smaller subset of the 

parameter space. This illustrates that random screening and high-throughput methodologies 

that purely focus on the experimental space are less efficient search methods for unknown 

systems. This issue is referred to as the redundancy problem in artificial intelligence, machine 

learning and robotics, specifically in sensory-motor exploration problems. 

To go further, we can observe on Supplementary Figure 12 how the different distribution of 

experiments from each method translates in terms of droplet’s physical properties, such as 

dynamic viscosity, density and surface tension. This in turn can inform us about what properties 

lead to different droplet behaviours. 
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Supplementary Figure 13 – The distribution of experiments performed in terms of the resulting formulation densities, surface 
tensions and dynamic viscosities, for both the random and CA algorithms. 

Interestingly, CA generated droplets of higher density and lower viscosity, indicating that these 

are the areas with the richest array of droplet behaviours. Viscosity, density and surface tension 

were computed following the method described in 38. 

Finally, we compare other droplet metrics. For example, as seen in Supplementary Figure 13, 

CA generates droplets that travel around the petri dish much more. The most extreme of these 

values are likely to be where high division and speed are occurring, allowing impressively large 

path lengths over the 90s experiment. 
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Supplementary Figure 14 – Distribution of the total droplet path length and fraction of the dish area covered for the random 
and CA algorithms. Path length and fraction of the dish area covered properties are described in section 2.1.5.4 titled Droplet 
Metrics Measured. 

CA also produces droplets that tends to be slightly smaller as per their perceived diameter from 

the top (camera) view, see Supplementary Figure 14. 
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Supplementary Figure 15 - Distribution of the droplet visible area for experiments generated using the random and CA 
algorithms. The droplet visible area property is described in section 2.1.5.4 titled Droplet Metrics Measured. 

 

1.4 Temperature Comparison 

The same comparisons as made in section 1.2 “Algorithm Comparison” can be made for 

experiments using the same algorithm but at different temperatures. As shown in the main 

manuscript, the CA algorithm, by providing us with a more accurate picture of our droplet 

system capabilities, enabled the discovery of a temperature effect. This was discovered because 

the envelope of the observed droplet behaviours was consistently and reproducibly changing 

as the room temperature changed, something that we were not able to observable when 

performing random parameters experiments. The run with seed 111 for AC26 condition and 

the run with seed 212 for AC22 condition are used for the following analysis. 
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Supplementary Figure 16 – The recorded temperatures for the random and CA algorithms at AC22 and AC26. 

Supplementary Figure 15 confirms that the experiments were indeed performed at significantly 

different temperatures, with a gap of ca. 5°C between the ‘cold’ (AC22) and the ‘hot’ (AC26) 

conditions. Supplementary Figure 16 compares the observations of droplet behaviours between 

methods and conditions. 
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Supplementary Figure 17 - Comparison of the observed droplet behaviours after 1000 individual experiments for random (top) 
and CA (bottom) at low (left) and high (right) temperature. Each scatter dot represents the average speed and number of 
droplets for a single 90 seconds droplet experiment. 

There are three information to take home from Supplementary Figure 16. First, the CA 

algorithm consistently generates more varied observations than random experiments, under 

both AC22 and AC26 conditions. Second, there is no visually significant difference between 

the observations made under the ‘cold’ and ‘hot’ conditions with random parameter search. 

Third, there is a significant visual difference of observations between cold’ and ‘hot’ conditions 

with the CA algorithm, with a large number of experiments producing droplets with speed 

above 5 mm.s-1, as well as experiments that divide in more than 10 droplets. These differences 

of exploration are also visible on density plots as shown in Supplementary Figure 17. 
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Supplementary Figure 18 - Comparison of the observed droplet behaviours after 1000 individual experiments for random (top) 
and CA (bottom) at low (left) and high (right) temperatures. 

The density of observations is similar for random parameter search at both temperatures, but 

expands more in the speed dimension at higher temperature for the CA method. 
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Supplementary Figure 19 - The evolution of the exploration measure throughout experiments for the random (top) and CA 
(bottom) algorithms, at low and high temperature. 

The exploration metrics confirm this effect as shown on Supplementary Figure 18. There is 

little difference of exploration at both temperatures for random experiments, while with CA 

the higher temperatures allow for the exploration of more varied droplet behaviours. The effect 

is especially visible on the distribution of speeds observed as shown on Supplementary Figure 

19. For random, both distribution look alike, while for the CA a distribution with a longer tail 

is observed at higher temperature, extending beyond 5mm.s-1, above which very few 

experiments were observed from the lower temperature. 
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Supplementary Figure 20 - Comparison of the distribution of the average droplet speed for the random (top) and CA (bottom) 
algorithms at high and low temperature. 

This difference of observations due only to a slight change in temperature was only observable 

with the CA algorithm, which raised our interest and initiated further study on the temperature 

relationship as described in the main manuscript and detailed further in this document. 

Interestingly, although the algorithms were not informed of the change of temperature in the 

room, the small change in temperature we applied impacted the experiments selected and 

performed by the CA algorithm (and not from the random). For example, Supplementary 

Figure 20 shows the distribution of the ratio of 1-pentanol in droplet formulations which 

illustrates the change in exploration patterns from the CA algorithm induced by the change in 

temperature. 
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Supplementary Figure 21 – The distribution of the ratios of pentanol in droplet formulation tested during a 1000-experiment 
run compared between each algorithm (top random, bottom CA) at low and high temperature. 

This result indicates that to cover most of the output space (speed / division), the CA had to 

employ different strategies at different temperatures. In this case, adding less pentanol to the 

droplet at higher temperature. This is an adaptation that the CA algorithm made without having 

any direct information about the temperature in the room, but rather learned from the direct 

closed-loop observation of the system and without any prior information. We know from our 

chemical analysis that pentanol is one of the key elements driving the motion and division of 

droplets and its dissolution rate is significantly impacted by temperature. We can hypothesize 

here that the algorithm increased the amount of pentanol at lower temperatures to compensate 

for the effect of temperature that reduces the rate of dissolution at lower temperatures. The 
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platform achieved this adaptation without direct knowledge of the chemistry of the system or 

the current temperature in the room. Only the history of experiments done previously in that 

particular run were used to define the next experiments (see section 2.2.2 “Curious Algorithm: 

Random Goal Exploration” for more details). 

1.5 Going Further 

The code used to generate the above plots can be found in the figures folder of the associated 

Github repository: https://github.com/croningp/dropfactory_analysis/tree/master/figures/SI 

The interested reader can perform the same kind of analysis for all repeats, methods and 

conditions. All the plots shown in this section have been generated for all experimental runs 

and for each method, they can be found at: 

https://github.com/croningp/dropfactory_analysis/releases/download/SI/detailed_plots.zip 

In the file containing additional plots, the random and CA plots are respectively referred to as 

random_params and random_goal, and each run is denoted with the seed number used for the 

random number generator. We used the following seed: [110, 111, 112] for AC26 experiments 

and [210, 211, 212] for AC22 experiments, respectively when the air conditioning in the room 

at 22°C and 26°C. 

1.6 25 Recipe Temperature Screen 

To investigate the effect of temperature on various droplet formulations, 25 recipes were 

selected for further investigation. These were selected to have a wide range in composition and 

behaviours, especially speed and division. We ran 140 repeats of each recipe across the range 

of temperatures accessible in the room (17-30°C), representing 3500 additional droplet 

experiments. The recipes chosen and a summary of the behaviours observed are shown in 

Supplementary Figure 21. 

https://github.com/croningp/dropfactory_analysis/tree/master/figures/SI
https://github.com/croningp/dropfactory_analysis/releases/download/SI/detailed_plots.zip
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Supplementary Figure 22 – The results of a set of 90-second experiments undertaken at a range of temperatures (17-30°C) for 
25 recipes. The red star indicates the recipe taken forward for further studies (recipe 4). 

As can be seen from Supplementary Figure 21, there is a large amount of variation in the effect 

of temperature on droplet behaviour for different recipes. It can be seen that whilst almost all 

recipes display increasing average speeds with increasing temperatures, this effect is far more 

pronounced for a small number of recipes, such as numbers 1-5 (top row). Not only are huge 

increases in speed observed for temperature changes of only a few degrees Celsius for some 

recipes, these increases are seen to be non-linear and with different onset temperatures. 

Furthermore, some of them appear to have an optimal temperature for high speed (numbers 1-

3), represented by a peak in the speed plot, with higher temperatures impeding the fastest 

movement. Others still (e.g. 5) seem to still have an upward temperature-speed trend at the 

maximum sampled temperature of around 30 °C. 
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There are similar interesting trends in the number of droplets parameter. This quantifies the 

number of droplets present at the end of the 90-second experiment. Many recipes, especially at 

lower temperatures, clearly have a trend for having 4 droplets still present at the end of the 

experiment. It is a general trend for less droplets to be present at the end of the experiment for 

higher temperatures – along with a reduction in the number of frames with an active droplet – 

indicating that higher temperatures can often lead to the dissolution or deactivation of droplets. 

It is interesting to note that recipes 1-2 both have either droplet division or death at the highest 

temperatures – probably a factor in the decrease in average speed at these temperatures. For 

recipe 3, however, droplet division and speed do not appear to be incompatible. 

There are many interesting comparisons to be made between these recipes, and it is our hope 

that in future work we can try to investigate these differences further and understand why small 

compositional changes can lead to very different temperature-behaviour effects. For example, 

recipes 3+7 are quite similar compositionally, and yet they behave very differently. Whilst they 

both divide into many droplets at higher temperatures, this only occurs at lower temperatures 

for recipe 7. More interestingly, recipe 3 displays very high speeds at higher temperature whilst 

recipe 7 barely moves at any temperature. Recipes 4+8 and 5+9 are also similar in composition 

but hugely different in the average speeds observed. These examples serve to highlight how, 

with only small changes to a 4-constituent composition, significant and unpredictable effects 

on the droplet behaviour can be observed. 

For the detailed chemical and physical analysis performed and presented in the main 

manuscript and in section  1.10, 1.12, and 1.13 of this document, recipe 4 (highlighted with a 

red star on Supplementary Figure 21) was selected because of its strong speed to temperature 

sensitivity and a weak impact of temperature on the division of the droplets (the droplets do 

not divide within the range of temperature accessible for our experiments). Recipe 4 is 

composed of 1.2% octanoic acid, 46.7% DEP, 5.4% 1-octanol, and 46.7% 1-pentanol. 

1.7 Droplets as Temperature Sensors 

The code to replicate this analysis can be found at: 

https://github.com/croningp/dropfactory_analysis/tree/master/figures/temperature_prediction 

 

Having observed the significant effect small temperature changes could have on droplet 

behaviours, we asked if we could deduce the temperature in the room by simply observing our 

https://github.com/croningp/dropfactory_analysis/tree/master/figures/temperature_prediction
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droplets. For each video and recipe, we computed 10 different droplet behavioural measures 

(for details see section 2.1.5.4 titled “Droplet Metrics Measured”) to be used as features to train 

a machine learning regression model taking as inputs a droplet video and predicting as output 

the temperature in the room. 

We trained a support vector regressor (SVR) for each of the 25 recipes tested and for every 

possible number and combination of features. A combination of the covered dish area and 

droplet distance travelled was shown to be a very accurate temperature predictor for recipe 4 

(see section 1.5 titled “25 Recipe Temperature Screen”). 

The prediction accuracy on 140 individual droplet experiments is shown in Supplementary 

Figure 22 and illustrates that by solely analysing the motion of droplets we can accurately 

predict the temperature in the room. The residual distribution, modelled as a Gaussian 

distribution, has a mean of 0.05 (indicating a prediction error of only 0.05°C on average) and 

a standard deviation of 0.66 (indicating small spread of errors around the mean), demonstrating 

the high predictability of the temperature in the room from the sole observation of droplet 

motion. The Pearson correlation coefficient between measured and predicted temperature is 

𝑟𝑟 = 0.98 (𝑝𝑝 < 1𝑒𝑒 − 95).  The parameters of the SVR are 𝐶𝐶 = 1000 and 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 = 0.1 that 

have been estimated using 10-fold cross-validation. The final predictions shown on  

Supplementary Figure 22 were computed using a leave-one-out methodology such that the 

predicted experiment was never part of the training set.  

The fact that such a complex system can be used as a temperature sensor is both surprising and 

remarkable, underlining the reproducibility of these observations when the experiments are 

carried out with sufficient control, as enabled by the robotic platform. 

 



30 
 

 

Supplementary Figure 23 - Measured vs predicted temperature of 140 droplet experiments based uniquely from their video. 
A support vector regressor was trained on 140 droplet experiments using only the information about the covered dish area 
and the total distance travelled by the droplet droplets. The predicted temperature match and correlate strongly with to the 
measured values (r=0.98, p<1e-95), with a residual error contained within ±2°C and a mean error of 0.05°C with a standard 
deviation of 0.66. 

1.8 Temperature Controlled Dye Release 

The code to replicate this analysis can be found at: 

https://github.com/croningp/dropfactory_analysis/tree/master/figures/dye_release 

 

To investigate the potential for such a system to be used for temperature-controlled chemical 

release, for example drug release, we wanted to test whether a chemical could be incorporated 

into the droplet for release. 

For ease of analysis, we chose the dye molecule methylene blue – thus allowing quantification 

of dye release via our droplet tracking software (see section 2.1.5 titled “Droplet Tracking”). 

As such, recipe 4 (see section 1.5 titled “25 Recipe Temperature Screen”) was dyed with both 

Sudan Black B (at the standard 0.5 gL-1, to enable droplet tracking throughout) and methylene 

blue (1.25 gL-1). Methylene blue was chosen as it was known to possess both water solubility 

and solubility in our oil mixture. Thus, with the room air-conditioning set at either the minimum 

(17°C) or maximum (28°C) values (see Supplementary Figure 23), 20 repeats of a 5-minute 

https://github.com/croningp/dropfactory_analysis/tree/master/figures/dye_release
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experiment were undertaken, with 4 × 4μL droplets placed in each. Over time, as the methylene 

blue was released from the droplets into the aqueous phase, the aqueous phase turned blue. 

 

Supplementary Figure 24 - Recorded temperatures for each of the 20 repeats of the dye release experiments. 

We used image analysis to quantify the blueness of the aqueous phase through time for each 

condition. Using OpenCV,39 for each frame of the video we extracted first the pixels that were 

both part of the tracking arena and not part of a droplet (see section 2.1.5.1 for tracking arena  

description and section  2.1.5.2 for droplet detection description).  The selected pixel RGB 

values were transformed in the HSV colour space. We considered a pixel of the aqueous phase 

as dyed if the intensity of its hue value was above 80 (range is between 0 and 255). This 

threshold separates the white background from the blue colour of the methylene blue dye and 

was defined after careful observation of the evolution of the hue channel over time for many 

videos (see Supplementary Figure 24). Our final measure of dye release is the ratio of dyed 

pixel to the total number of pixel in the arena that are not part of a droplet. We subsequently 

fitted the data with a sigmoid function. 
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Supplementary Figure 25 - Histogram of the hue channel pixel distribution (pixel that are not part of a droplet and inside the 
tracking arena) at the start an on experiment (blue) and at the end of a 5 minutes experiment (orange) – for experiment number 
17 in the cold condition at a measured temperature of 17°C. At the start of an experiment there is no dye released in the aqueous 
phase and the distribution represents the background hue channel intensity of the petri dish. At the end of the experiment, the 
aqueous phase is mostly blue, and the distribution of hue intensity has shifted to the right. Our measure of dye release is the 
ratio of the number of pixel that are above the threshold of 80 in intensity on the hue channel (dashed black line) over the total 
number of pixels. 

As can be seen from Supplementary Figure 25 and see Supplementary Movie 6 

(https://youtu.be/zOURJEnbmV4) the dye is released far more rapidly at 28.6 ±0.2°C than at 

17.6 ±0.6°C. At the lower temperature, there is a significant dormant period of around 50s 

before any blue dye release is observed. Once the dye is released in the lower temperature case, 

it is released at a significantly slower rate than at high temperature. Thus, the peak blue count 

at low temperature is only reached after around 250s, compared to around 100s at higher 

temperature, a factor of ca. 2.5. This is a proof of concept that droplets such as these could be 

used as containers for active molecules – be they dyes, drugs or catalysts, which release their 

cargo differently depending on the temperature. This was done using a single recipe and tested 

with a single cargo and a whole optimisation process could be undertaken for a specific system 

of interest to further differentiate the release at low and high temperature - potentially enabling 

a binary release/no-release scenario. This was achieved with a temperature difference of only 

approximately 10°C, and further heating or cooling could also achieve even more differentiated 

results. 

https://youtu.be/zOURJEnbmV4
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Supplementary Figure 26 - A plot of the measured ratio of pixels dyed blue against time at two different temperatures. The 
ratio of pixels dyed blue is a proxy for the amount of methylene blue dye released from the droplets during the experiment. 
Note that the value becomes constant / decreases over time, due to a reduction in blueness as the dye is dispersed 
homogenously in 3D – see Supplementary Movie 6 at https://youtu.be/zOURJEnbmV4. 

1.9 15 Minute Experiments 

Given the above, we chose one recipe of interest for further analysis to study the causes behind 

these drastic variations in droplet behaviour. The recipe chosen was recipe 4 (designated with 

a red star in Supplementary Figure 21), which is composed of 47.9% DEP, 13.5% 1-octanol, 

1.9% octanoic acid, and 36.7% 1-pentanol. This recipe shows a steep and sudden increase in 

the average droplet speed at around 25°C, whilst displaying barely any movement below 22°C 

and little change in its average speed in the 27-30°C range. Recipe 4 also consistently maintains 

3-4 droplets throughout the experiment at all except the highest temperatures and droplets 

remain active throughout the 90 second duration of our experiments, which removes droplet 

division or inactivity as extra factors to account for. Supplementary Movie 4 

(https://youtu.be/zhTeDofB6mk) shows how droplets made with this recipe behave at a range 

of temperatures. Whilst there was logic behind our decision to study this droplet recipe in more 

detail, we could equally have chosen a number of other droplet formulation to study. 

https://youtu.be/zOURJEnbmV4
https://youtu.be/zhTeDofB6mk
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To study recipe 4 and analyse the mechanisms behind the droplet temperature dependant 

motion, we performed longer experiments to observe the system until it reaches an equilibrium. 

15 minutes appeared to be an adequate duration. A key point for these 15-minute experiments 

is that droplet behaviours are measured over time, rather than just having an overall / average 

metric for a whole experiment as we did for the algorithmic exploration. It is indeed possible 

to track droplet behaviour throughout the course of the experiment using a chunking method, 

that is by running our analysis on smaller section of a video (e.g. chunks of 2 seconds) 

iteratively over the course of an experiment. Supplementary Figure 26 shows such data for one 

experiment for the speed and number of droplets metrics. Each point represents the average 

over a window of 2 seconds sliding with a time step of 1 second. 

 

 

 

 

 

 

Supplementary Figure 27 – (A) shows average droplet speed vs. time and (B) shows a number of droplets vs. time for a single 
experiment of recipe 4 performed at 28.74 °C. The two peaks in the droplet speed vs. time plot is a specific feature of the 
chosen recipe that was never reported before. For this experiment, the number of droplets vs. time stays constant over the 
course of the experiment, 4 droplets are placed in the beginning and they remain present for the full 15 minutes of the 
experiment (except occasional period when droplets leave the tracking area due to high movement). 

For this 15-minute experiment, two high droplet speed peaks are clearly observed with a period 

of slower speed in between followed by very little movement after around 600 seconds. The 

number of droplets is seen to be consistently 4, except for the period 240-480s were a slightly 

lower average number of droplets is detected. This period corresponds to the second peak of 

high droplet speed during which sometime droplets exit the tracking arena by going close to 

the dish walls. As a result, the tracking algorithm can perceive the number of droplet as 

oscillating between 3 and 4.  

We have repeated such 15-minutes experiment 72 times at a wide range of temperature ranging 

from 20°C to 30°C. Supplementary Figure 27 shows the aggregated time-speed-temperature 

profile for all experiment for recipe 4. 

(A) (B) 
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Supplementary Figure 28 – Average droplet speed vs time over all 15-minute experiments performed within the temperature 
range 20-30°C. Droplet speed is analysed in chunks of 2s with 1s overlap. The colour represents the temperature at which an 
experiment was performed, from 20°C (blue) to 30°C (red). The highest the temperature the faster the droplets move and the 
earlier they initiate movements. 

Several trends can be observed from Supplementary Figure 27. First, the speed peaks occur 

earlier and with increasing speeds as the temperature increases. This is true for both the first 

and second peak. In particular, at the lowest temperatures the second speed peak is very broad, 

and the droplets are still moving at the end of the 15-minute experiment. The change in 

maximum speed due to temperature is surprising – rising from <5 mms-1 at around 22°C to as 

much as 25 mms-1 at around 28°C, a 5x speed increase for just a ca. 6°C increase. It is also 

interesting to note that preliminary experiments with other fast-moving recipes do not display 

these two movement peaks. This phenomenon has, to the best of our knowledge, not been 

reported before - making this droplet recipe quite unique in its time-speed profile. 

1.10 Generating the temperature-time phase diagram 

The code to replicate this analysis can be found in the form of a Mathematica 11.3 (Wolfram 

Ltd.) notebook here: 

https://github.com/croningp/dropfactory_analysis/releases/download/SI/droplet_motion_anal

ysis.nb 

 

The two distinct high-speed droplet peaks described above (in section 1.8) highlight the 

existence of different phases of droplet motion, as well as a significant impact of temperature 

on each phase initiation time and magnitude. To investigate further this phenomenon, we utilise 

the time-dependent droplet coordinate data to find inflection points in the droplet’s acceleration 

https://github.com/croningp/dropfactory_analysis/releases/download/SI/droplet_motion_analysis.nb
https://github.com/croningp/dropfactory_analysis/releases/download/SI/droplet_motion_analysis.nb
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profile (representing transition stages between different phases of motion) with the aim to 

create a time-temperature dependent phase diagram for this specific droplet composition. 

After the completion of image processing and feature extraction to generate metrics such as the 

average speed and number of droplets (see section 2.1.5), time-dependent coordinate data of 

individual droplets were collected. We used Mathematica 11.3 (Wolfram Ltd.) to further 

analyse and quantify the droplet behaviour. A complete summary of workflow to extract the 

temperature-time phase diagram from the droplet trajectory data is shown in Supplementary 

Figure 28.  

 

Supplementary Figure 29 - A summary of the workflow used in the preparation of the droplet motion temperature-time phase 
diagram. (A) Extraction of individual droplet trajectories from an experiment. (B) Estimation of the distance travelled by each 
droplet in an experiment. (C) Estimation of the average distance travelled by all droplets in an experiment. (D) Binning 
individual experiments by temperature intervals of 1°C in the range 20-30°C and estimating average speed and acceleration 
of the droplets vs. time for each bin. (E) Identification of different phases by extracting maxima, minima and inflection points 
in speed and acceleration vs. time data. (F) Fitting of the phases transition times through temperature and time to generate a 
continuous temperature-time phase diagram. 

For simplicity, the two-dimensional trajectories (defined by X-Y coordinates) of each 

recognized droplet were stored in separate files. Our image analysis creates many trajectory 

files for each experiment due to collision events between droplets in the course of an 

experiment. After a collision, droplet tag numbers are updated, and each droplet is considered 

as a new droplet and assigned a new droplet number.  

Based on the assumption that four droplets were present in each experiment, we started our 

analysis by connecting these different trajectory files to create complete trajectory for each of 

the four droplets in each experiment. We specifically searched for pairs of files separated by 

(A) (B) (C) 

(D) (E) (F) 
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the shortest times by comparing last time point of one file with the first time point from the 

other file. Based on this scheme and by combining all the data files, we obtained four complete 

X-Y trajectory files for each experiment, one for each droplet. 

Based on these data, we calculate the cumulated distance travelled by each droplet (Euclidean 

distance), an example of which is shown in Supplementary Figure 29A. Sudden jumps in the 

distance data correspond to deviations due to droplet collisions, misdetections, or droplets 

leaving the tracking arena. These errors will be averaged out as we agglomerate data from 

many repeats of each experiment. For each experiment, we average the cumulated data of each 

individual droplet as shown in Supplementary Figure 29B. Several transitions and non-

linearities can be observed, which are an indication that different stages of droplet motion with 

variable speeds and acceleration occur in the timescale of 900 seconds. 

 

Supplementary Figure 30 – Cumulated distance travelled by droplets during a droplet experiment. (A) Cumulated distance 
(Euclidean distance) travelled for each of the four droplets in an experiment performed at 27.04 °C. (B) Mean of the cumulated 
distance over all four droplets (black data points) together with standard deviation plotted in orange 
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Supplementary Figure 31 – A plot illustrating the spread of temperatures of the 59 experiments used for phase diagram 
preparation. 

 The same analysis was performed on 59 experiments performed at different temperatures 

ranging between 20-30°C. After calculating mean cumulated distance for each experiment, the 

data were binned together by temperature intervals of 1°C and 2°C (e.g. 20-21°C, 21-22°C, …, 

29-30°C). Supplementary Figure 31 shows the mean cumulated distance and standard deviation 

for different temperature intervals. A first observation is that the total cumulated distance 

travelled by droplets after 900 seconds increases monotonically with temperature. At higher 

temperature ranges (26-28°C and 28-30°C) the droplets eventually start decelerating as can be 

seen from the decrease in the slope of the cumulated distance curve between 600 and 900 

seconds. 
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Supplementary Figure 32 – Cumulated distance travelled by droplets for all experiments binned in different temperature 
intervals. (A-E) respectively shows intervals of 20-22°C, 22-24°C, 24-26°C, 26-28°C, 28-30°C. 

From the averaged travelled distance data, we can compute the speed and acceleration of 

droplets vs time which can be used to estimate maxima, minima and inflection points in the 

droplet motion in time. The speed and acceleration vs. time were estimated from the forward 

difference from averaged distance data and together with smoothing using moving average and 

low pass filter (see Mathematica Notebook for details). Supplementary Figure 32 shows the 

average speed and acceleration of droplets vs. time at temperature intervals binned by 1°C 

increment. Out of 900 seconds experiment, speed and acceleration plots are only shown up to 

300 seconds. After these timescales, due to multiple collisions among droplets and between 

droplets and walls, the droplet speed and acceleration shows erratic peaks which cannot be 

used in quantification. Both speed and acceleration plots show multiple peaks which drift 

monotonically in certain directions with temperature. In the average speed vs. time plot, we 

observe a single peak prior to 250 seconds. The peak position shifts linearly, and its magnitude 

increases rapidly with increasing temperature. Similarly, in the average acceleration vs. time 

plot, multiple peaks were observed directly indicating different phases in droplet motion. At t 

≤ 50s the first peak appears, which indicates an initiation period where the droplets first start 

to show early fluctuations.  

 

Supplementary Figure 33- Estimated average speed and acceleration of droplets from the cumulative displacement data. (A) 
shows speed vs time at different temperature intervals between 20-30 °C. The average speed increases monotonically with 
temperature up to ca. 200 seconds, then there are strong fluctuations in speed due to rebounding and collision events from the 
walls and pair of droplets. (B) shows acceleration vs time at different temperature intervals between 20-30 °C. There is a clear 
trend of acceleration at different temperatures up to ca. 200 seconds and similar fluctuations can be seen later as in speed vs 
time plot. 

Based on the analysis of speed and acceleration vs. time data, we partitioned the droplet motion 

into several phases by finding the positions of maxima, minima in the acceleration profiles of 

droplets and cut-off criteria in the speed data. Six different phases could be distinguished from 

(A) (B) 
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this analysis and over the timespan of 900 seconds, for each phase of motion the criteria of 

selection are described in Supplementary Table 1 along with a description of the characteristic 

droplet motion. 

Supplementary Table 1 – Description of each of the phases P1-P6 and the criteria used to calculate the phase transition times. 

Phase  Criteria Description 

Initiation (P1) Between start of the experiment and 
the 1st maxima in the acceleration vs. 
time data. 

Initiation stage is defined between start 
of the experiment and minute 
fluctuations which corresponds to first 
maxima in acceleration vs time plot. 

Fluctuation (P2) Between 1st maxima and 2nd maxima in 
acceleration vs. time data. 

Fluctuation stage is defined as first 
observed fluctuations before strong 
directional motion can be observed.  

Irregular (P3) Between 2nd maxima and 1st minima in 
acceleration vs. time data.  

Irregular motion is defined by region 
when droplet starts moving erratically 
after initial fluctuations till slows down 
entering deceleration phase. The first 
peak in the speed vs. time data shows the 
time when the irregular phase is at its 
peak. 

Deceleration (P4) Between 1st minima and 3rd maxima in 
acceleration vs. time data. 

Deceleration stage starts when the 
droplets starts slowing down before 
speeding up again. 

Continuous (P5) Between 3rd maxima and saturation 
criteria (speed < 1.3mm/s) 

Continuous stage is defined when droplet 
speed starts increasing again after the 
deceleration stage till it finally starts 
slowing down. 

Saturation (P6) Between saturation criteria (speed < 
1.3mm/s) and end of the experiment 
(900s) 

The saturation stage is defined when the 
droplet speed after the continuous motion 
falls down below a certain threshold (in 
this case 1.3 mm/s).   

 

A temperature-time phase diagram was then created by calculating the intercept between 

cumulative distance travelled plots and linearly-fitted transition times. Supplementary Figure 

33A and B show fitted lines (black dotted) on cumulative distance data which partitions the 

droplet motion into different phases. Supplementary Figure 33C shows the extracted 

temperature-time phase diagram with each coloured region indicating an individual stage of 

droplet motion. Initiation, fluctuation, irregular, deceleration, continuous and saturation phases 

are respectively shown in blue, yellow, purple, green, orange and blue. The different phases of 

droplet motion clearly show strong temperature dependence. In particular, each phase is 

initiated earlier with higher temperatures, which is also evidenced in Supplementary Movie 5. 
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Supplementary Figure 34 – Temperature-time dependence on droplet behaviour. (A) shows mean distance travelled by droplet 
up to 900 seconds at different temperature bins. The dotted lines show the transition between different stages of droplet motion. 
(B) shows zoomed view of early stages of droplet motion up to 350 seconds. (C) Temperature-Time phase diagram showing 
different stages of droplet motion, with time plotted on a log scale for clarity. The different stages P1-6, as mentioned, are 
initiation, fluctuation, irregular, deceleration, continuous and saturation.  

Finally, as a means to visualize the different phases of droplet motion along with the droplet 

motion, we plotted the trajectory of a single droplet in a 3D plot and applied the same colour 

scheme as the phase diagram to the trajectory for better visualization. Supplementary Figure 

34 shows single droplet trajectories at 21.44°C and 27.39°C, for each plot the X-Y axis 

represents the position of the droplet and the Z axis represents time.  

 

Supplementary Figure 35 – Single droplet trajectories plotted in 3D at 21.44°C (A) and 27.39°C (B). X and Y axis represent 

droplet position in mm from the centre of the petri dish and Z is for time ranging from 0 to 900 seconds in time steps of 0.25 

seconds. The different colours correspond to different phases of droplet motion as used in the phase diagram of Supplementary 

Figure 33. 

 

(A) (B) (C) 
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1.11 1H NMR Oil Dissolution Analysis 

The code to replicate this analysis can be found in the form of a Mathematica 11 (Wolfram 

Ltd.) notebook here: 

https://github.com/croningp/dropfactory_analysis/releases/download/SI/droplet_motion_anal

ysis.nb 

Based on the analysis of NMR spectroscopy data (see details in section 2.3.2 titled “1H NMR 

Spectroscopy Experiments”), we have estimated time-dependent concentration profiles of 

pentanol, octanol, octanoic acid, DEP and ethanol in the aqueous phase at two temperatures, 

22°C and 28°C. When regulated to 22°C, the temperature at the experimental location was 

recorded at 22.4 ±0.2°C. When regulated to 28°C, the temperature at the experimental location 

was recorded at 27.7 ±0.2°C. The NMR data for the four oils and ethanol (produced via the 

hydrolysis of DEP) is shown in Supplementary Figure 35. As expected, oil concentrations in 

the aqueous phase increase with time. 

 

 

 

 

 

Supplementary Figure 36 - Estimation of concentrations 
of droplet components in the aqueous phase. (A-D) shows fitted concentration data vs. time for pentanol, octanol, DEP and 
ethanol at 22 °C and 28 °C. (E) shows the concertation of octanoic acid vs. time estimated from NMR data. 

To investigate the dependence of droplet motion on oil dissolution, we first modelled the rates 

of oil dissolution into the aqueous phase (𝐶𝐶𝑖𝑖,𝑎𝑎𝑎𝑎) by fitting the NMR data with a four-parameter 

logistic (4PL) function, 

𝐶𝐶𝑖𝑖,𝑎𝑎𝑎𝑎 = 𝑑𝑑𝑖𝑖 +
𝑎𝑎𝑖𝑖 − 𝑑𝑑𝑖𝑖

1 + (𝑡𝑡/𝑐𝑐𝑖𝑖)𝑏𝑏𝑖𝑖
 

https://github.com/croningp/dropfactory_analysis/releases/download/SI/droplet_motion_analysis.nb
https://github.com/croningp/dropfactory_analysis/releases/download/SI/droplet_motion_analysis.nb
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where the parameters ai, bi, ci, di corresponds to each oil i. The fitting parameters correspond 

to the minimum asymptote (ai), Hill’s slope (bi, describing the steepness of curve at point ci), 

inflection point (ci), and maximum asymptote (di). Using NonLinearModelFit routine in 

Mathematica 11.3 (Wolfram Ltd.), we fitted the experimentally determined concentration of 

pentanol, octanol, DEP, and ethanol. Due to the low proportion of octanoic acid in the recipe, 

and its rapid dissolution, its oil concentration profile was not suitable for fitting in this manner. 

The fitting parameters are shown in in Supplementary Table 2 at both 22°C and 28°C.  

Supplementary Table 2 – Oil concentration in the aqueous phase fitting parameters at 22°C (left) and 28°C (right) 

Oil Low T (22°C) High T (28°C) 

Pentanol 

𝑎𝑎 → 0.43877
𝑏𝑏 → 2.96298
𝑐𝑐 → 239.825
𝑑𝑑 → 9.88366

 

𝑎𝑎 → 0.18178
𝑏𝑏 → 3.43907
𝑐𝑐 → 149.829
𝑑𝑑 → 9.59902

 

Octanol 

𝑎𝑎 → 0.01566
𝑏𝑏 → 3.60849
𝑐𝑐 → 427.262
𝑑𝑑 → 1.66740

 

𝑎𝑎 → −0.03002
𝑏𝑏 → 1.94483
𝑐𝑐 → 339.909
𝑑𝑑 → 1.87132

 

DEP 

𝑎𝑎 → 0.00140
𝑏𝑏 → 2.44643
𝑐𝑐 → 444.168
𝑑𝑑 → 1.82304

 

𝑎𝑎 → −0.01605
𝑏𝑏 → 2.07579
𝑐𝑐 → 304.351
𝑑𝑑 → 1.98727

 

Ethanol 

𝑎𝑎 → 0.00758
𝑏𝑏 → 1.99447
𝑐𝑐 → 605.574
𝑑𝑑 → 2.74819

 

𝑎𝑎 → 0.02029
𝑏𝑏 → 1.74354
𝑐𝑐 → 363.369
𝑑𝑑 → 2.94498

 

 

Supplementary Figure 35 shows the fitted curves at 22°C and 28°C for pentanol, octanol, DEP, 

and ethanol. The NMR data shows that pentanol dissolves faster than the other oils in the 

aqueous phase and that dissolution of all oils occurs faster at higher temperature. The 

characteristic timescale can be defined from the inflection point (ci). For all oils, there is a large 

decrease in the characteristic time scale at higher temperature, which illustrates the faster 

kinetics of oil dissolution into the aqueous phase. The characteristic time scale for pentanol 

dissolution reduces from 239 seconds to 149 seconds with an increase in temperature. 

Alongside the increased pentanol dissolution, the rates of dissolution of the other oils also 

increase. Similar to pentanol, the characteristic timescale of octanol reduces from 427 seconds 

to 339 seconds, DEP from 444 seconds to 304 seconds and ethanol from 605 seconds to 363 

seconds with the increase in temperature. 
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1.12 Associating physical and chemical analysis 

The code to replicate this analysis can be found in the form of a Mathematica 11 (Wolfram 

Ltd.) notebook here: 

https://github.com/croningp/dropfactory_analysis/releases/download/SI/droplet_motion_anal

ysis.nb 

 

Having extracted the different phases of droplet motion in section 1.9 and modelled the 

dissolution of oils from the droplets into the aqueous phase in section 1.10, we can now utilise 

these together (see Supplementary Figure 36 and main text Figure 5). The aim was to find 

correlations between the different phases of motion and the oil dissolution rate profiles for the 

oils and hence better understand which oils drive which phase of motion.  

As can be seen from Supplementary Figure 36, there appears to be some definite correlations 

between oil dissolution and the times of the different phases of droplet motion. For example, 

the irregular-deceleration phase transition (purple-green) is very closely correlated to the time 

of the peak pentanol dissolution rate. During the fluctuation phase, weak and unstable pentanol 

concentration gradients begin to form in the aqueous phase, leading to the fluctuating motion. 

Following this, as pentanol dissolution reaches its peak, the concentration gradient fluctuations 

become stronger leading to the irregular phase of droplet motion. This stage is an outcome of 

short-term symmetry breaking due to the formation of strong asymmetric oil gradients around 

the droplet-water interface. Formation of these gradients leads to a net force on the droplet due 

to asymmetric interfacial tension. At this stage pentanol dissolution is too rapid for the 

concentration gradients to be stable hence only irregular, rather than continuous, motion is 

observed. 

When the rate of pentanol dissolution begins to decrease the droplets begin to slow down in 

the deceleration phase of motion. This occurs earlier with increasing temperature, and this 

phase transition is seen to be closely correlated to the time at which the pentanol dissolution 

rate begins to decrease. As the rate of pentanol dissolution is now decreasing, and there is 

already a substantial pentanol concentration in the aqueous phase, the pentanol concentration 

gradients are weaker at this time. It is not until the dissolution of other oils begins to dominate 

that the continuous phase of motion is observed. At the higher temperature, the pentanol 

dissolution rate is lower than the octanol + DEP + ethanol dissolution rate after 277 seconds, 

and the octanol + DEP + ethanol dissolution rates reach their maximum over pentanol 

https://github.com/croningp/dropfactory_analysis/releases/download/SI/droplet_motion_analysis.nb
https://github.com/croningp/dropfactory_analysis/releases/download/SI/droplet_motion_analysis.nb
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dissolution after 405 seconds. Both of these are seen to correlate well with the acceleration and 

peak speed of the continuous phase of motion, implying that it is primarily these oils, and not 

pentanol, that causes the continuous phase of motion. These oils can set up new concentration 

gradients that drive the droplet via the Marangoni effect. As their dissolution is more gradual, 

sustained symmetry breakage can occur in both the aqueous and oil phases, as discussed in the 

main manuscript. 

At the end of the continuous phase, the aqueous phase is almost saturated with all oils, reducing 

the dissolution rates of octanol, DEP and ethanol. This leads to the saturation phase of motion, 

in which the droplets again decelerate. As oil dissolution is so limited at this time there are no 

concentration or surface tension gradients to drive droplet motion. This saturation stage is more 

prominent and earlier at higher temperature as the increased oil dissolution rates earlier in the 

experiment lead to earlier saturation of the aqueous phase. 
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Supplementary Figure 37 - Comparison between rates of oil dissolution estimated from NMR experiments and cumulated 
distance travelled at 22°C (column A) and 28°C (column B). From top to bottom, the rows correspond to pentanol, octanol, 
DEP, and ethanol. On each plot, the black line shows the average cumulated distance moved by droplets in the experiments as 
described in section 1.9 (scale on left axis). The blue dashed line shows the dissolution rates of each oil as modelled in section 
1.10 (scale on right axis). The background of the plot is coloured according to each phase of the droplet motion as described 
and extracted in section 1.9. 

1.13 Additional Experiments to Probe the System 

To probe our oil-in-water droplet system further, a range of experiments were undertaken to 

explore the effect of changing various parameters on the droplet behaviour.  We subsequently 

present the following experiments to observe the effect on the time-dependant droplet motion: 

- Variation of the pH of the surfactant containing aqueous phase  
- Variation of the octanol-pentanol ratio in the droplet recipe  
- Variation of the alcohol chain length in place of the pentanol component 
- Variation of the number of droplets placed in the petri dish 

(A) (B) 
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Finally, DLS experiments are presented that were performed to check for the formation of 

micelles in the aqueous phase and possible change of size during an experiment. 

1.13.1 Vary Aqueous Phase pH 

The aqueous phase pH was varied by first preparing 20mM TTAB(aq), then adding the estimated 

NaOH(s) required for the desired pH before fine tuning with dilute NaOH(aq). The pH was then 

confirmed to be ±0.1 pH units (pH = 10, 13) and ±0.5 pH units (pH = 7) using a pH meter. 

 

Supplementary Figure 38 - The variation in oil droplet speed as the temperature and aqueous phase pH are varied. Each plot 
shows the average speed measured every second in a 900 s experiment for 6 experimental repeats. 

As can be seen from Supplementary Figure 37 and as discussed in the main text, changing the 

pH has a significant impact on the oil droplet behaviour. As the pH is decreased the second 

movement peak, corresponding to the continuous phase of motion, occurs earlier and with 

lower maximum speeds. Indeed, it is increasingly hard to justify this as a second peak as the 

pH is decreased.  

Both lowering the pH and lowering the temperature is expected to significantly decrease the 

rate of DEP hydrolysis. We confirmed the change in oil dissolution by performing solvent 

suppressed 1H NMR spectroscopic as shown in Supplementary Figure 38. These experiments 
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confirm that ethanol is only produced at high pH and is increasingly produced at higher 

temperature. This trend is mirrored in the level of DEP dissolution. Conversely, the dissolved 

octanol concentration is seen to vary little with the change in pH. Thus, this implies that octanol 

dissolution is not the primary cause of the large second movement peak at pH 13 and it is in 

fact DEP hydrolysis / ethanol. Interestingly, we only see a significant second movement peak 

at pH 13 and this is also the only time when we see DEP hydrolysis.  

The first movement peak (corresponding to fluctuation and irregular motion) is also seen to 

vary in maximum speed and time with pH. At pH 7, the maximum speed is high, with this peak 

occurring earlier at higher temperature. At pH 13, the peak is supressed and later at 22°C, and 

this is reflected in the low level of pentanol dissolution at 120 seconds. 

 

Supplementary Figure 39 – The variation in pentanol (A,B) and other oil (C,D) dissolution level as temperature and aqueous 
phase pH is varied. (A+C) are for samples 120 s after droplet placement (B+D) plots for samples 220 s after droplet placement. 
The x-axis labels refer to the pH and temperature, e.g. 7-22 is pH 7 and 22°C. 

1.13.2 Vary Octanol-Pentanol Proportion 

To study the effect of small recipe variations on droplet behaviour and gain further insight into 

the system, a series of experiments were undertaken in which the octanol and pentanol 

proportions were varied in 2% increments from their level in the focus recipe (Supplementary 

Figure 39). 
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Supplementary Figure 40 - A plot of the 10s moving average of the droplet speed against time for a 15-minute experiment, 
averaged over 6 repeats, for oil droplets composed of recipe 4 with small changes in the proportion of the recipe of each of the 
alcohols octanol and pentanol. The legend keys refer to the % change of octanol, the reverse value is true for pentanol, i.e. 
black is -6% octanol +6% pentanol compared to recipe 4. 

Looking first at the later peak (at ca. 150-700s), corresponding to the continuous mode of 

motion, there is a very clear trend for increased octanol content causing the movement to occur 

later. It is thought that this second movement peak is primarily due to DEP hydrolysis and 

dissolution, and we hypothesise that this effect is due to the decreased movement and mixing 

in the early stages with increasing octanol proportion. Hence, with low levels of mixing for 

higher levels of octanol, DEP hydrolysis is slowed, and this second peak occurs later and with 

less intensity. It is interesting to compare the 0% and -2% octanol dynamics. The 0% peak 

corresponding to irregular motion is unexpectedly higher than the -2% peak, and the same 

ordering is observed for the continuous peak. Thus, it appears that in this case the increased 

motion in the early stages for 0% then leads to increased motion later on due to the increased 

mixing. For all the other mixtures tested, the trend is as expected with increasing pentanol 

proportion leading to both peaks becoming faster and earlier. This together provides further 

evidence that it is DEP, and not octanol, that is the primary influencing factor for the continuous 

phase of motion. 
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Supplementary Figure 41 - A plot of the 10s moving average of the average droplet speed against time for the first 200s of a 
15-minute experiment, averaged over 6 repeats, for oil droplets composed of recipe 4 with small changes in the proportion of 
the recipe of each of the alcohol octanol and pentanol. The legend keys refer to the % change of octanol, the reverse value is 
true for pentanol, i.e. black is -6% octanol +6% pentanol compared to recipe 4. 

Looking now at the early stages of droplet motion (see detailed view in Supplementary Figure 

40), we see a clear trend, where increasing the proportion of pentanol and decreasing the 

proportion of octanol has an effect on both of the initial movement peaks (corresponding to the 

fluctuation and irregular forms of motion). Even with only these small formulation changes, 

the fluctuation peak (at ca. 50s) shows a trend for moving slightly earlier and displaying slightly 

higher speeds. Similarly, the irregular motion peak (at ca. 100s) becomes much more 

pronounced with higher proportions of pentanol. Reversely, when the pentanol proportion is 

decreased by only 4-6%, this first motion peak is significantly suppressed. This confirms the 

direct link between pentanol / octanol proportion and these initial phases of movement, with 

an increased pentanol proportion leading to earlier and stronger droplet motion. Whilst the 

differences between the average movement speeds at 50 s is only small, the trend is strong and 

the standard deviation in the average speed values at this time are low (Supplementary Figure 

41). 
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Supplementary Figure 42 - A plot of the 10s moving average of the average droplet speed against time for a 15-minute 
experiment, averaged over 6 repeats, for oil droplets composed of recipe 4 with small changes in the proportion of the recipe 
of each of the alcohol octanol and pentanol. Shaded areas show standard deviation. 

1.13.3 Vary Alcohol Chain Length 

Following this, a study was undertaken in which the pentanol in the formulation (which 

contributes 36.7% by volume) in replaced with other straight chain primary alcohols of varying 

chain length, the results for which are shown in Supplementary Figure 42. 

 

Supplementary Figure 43 – A plot of the 10s moving average of the average droplet speed against time for a 15-minute 
experiment, averaged over 6 repeats, for recipe 4 oil droplets with various straight chain primary alcohols used in the place of 
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pentanol in the formulation. The number in the key refers to the alcohol used, for example, 7 = 1-heptanol used in the place of 
1-pentanol. 

As can be seen from Supplementary Figure 42, there are very clear differences in the time-

speed droplet profile as the alcohol that replaces pentanol is varied. It appears that there is an 

optimum alcohol chain length for high speed in the first movement peak, with hexanol, 

heptanol and pentanol displaying the fastest movement. For butanol there is a small peak whilst 

for octanol and nonanol this first speed peak is not observed. It is proposed that this is due to a 

trade-off between the dissolution rate of the alcohol and the impact of the alcohol on the 

interfacial tension and hence Marangoni instabilities occurring on the droplet. The more 

hydrophobic alcohols (octanol and nonanol) are hypothesised not to dissolve in sufficient 

quantities in this timeframe to influence the interfacial tension and droplet motion. Conversely, 

butanol, despite presumably dissolving rapidly to significant levels, has a limited effect in these 

early stages. This implies that it has a more limited effect on the interfacial tension, potentially 

due to the dissolution being too rapid and symmetric for interfacial tension imbalances to be 

set up. Hexanol appears to represent the perfect chain length for this recipe, giving both 

significant dissolution and having an effect on the interfacial tension. 

It is very interesting that even in the octanol case, in which octanol is used in the place of 

pentanol, as well as the octanol already in the formulation, no second peak (continuous phase 

of motion) is observed. This is a surprising result, and appears to confirm that the second, 

continuous movement peak is not directly due to the longer chain alcohol dissolving, adding 

weight to the theory that the second peak is primarily due to DEP hydrolysis. This continuous 

phase peak is increasingly dominant for butanol, pentanol and hexanol, and not present for 

heptanol or above. It is hypothesised that the increased hydrophobicity of the oil phase for 

heptanol and above reduces phase mixing and hence the DEP hydrolysis that causes this 

continuous motion. For butanol, pentanol and hexanol the size on the continuous motion peak 

mirrors the trend of the fluctuation-irregular peak, again implying that increased dynamics and 

mixing in the early phases impacts the continuous phase due to increased phase mixing. 

1.13.4 Vary Number of Droplets 

A study was undertaken in which the number of droplets placed was varied. In all cases, a 

symmetric placement pattern was used, starting with a droplet at the centre of the dish and then 

subsequent droplets placed in a symmetrical pattern around this first droplet (line, triangle, 

square, pentagon). Eight repeats were undertaken for placing 3, 4, 5 and 6 droplets, the results 

for which are shown in Supplementary Figure 43. 
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Supplementary Figure 44 - A plot of the 10s moving average of the average droplet speed against time for a 15-minute 
experiment, averaged over 8 repeats, for recipe 4 where 3, 4, 5 or 6 droplets are placed (indicated in the legend). Note for the 
6-droplet case 2 outliers are removed from the average, as in these cases many droplets were placed onto one another, leading 
to only 1 to 2 remaining active droplets that were bigger in size hence resulting in very different droplet dynamics. 

As can be seen from Supplementary Figure 43, there is a clear trend for both movement peaks 

to occur later and with lower maximum speeds as more droplets are placed. As more and more 

droplets are placed, the net oil dissolution from each droplet should be reduced, due to Le 

Chatelier's principle. Thus, there will be a reduced effect of the oils on the surface tension and 

reduced surface tension gradients and slower and later oil droplet movement. This again 

confirms the direct relationship between oil dissolution and oil motion. The same data can be 

seen on Supplementary Figure 44 with the standard deviation around the average values. 

 

Supplementary Figure 45 - A plot of the 10s moving average of the average droplet speed against time for a 15-minute 
experiment, averaged over 8 repeats, for recipe 4 where 3, 4, 5 or 6 droplets are placed. Note for the 6-droplet case 2 outliers 
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are removed from the average, as in these cases many droplets were placed onto one another, leading to only 1-2 remaining 
active droplets and very different droplet dynamics. Shaded areas show standard deviation. 

1.14 DLS Experiments 

Dynamic light scattering (DLS) measurements were performed on a Malvern Instruments 

Zetasizer Nano–ZS spectrometer fitted with a 633 nm laser. Samples were analysed at 25 °C 

on the same day as sample preparation, with a 10-minute equilibration time. For each sample 

the analysis was repeated 10 times, with each analysis representing the mean value of 20 runs 

with a 20 seconds scan time per run. At least 5 separate samples were analysed in this way at 

each timepoint. 

To study the effect of oil dissolution on the aqueous phase supramolecular assemblies, a range 

of samples were prepared in a similar manner as for the 1H NMR samples (without D2O 

addition) and analysed via DLS. Samples were collected at an experimental temperature of 

28.0±2.0°C. 

As can be seen from Supplementary Figure 45, for fresh aqueous phase micelles were observed 

to have a hydrodynamic diameter of 5.29±0.28 nm (0 s datapoint). After 200 s, these micelles 

were observed to have shrunk to around 4.71±0.23 nm. At this stage, only pentanol has 

dissolved to a significant level and the droplet has been undergoing fluctuating and irregular 

motion. Indeed, pentanol dissolution in TTAB solutions above the CMC is known to have the 

effect of decreasing the micelle size and reduce the free surfactant concentration via reducing 

the TTAB aggregation number.40 After 500 seconds (5.60±0.13 nm) and 900 seconds 

(5.40±0.20 nm) the hydrodynamic diameter of these micelles has risen to a value close to / 

slightly above the original value. During this period, the droplets have been undergoing 

continuous motion and octanol, DEP and ethanol have been dissolving at their highest rate. 

Whilst the exact relationship between these findings and the droplet motion mechanisms are 

unknown, there is a noticeable difference between the fluctuation / irregular phase of motion 

(decreasing micelle size) and the continuous phase of motion (increasing micelle size). 
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Supplementary Figure 46 – A chart illustrating how the hydrodynamic diameter of micelles in the aqueous phase changes, as 
measure by DLS. 

To confirm these trends for more extreme samples, three further model aqueous phases were 

prepared in which 16 µL, 32 µL or 3.5 mL of the focus recipe was stirred for 10 minutes with 

3.5 mL of the aqueous phase before analysis by DLS. Our intention was that such extreme 

cases would magnify the trends observed above. Results from these samples are detailed in 

Supplementary Table 3. As can be seen, the aqueous phase assembly size increases with the 

increasing level of oil dissolution. 

Supplementary Table 3 – A table illustrating the hydrodynamic diameters measured for samples in which 16 µL (A), 32 µL 
(B) or 3.5 mL (C) of the focus recipe are stirred for 10 minutes with 3.5 mL of the aqueous phase. 

 A B C 

Hydrodynamic Diameter / nm 5.81 ± 0.22 25.3 ± 0.96 618 ± 120 

 

2 Supplementary Materials and Methods 

In this section, we describe the robotic platform in detail and link to the available software and 

hardware open-access resources. We then detail the standard operating procedures used to 

prepare the reagents. Finally, we detail both the implementation of the algorithms and the 

analysis with appropriate links to the corresponding software open resources that are made 

available. 

The information regarding to the platform, algorithm and data analysis are distributed across 

the following GitHub repositories: 
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- the robotic platform: https://github.com/croningp/dropfactory 

- the algorithms & running experiments: https://github.com/croningp/dropfactory_exploration 

- the analysis of experiments: https://github.com/croningp/dropfactory_analysis 

- the code to track and analyse droplet’s video: https://github.com/croningp/chemobot_tools 

- the framework code to control Arduino boards from Python: 

 - https://github.com/croningp/commanduino 

 - https://github.com/croningp/Arduino-CommandTools 

 - https://github.com/croningp/Arduino-CommandHandler 

- the library to control the tricontinent pumps used to handle liquids on the platform: 
https://github.com/croningp/pycont 

- the modular linear actuator design used for the syringe and filling and cleaning stations: 
https://github.com/croningp/ModularSyringeDriver 

- the modified explauto library used in this work: https://github.com/jgrizou/explauto, which 
was derived from https://github.com/flowersteam/explauto 

- a Python file manipulation library used across some repository work: 
https://github.com/jgrizou/filetools 

 

2.1 Robotic Platform: Dropfactory 

In this study, the robotic platform, called Dropfactory, is only a tool for querying information 

on the system in study in the real world and in a fully automated fashion. Because we aimed to 

compare algorithms, we needed to design and build a tailored robot enabling high-throughput 

of highly reproducible experiments. Previous platforms could undertake around 50 

experiments per working day, we needed a throughput of around 300 experiments per working 

day for our comparative study to be achievable in reasonable time. 

Supplementary Movie 1 (https://youtu.be/bY5OoRBJkf0) shows Dropfactory in operation. 

In the following, we first explain the principle and conceptual shift in the design of Dropfactory 

compared to other platforms and later details each of the working stations and their respective 

role and action sequences. 

2.1.1 Principles 

An oil-in-water experiment consists of placing small oil droplets (made from an arbitrary 

mixture of oils) at the surface of an aqueous medium (made from a mixture of aqueous phases), 

we then need to video record the droplet movements and analyse them. To be able to run such 

https://github.com/croningp/dropfactory
https://github.com/croningp/dropfactory_exploration
https://github.com/croningp/dropfactory_analysis
https://github.com/croningp/chemobot_tools
https://github.com/croningp/commanduino
https://github.com/croningp/Arduino-CommandTools
https://github.com/croningp/Arduino-CommandHandler
https://github.com/croningp/pycont
https://github.com/croningp/ModularSyringeDriver
https://github.com/flowersteam/explauto
https://github.com/jgrizou/filetools
https://youtu.be/bY5OoRBJkf0
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experiments continuously, the platform must be able to mix, sample, clean and dry both the oil 

and aqueous phases. To increase efficiency, compare to previous platforms, we moved from a 

sequential to a parallel mode of operation. 

Previous robotic platforms were based on an open-source 3D printer and all the tools (syringe, 

filling and cleaning tubing) were situated on a single moving head - this means only one action 

could be performed at the same time. To reach a throughput of 300 experiments a day, different 

stages of the preparation of an experiment have to be performed in parallel. Dropfactory is 

designed to do so. 

The platform is organized as a little factory, enabling us to fully parallelize all required 

operations (mixing, droplet placing, recording, cleaning, drying). To do so we designed the 

platform around two ‘turntables’ - called Geneva wheels - with specialized workstations 

positioned all around the wheel. Supplementary Figure 46 illustrates this principle. 

 

Supplementary Figure 47 - Conceptual design of Dropfactory. The oil and aqueous phase are handled separately on two 
turntables that can move the containers (oil vials or petri dish) from one fixed working station to the next. At each position 
some specific actions are performed on the containers. 

This design allows the movement of oil vials and petri dishes between specialized working 

stations, rather than requiring the tools to move to those containers. As a result, Dropfactory 

is: 

1. Robust, because there are far fewer moving parts. Each working station performs only 
its specific task at the location it was designed to work. This also means less tubing and 
wires moving around. 
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2. Easier to maintain, because all working stations are clearly separated, both physically 
and digitally. Thus, identifying a bugs or mechanical failures is quick and fixing them 
is easier. 

3. Fast, because while an oil mixture is prepared, a previous one is being cleaned, another 
three are being dried, and another is sampled by a syringe to be placed on a previously 
filled petri dish. At the same time, another petri dish is being filled, one is being cleaned, 
three are drying, and one contains droplets in motion that are being recorded under a 
camera. 

Dropfactory is able to record 1 experiment of 1min30sec every 1min51sec, faster by a factor 

of 6 versus previous sequential platform. Thanks to its robustness, the platform was 

consistently running for months in the lab recording more than 30,000 droplet experiments. 

 

Supplementary Figure 48 - Left: photo of the platform from the side, showing the liquid handling pumps in the foreground, 
and the XYZ CNC frame behind. Right: The inside of the XYZ frame containing the two Geneva wheels with the filling, 
cleaning and drying stations. The syringe system for oil droplet sampling and placement is mounted on the XYZ head enabling 
the sampling of the oil mixture from one wheel and the placing of droplets on the petri dish in the other wheel caring the 
aqueous phase filled petri dishes. 

Supplementary Figure 47 shows the platform as installed in our lab fumehood. We can clearly 

see the two Geneva wheels, the XYZ arm and a set of pumps for oil, aqueous and cleaning 

reagents. One wheel handles the oil cycle (filling a vial with a mixture, mixing, sampling 

droplet, cleaning, drying), the other handles the aqueous cycle (filling a petri dish with aqueous 

phase, adding droplets, video recording of droplet behaviour, cleaning, drying). Each time the 

wheel turns the respective vials/dishes found themselves under a different working station. 

Finally, a syringe mounted on a XYZ CNC platform makes the bridge between the two wheels 

by sampling a mixed oil mixture from the oil wheel and generating the droplets on the petri 

dish on the aqueous wheel, cleaning the syringe between each experiment. 
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We describe next the robotic frame, the oil wheel, the aqueous wheel, the syringe system, the 

pumps and some monitoring instruments, as well as what function they perform and where to 

find all necessary hardware and software information.  

2.1.2 Platforms and Working Stations Design and Procedures 

Most of the information described below and especially the details of the materials can be 

found on the following repository: https://github.com/croningp/dropfactory 

We designed Dropfactory around three mechanisms: 

1. A XYZ CNC frame that provides both the structural frame and the mechanism to move 
the syringe around as required to sample the oil mixture and place droplets. 

2. Two Geneva wheels, one for the oils, one for the aqueous phase. They allow the 
containers to move from one working station to another in a simple and robust way. 

3. Working stations that perform only one simple task. The vials and dishes are displaced 
to the working station thanks to the Geneva wheels. Having specialized working 
stations makes the whole system easier to design, build, and fix. In addition, a lot less 
cables and tubes will be in motion, reducing again the possibility of failure in the 
system. 

In addition, we made a point to not over-design or over-specify the platform before building it. 

Rather we left ourselves room for iterating on the platform while building it and as we 

encountered problems. For example, most working stations have been redesigned 2 or 3 times 

after receiving real-world feedback from practical experience. 

To achieve this flexibility, we based most of our design on 3D printing combined with 

aluminium profile technology - enabling us to tune the system on site. This also explains why 

there is no overall 3D design specifying every detail of the platform down to the last millimetre. 

Dropfactory is a research platform, it has been conceived with modularity in mind and we 

encourage the interested reader to adopt a similar approach if they are willing to build their 

own robot based on our design. We now describe in more details the XYC CNC frame, the 

Geneva Wheel, the Modular Linear Actuator, the Pumps and each working station. 

2.1.2.1 Robotic Frame 

Link: https://github.com/croningp/dropfactory/blob/master/doc/cnc_frame.md 

The robot frame (Supplementary Figure 48) is based on an OX CNC Machine from OpenBuilds 

(OX CNC MECHANICAL KIT (500x750mm) + 4 NEMA 23 Stepper). Details are available 

https://github.com/croningp/dropfactory
https://github.com/croningp/dropfactory/blob/master/doc/cnc_frame.md
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on OpenBuilds website: http://www.openbuilds.com/builds/openbuilds-ox-cnc-machine.341/. 

We sourced the kit from a local reseller: http://ooznest.co.uk/OX-CNC-Machine/OX-CNC-

Mechanical-Kit 

 

Supplementary Figure 49 - The OX CNC mechanical kit used as the base frame for Dropfactory. 

To control the XYZ motion we use two Arduino Mega boards mounted with a Ramps 1.4 

shield: 

http://ooznest.co.uk/3D-Printer-Electronic-Parts/RAMPS-14-Controller-Board-Premium 

Each board can control 5 stepper motors, 3 are needed for the XYZ motion. 1 is needed to 

control our syringe system, and 3 more to control some of our working stations. The board also 

controls our temperature and humidity sensor (SHT15 - 

https://www.sparkfun.com/products/13683) that records the conditions under which each 

experiment was performed. 

The platform is controlled via python on an external computer using our commanduino tool-

kits (https://github.com/croningp/commanduino) allowing the quick iteration and prototyping 

of Arduino based robots: 

1. The firmware for both Arduino boards is in the software/arduino folder: 
https://github.com/croningp/dropfactory/tree/master/software/arduino 

http://www.openbuilds.com/builds/openbuilds-ox-cnc-machine.341/
http://ooznest.co.uk/OX-CNC-Machine/OX-CNC-Mechanical-Kit
http://ooznest.co.uk/OX-CNC-Machine/OX-CNC-Mechanical-Kit
http://ooznest.co.uk/3D-Printer-Electronic-Parts/RAMPS-14-Controller-Board-Premium
https://www.sparkfun.com/products/13683
https://github.com/croningp/commanduino
https://github.com/croningp/dropfactory/tree/master/software/arduino
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2. The corresponding python robot controller is in the software/robot folder: 
https://github.com/croningp/dropfactory/tree/master/software/robot 

The frame design and 3D files are available from Onshape: 

https://cad.onshape.com/documents/3aeb7616c1e547bfaae38ba3/w/426b95792e7c48a8b6dd7

727/e/af7f485263ee4608affce6e3 

This base provides a robust XYZ machine with standard aluminium profile making it an easy 

platform to customize. We modified this platform to elevate the working area in order to 

integrate the Geneva wheels and the working stations. 

2.1.2.2 Geneva wheels 

Link: https://github.com/croningp/dropfactory/blob/master/doc/geneva_wheel.md 

A Geneva wheel is a mechanism that translates a continuous rotation into a discrete rotary 

motion. At each discrete wheel position, the wheel is locked into position mechanically - 

ensuring the location of each station on the wheel by design. A Geneva wheel is made of two 

parts: the drive wheel and the driven wheel. If the driven wheel has N slots, then one full 

rotation of the drive wheel advances the driven wheel by 360/N degree. 

In our setup N=8 in order to have enough queueing and space to fit all working stations 

comfortably around the wheel. The drive wheel is rotated by a stepper motor and a mechanical 

switch is used to measure each full rotation of the drive wheel – corresponding to 1/8th of a turn 

of the driven wheel. Both our Geneva wheels are based on the same design that was made 

modular to enable us to change only the top plate to tailor it to various vials and dishes.  We 

designed our Geneva wheel system to be compact and compatible in its dimension with the 

modular aluminium profile system used as the backbone of Dropfacotry, that is by  using 

dimension as multiple of 20mm. 

 

https://github.com/croningp/dropfactory/tree/master/software/robot
https://cad.onshape.com/documents/3aeb7616c1e547bfaae38ba3/w/426b95792e7c48a8b6dd7727/e/af7f485263ee4608affce6e3
https://cad.onshape.com/documents/3aeb7616c1e547bfaae38ba3/w/426b95792e7c48a8b6dd7727/e/af7f485263ee4608affce6e3
https://github.com/croningp/dropfactory/blob/master/doc/geneva_wheel.md
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Supplementary Figure 50 - The onshape CAD design files for the drive (light blue) and driven (grey) wheels, the mounting 
plate (dark blue) and homing sensor (grey, right). 

We designed two plateaus, one for handling the oil containers and one for holding the petri 

dishes. 
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Supplementary Figure 51 - The onshape CAD design files for the two Geneva wheel top-plates used – one for the oil vials 
(orange) and one for the aqueous petri dishes (yellow). 
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Supplementary Figure 52 – Photographs showing the two Geneva wheels in position on dropfactory 

Finally, to improve the smoothness of the motion we designed a stabilizer that comes into 

contact with both driven wheels and dampens possible jerks in the wheel motion. The stabilizer 

is made of two bearings on a sliding axis that are pushed against one another and contact with 

the side of the Geneva wheels, providing a slight damping that is enough to stabilize the motion. 
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Supplementary Figure 53 - Onshape CAD design file (top) and photograph of the driven wheel stabilizer. 

All the 3d stl files are located in the hardware/3d_parts/geneva_wheel folder, along with 

some visualisation of the parts: 

https://github.com/croningp/dropfactory/tree/master/hardware/3d_parts/geneva_wheel 

The CAD design files are available on Onshape: 

1. Geneva Wheel: 
https://cad.onshape.com/documents/3aeb7616c1e547bfaae38ba3/w/426b95792e7c48a
8b6dd7727/e/30b62a18352c4a91b6bc9828 

2. Geneva Wheel Stabilizer: 
https://cad.onshape.com/documents/5789121ee4b07256e8184139/w/a0a9bcb1b97b6c
43ac68f81e/e/801990910dc3689559c2009a 

The code controlling the synchronous rotation of both wheels is in the software/robot/robot.py 

file, more specifically the rotate_geneva_wheels() function. See 

https://github.com/croningp/dropfactory/blob/master/software/robot/robot.py. That function 

first makes sure nothing is in the way of the Geneva wheels, then moves the driving stepper 

motor one full turn, which in turn produces a 1/8 rotation of the plateau. We ensure that the 

stepper actually does one turn by using a homing switch and raise an error if the stepper does 

not reach the switch within 30 seconds, indicating that the system got stuck. 

2.1.2.3 Modular Linear Axis Driver 

Link: https://github.com/croningp/dropfactory/blob/master/doc/modular_linear_actuator.md 

https://github.com/croningp/dropfactory/tree/master/hardware/3d_parts/geneva_wheel
https://cad.onshape.com/documents/3aeb7616c1e547bfaae38ba3/w/426b95792e7c48a8b6dd7727/e/30b62a18352c4a91b6bc9828
https://cad.onshape.com/documents/3aeb7616c1e547bfaae38ba3/w/426b95792e7c48a8b6dd7727/e/30b62a18352c4a91b6bc9828
https://cad.onshape.com/documents/5789121ee4b07256e8184139/w/a0a9bcb1b97b6c43ac68f81e/e/801990910dc3689559c2009a
https://cad.onshape.com/documents/5789121ee4b07256e8184139/w/a0a9bcb1b97b6c43ac68f81e/e/801990910dc3689559c2009a
https://github.com/croningp/dropfactory/blob/master/software/robot/robot.py
https://github.com/croningp/dropfactory/blob/master/doc/modular_linear_actuator.md
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A full documentation of our small modular linear actuator is available on the following 

repository: https://github.com/croningp/ModularSyringeDriver 

The syringe and most working stations required a small linear axis to be controlled with great 

precision. The syringe needs to pump and deliver precise amounts, and other working stations 

need to plunge tubes into the various vials/dishes to extract and clean those containers. This 

actuator is used multiple times in Dropfactory for the syringe system, the oil filling station, oil 

cleaning station and the dish cleaning station. 

Furthermore, a modular design should allow further applications of the driver in the future. To 

this end we designed a modular linear driver around a small NEMA8 stepper motor with a 

threaded rod axis. Both the fixed and moving parts of the module are equipped with a 

mechanical interface enabling customization of the linear axis to the desired task.  

 

Supplementary Figure 54 - Onshape CAD design file for the small modular linear actuator used several times in the 
dropfactory platform. Several possible variations of tool attachments are shown. 

A full BOM and assembly instructions are available at: 

https://github.com/croningp/ModularSyringeDriver/blob/master/hardware/assembly.md 

https://github.com/croningp/ModularSyringeDriver
https://github.com/croningp/ModularSyringeDriver/blob/master/hardware/assembly.md
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2.1.2.4 Pumps 

The platform needs to handle various liquids such as oils, aqueous phases and acetone. We 

used Tricontinent C-Series Syringe Pumps. https://www.tricontinent.com/products/syringe-

pumps-and-rotary-valves/c-series-syringe-pumps.html. Dropfactory uses 10 such pumps. 

Below is a top view of the pumps and the reagent containers: 

 

Supplementary Figure 55 – A photograph of the pumps and chemical inputs used for dropfactory. 

Full documentation of our python library to control the pumps and how to wire them is 

available at: https://github.com/croningp/pycont 

For Dropfactory, the pumps configuration and control are managed in the software/pump 

folder: https://github.com/croningp/dropfactory/tree/master/software/pump 

We used the following tubing to connect the pumps to containers and dispensing units: 

1. 1/8 inch outer diameter tubing and their fitting: 
o http://kinesis.co.uk/products/fittings-tubing/tubing/tubing-tubing-ptfe-1-8-3-

2mm-od-x-1-5mm-id-10m-008t32-150-10.html 
o http://kinesis.co.uk/flangeless-fitting-for-1-8-od-tubing-1-4-28-flat-bottom-

delrin-etfe-black-yellow-xp-308.html 
2. 1/16 inch outer diameter tubing and their fitting: 

o http://kinesis.co.uk/products/fittings-tubing/tubing/tubing-tubing-ptfe-1-16-1-
6mm-od-x-1-0mm-id-20m-008t16-100-20.html 

https://www.tricontinent.com/products/syringe-pumps-and-rotary-valves/c-series-syringe-pumps.html
https://www.tricontinent.com/products/syringe-pumps-and-rotary-valves/c-series-syringe-pumps.html
https://github.com/croningp/pycont
https://github.com/croningp/dropfactory/tree/master/software/pump
http://kinesis.co.uk/products/fittings-tubing/tubing/tubing-tubing-ptfe-1-8-3-2mm-od-x-1-5mm-id-10m-008t32-150-10.html
http://kinesis.co.uk/products/fittings-tubing/tubing/tubing-tubing-ptfe-1-8-3-2mm-od-x-1-5mm-id-10m-008t32-150-10.html
http://kinesis.co.uk/flangeless-fitting-for-1-8-od-tubing-1-4-28-flat-bottom-delrin-etfe-black-yellow-xp-308.html
http://kinesis.co.uk/flangeless-fitting-for-1-8-od-tubing-1-4-28-flat-bottom-delrin-etfe-black-yellow-xp-308.html
http://kinesis.co.uk/products/fittings-tubing/tubing/tubing-tubing-ptfe-1-16-1-6mm-od-x-1-0mm-id-20m-008t16-100-20.html
http://kinesis.co.uk/products/fittings-tubing/tubing/tubing-tubing-ptfe-1-16-1-6mm-od-x-1-0mm-id-20m-008t16-100-20.html
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o http://kinesis.co.uk/flangeless-fitting-for-1-16-od-tubing-1-4-28-flat-bottom-
delrin-etfe-black-blue-xp-208.html 

2.1.2.5 Oil wheel 

The oil wheel has 4 distinct working station types: 

1. A filling station where oils are mixed in different quantities: 
https://github.com/croningp/dropfactory/blob/master/doc/working_stations/oil_filling.
md 

2. A stirring and sampling station where a magnetic stirrer ensures proper mixing of 
the oil mixture and the syringe samples the oil mixture for making droplets: 
https://github.com/croningp/dropfactory/blob/master/doc/working_stations/oil_stirrin
g.md 

3. A cleaning station where oils are sent to waste and containers are cleaned with 
acetone and water: 
https://github.com/croningp/dropfactory/blob/master/doc/working_stations/oil_cleani
ng.md 

4. Three drying stations which blow air on the containers and dry them from the 
acetone remaining after cleaning. 

 

Supplementary Figure 56 - A schematic illustrating the stations located on the oil Geneva wheel. 

 

http://kinesis.co.uk/flangeless-fitting-for-1-16-od-tubing-1-4-28-flat-bottom-delrin-etfe-black-blue-xp-208.html
http://kinesis.co.uk/flangeless-fitting-for-1-16-od-tubing-1-4-28-flat-bottom-delrin-etfe-black-blue-xp-208.html
https://github.com/croningp/dropfactory/blob/master/doc/working_stations/oil_filling.md
https://github.com/croningp/dropfactory/blob/master/doc/working_stations/oil_filling.md
https://github.com/croningp/dropfactory/blob/master/doc/working_stations/oil_stirring.md
https://github.com/croningp/dropfactory/blob/master/doc/working_stations/oil_stirring.md
https://github.com/croningp/dropfactory/blob/master/doc/working_stations/oil_cleaning.md
https://github.com/croningp/dropfactory/blob/master/doc/working_stations/oil_cleaning.md
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2.1.2.6 Oil Filling station  

Link: 

https://github.com/croningp/dropfactory/blob/master/doc/working_stations/oil_filling.md 

The oil filling station is designed to deliver the 4 oils into a small plastic container in the desired 

volumes. Because of the narrow diameter of the container, we use our modular linear axis to 

lower down the 4 oil lines into the container. Because a very small volume is being dispensed, 

and to increase reproducibility, after the oils have been dispensed the head is lowered down in 

order to contact the dispensing needle with the surface of the oil mixture to remove any pending 

droplets that often remain on the dispensing tips. 

 

Supplementary Figure 57 – A photograph of the oil filling station. The modular linear axis driver is on the left and the oil 
wheel on the right. 

https://github.com/croningp/dropfactory/blob/master/doc/working_stations/oil_filling.md
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Supplementary Figure 58- The Onshape CAD design file for the modular linear axis driver adaptor for holding the four oil 
lines. 

The filling procedure: 

1. The head is lowered down so the tip of the dispensing needles come into the vial 
2. The desired oils are dispensed with in the desired ratio to a total volume of 0.5mL 
3. The head is lowered down so the tips of the dispensing needles come into contact with 

the surface of the oil mixture, this is to remove any pending drops remaining on the tips 
of the droplets 

4. The head comes back to its home position 

The 3D designs are available online: 

1. STL Mount: 
https://github.com/croningp/dropfactory/blob/master/hardware/3d_parts/oil_filling/oil
_filler.stl 

2. Modular Actuator: https://github.com/croningp/ModularSyringeDriver 
3. Onshape 3D model: 

https://cad.onshape.com/documents/62d832e8b2dc4f2c03b85d68/w/e45d0051d41b13
9c7004414d/e/1583bc5599c1a1019a2f3e93 

The code managing the oil cleaning working station is in the 

software/working_station/fill_oil_tube.py file: 

https://github.com/croningp/dropfactory/blob/master/software/working_station/fill_oil_tube.p

y 

https://github.com/croningp/dropfactory/blob/master/hardware/3d_parts/oil_filling/oil_filler.stl
https://github.com/croningp/dropfactory/blob/master/hardware/3d_parts/oil_filling/oil_filler.stl
https://github.com/croningp/ModularSyringeDriver
https://cad.onshape.com/documents/62d832e8b2dc4f2c03b85d68/w/e45d0051d41b139c7004414d/e/1583bc5599c1a1019a2f3e93
https://cad.onshape.com/documents/62d832e8b2dc4f2c03b85d68/w/e45d0051d41b139c7004414d/e/1583bc5599c1a1019a2f3e93
https://github.com/croningp/dropfactory/blob/master/software/working_station/fill_oil_tube.py
https://github.com/croningp/dropfactory/blob/master/software/working_station/fill_oil_tube.py
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2.1.2.7 Oil Stirring Station 

Link: 

https://github.com/croningp/dropfactory/blob/master/doc/working_stations/oil_stirring.md 

In each oil vial, there is a small magnetic stirrer bead of length 15mm and diameter 1.5mm. At 

the stirring station (position 3 of the oil wheel) a compact magnetic stirrer ensures that the oils 

are fully mixed before being sampled by the syringe. Such small magnetic stirrer plates tend to 

overheat, for this reason a fan has been positioned below the stirrer to regulate the stirrer 

temperature. The stirring efficiency was checked by adding a dye into some water while being 

mixed into the vials. In addition, when sampled, the syringe performs additional mechanical 

mixing by pumping in and out 5 times some oil mixture. 

 

Supplementary Figure 59 - A photograph of the oil stirring station, with the small magnetic stirrer plate (silver) visible below 
the Geneva wheel. 

Materials: 

1. Micro stirrer: STIRRER MICRO 07 + UK TELEMODUL 7W, from H+P 
LABORTECHNIK. Supplied from VWR, catalog number is 442-3116: 
https://uk.vwr.com/store/product/442-3116/stirrer-micro-07-%2B-uk-telemodul-7w-1-
1-items 

2. Magnetic stirring bars, micro. Length: 15mm, Diameter: 1.5mm. Supplied from 
VWR, catalog number is 442-0367: 
https://uk.vwr.com/store/catalog/product.jsp?catalog_number=442-0367 

https://github.com/croningp/dropfactory/blob/master/doc/working_stations/oil_stirring.md
https://uk.vwr.com/store/product/442-3116/stirrer-micro-07-%2B-uk-telemodul-7w-1-1-items
https://uk.vwr.com/store/product/442-3116/stirrer-micro-07-%2B-uk-telemodul-7w-1-1-items
https://uk.vwr.com/store/catalog/product.jsp?catalog_number=442-0367
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The 3D design for the supporting mechanical parts can be found at: 

1. STL Stirrer Holder:  
https://github.com/croningp/dropfactory/blob/master/hardware/3d_parts/oil_mixing/st
irrer_holder.stl 

2. STL Stirrer Fan Holder: 
https://github.com/croningp/dropfactory/blob/master/hardware/3d_parts/oil_mixing/st
irrer_fan_holder.stl 

3. Onshape 3D model: 
https://cad.onshape.com/documents/62d832e8b2dc4f2c03b85d68/w/e45d0051d41b13
9c7004414d/e/7f2bc6ac687a7f6977a3b478 

2.1.2.8 Oil Cleaning station 

Link: 

https://github.com/croningp/dropfactory/blob/master/doc/working_stations/oil_cleaning.md 

The cleaning station handles two tubes, one to dispense acetone and one to empty the vial 

contents to the waste. The waste tube needs to be dipped into the dish, for which we again use 

our modular linear actuator. 

https://github.com/croningp/dropfactory/blob/master/doc/modular_linear_actuator.md 

https://github.com/croningp/dropfactory/blob/master/hardware/3d_parts/oil_mixing/stirrer_holder.stl
https://github.com/croningp/dropfactory/blob/master/hardware/3d_parts/oil_mixing/stirrer_holder.stl
https://github.com/croningp/dropfactory/blob/master/hardware/3d_parts/oil_mixing/stirrer_fan_holder.stl
https://github.com/croningp/dropfactory/blob/master/hardware/3d_parts/oil_mixing/stirrer_fan_holder.stl
https://cad.onshape.com/documents/62d832e8b2dc4f2c03b85d68/w/e45d0051d41b139c7004414d/e/7f2bc6ac687a7f6977a3b478
https://cad.onshape.com/documents/62d832e8b2dc4f2c03b85d68/w/e45d0051d41b139c7004414d/e/7f2bc6ac687a7f6977a3b478
https://github.com/croningp/dropfactory/blob/master/doc/working_stations/oil_cleaning.md
https://github.com/croningp/dropfactory/blob/master/doc/modular_linear_actuator.md
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Supplementary Figure 60 - A photograph (left) of the oil cleaning station and the Onshape CAD design file (right) for the tube 
guide (blue) and mount (grey). 

An oil vial is cleaned using the following protocol: 

• pump vial contents to waste, 2mL (largely exceeding vial volume) 
• repeat 5 times: 

o add 0.7mL of acetone into vial (exceeding oil volume but below total volume 
available) 

o pump vial content to waste, 2mL (largely exceeding vial volume) 

The 3D designs can be found at: 

1. STL Mount: 
https://github.com/croningp/dropfactory/blob/master/hardware/3d_parts/oil_cleaning/
oil_cleaning_mount.stl 

2. STL Guide: 
https://github.com/croningp/dropfactory/blob/master/hardware/3d_parts/oil_cleaning/
oil_cleaning_guide.stl 

3. Modular Actuator: https://github.com/croningp/ModularSyringeDriver 
4. Onshape 3D model: 

https://cad.onshape.com/documents/62d832e8b2dc4f2c03b85d68/w/e45d0051d41b13
9c7004414d/e/ba40210f0cf61fe838ccdc8a 

https://github.com/croningp/dropfactory/blob/master/hardware/3d_parts/oil_cleaning/oil_cleaning_mount.stl
https://github.com/croningp/dropfactory/blob/master/hardware/3d_parts/oil_cleaning/oil_cleaning_mount.stl
https://github.com/croningp/dropfactory/blob/master/hardware/3d_parts/oil_cleaning/oil_cleaning_guide.stl
https://github.com/croningp/dropfactory/blob/master/hardware/3d_parts/oil_cleaning/oil_cleaning_guide.stl
https://github.com/croningp/ModularSyringeDriver
https://cad.onshape.com/documents/62d832e8b2dc4f2c03b85d68/w/e45d0051d41b139c7004414d/e/ba40210f0cf61fe838ccdc8a
https://cad.onshape.com/documents/62d832e8b2dc4f2c03b85d68/w/e45d0051d41b139c7004414d/e/ba40210f0cf61fe838ccdc8a
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The code managing the oil cleaning working station is found at: 

https://github.com/croningp/dropfactory/blob/master/software/working_station/clean_oil_part

s.py 

This file also manages the cleaning of the syringe. 

2.1.2.9 Drying station 

Link: https://github.com/croningp/dropfactory/blob/master/doc/working_stations/drying.md 

Each drying station is a simple fan blowing air into a container that was previously cleaned 

with water (aqueous petri dish only) and acetone. We ensured that this additional air flow did 

not impact our droplet experiments via an airflow buffer. The drying stations are at the position 

6, 7, and 8 of both the oil and aqueous wheels. 

 

Supplementary Figure 61 - A photograph of the three oil drying stations. 

https://github.com/croningp/dropfactory/blob/master/software/working_station/clean_oil_parts.py
https://github.com/croningp/dropfactory/blob/master/software/working_station/clean_oil_parts.py
https://github.com/croningp/dropfactory/blob/master/doc/working_stations/drying.md
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Supplementary Figure 62 - The Onshape CAD design file for the drying station airflow buffer. To the top of this is attached 
a fan. 

The 3D files can be found at: 

1. STL: 
https://github.com/croningp/dropfactory/blob/master/hardware/3d_parts/various/evap
orator.stl 

2. Onshape 3D model: 
https://cad.onshape.com/documents/62d832e8b2dc4f2c03b85d68/w/e45d0051d41b13
9c7004414d/e/ae1bb1b32d86c37772960515 

2.1.2.10 Aqueous wheel 

The aqueous wheel has 5 distinct working station types: 

1. A filling station where the aqueous phase is poured into the dish: 
https://github.com/croningp/dropfactory/blob/master/doc/working_stations/dish_fillin
g.md 

2. A droplet placement station where the syringe places the droplets on the aqueous 
phase: 
https://github.com/croningp/dropfactory/blob/master/doc/working_stations/syringe.m
d 

3. A recording station where droplets are being recorded via a webcam: 
https://github.com/croningp/dropfactory/blob/master/doc/working_stations/dish_recor
ding.md 

4. A cleaning station where the aqueous phase and droplets are sent to waste and 
containers are cleaned with acetone and water: 
https://github.com/croningp/dropfactory/blob/master/doc/working_stations/dish_clean
ing.md 

https://github.com/croningp/dropfactory/blob/master/hardware/3d_parts/various/evaporator.stl
https://github.com/croningp/dropfactory/blob/master/hardware/3d_parts/various/evaporator.stl
https://cad.onshape.com/documents/62d832e8b2dc4f2c03b85d68/w/e45d0051d41b139c7004414d/e/ae1bb1b32d86c37772960515
https://cad.onshape.com/documents/62d832e8b2dc4f2c03b85d68/w/e45d0051d41b139c7004414d/e/ae1bb1b32d86c37772960515
https://github.com/croningp/dropfactory/blob/master/doc/working_stations/dish_filling.md
https://github.com/croningp/dropfactory/blob/master/doc/working_stations/dish_filling.md
https://github.com/croningp/dropfactory/blob/master/doc/working_stations/syringe.md
https://github.com/croningp/dropfactory/blob/master/doc/working_stations/syringe.md
https://github.com/croningp/dropfactory/blob/master/doc/working_stations/dish_recording.md
https://github.com/croningp/dropfactory/blob/master/doc/working_stations/dish_recording.md
https://github.com/croningp/dropfactory/blob/master/doc/working_stations/dish_cleaning.md
https://github.com/croningp/dropfactory/blob/master/doc/working_stations/dish_cleaning.md
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5. Three drying stations that blow air on the containers and dry them from the acetone 
remaining after cleaning: 
https://github.com/croningp/dropfactory/blob/master/doc/working_stations/drying.md 
 

 

Supplementary Figure 63 - A schematic illustrating the stations located on the aqueous Geneva wheel. 

2.1.2.11 Aqueous Filling station 

Link: 

https://github.com/croningp/dropfactory/blob/master/doc/working_stations/dish_filling.md 

This station simply holds some tubes above the petri dish. In all of our experiments we used 

only one aqueous phase of TTAB at pH 13, but the holder has been designed to accommodate 

up to 9 tubes. 

 

https://github.com/croningp/dropfactory/blob/master/doc/working_stations/drying.md
https://github.com/croningp/dropfactory/blob/master/doc/working_stations/dish_filling.md
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Supplementary Figure 64 - A photograph of the aqueous filling station. 

 

Supplementary Figure 65 - The Onshape CAD design file for the dish filling station tube guide. 

The 3D design is available online: 

1. STL: 
https://github.com/croningp/dropfactory/blob/master/hardware/3d_parts/dish_filling/d
ish_filling.stl 

2. Onshape 3D model: 
https://cad.onshape.com/documents/62d832e8b2dc4f2c03b85d68/w/e45d0051d41b13
9c7004414d/e/02edab79fbbeda28022ade23 
 

https://github.com/croningp/dropfactory/blob/master/hardware/3d_parts/dish_filling/dish_filling.stl
https://github.com/croningp/dropfactory/blob/master/hardware/3d_parts/dish_filling/dish_filling.stl
https://cad.onshape.com/documents/62d832e8b2dc4f2c03b85d68/w/e45d0051d41b139c7004414d/e/02edab79fbbeda28022ade23
https://cad.onshape.com/documents/62d832e8b2dc4f2c03b85d68/w/e45d0051d41b139c7004414d/e/02edab79fbbeda28022ade23
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The code managing the dish filling working station is found at: 

https://github.com/croningp/dropfactory/blob/master/software/working_station/fill_petri_dish

.py 

This normalizes the quantity given in the experiment description file and fills the dish with the 

given ratios of each aqueous phase given their associated pump and for the defined volume. 

2.1.2.12 Droplet placing station 

Link: https://github.com/croningp/dropfactory/blob/master/doc/working_stations/syringe.md 

The syringe is used for droplet placement, that is to move to collect the oil mixture, then move 

to the petri dish and place the droplets and finally cleans itself before moving to the next 

experiment. The experimental parameters are fully described in the experiment configuration 

file. 

 

Supplementary Figure 66 - A photograph of the aqueous filling station. 

https://github.com/croningp/dropfactory/blob/master/software/working_station/fill_petri_dish.py
https://github.com/croningp/dropfactory/blob/master/software/working_station/fill_petri_dish.py
https://github.com/croningp/dropfactory/blob/master/doc/working_stations/syringe.md
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Supplementary Figure 67 - The Onshape CAD design file for the modular syringe driver. 

The procedures for making droplets are as follows:  

1. Syringe Oil Filling 
o move syringe on top of oil vial (position 3 of oil wheel) 
o move syringe down to dip needle into the oil 
o repeat 5x: pump and release 50μL of oil mixture, this is to ensure oils are mixed 

in addition to the action of the stirrer 
o pump 20uL more oil mixture than droplet making requires (total volume of 

requested droplets) 
o move syringe up 

2. Droplet Making 
o move syringe on top of the centre of the petri dish (position 3 of aqueous wheel) 
o for each droplet defined in the config file: 
o move to given relative position, making sure it is not outside the petri dish 
o deliver given droplet volume, the droplet should not be released at this point but 

stick to the needle 
o move syringe down to touch the surface 
o move syringe up again above aqueous phase level 
o when all droplets are placed, move syringe up high above the dish 

3. Syringe Cleaning 
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o move syringe above of the dedicated syringe cleaning vial 
o empty syringe in the vial 
o wash the vial with 1.5 mL acetone 
o add 2.5mL acetone into vial 
o dip needle into acetone 
o repeat 3x: pump and deliver 100uL of acetone through the syringe, ensuring 

cleaning of remaining in oil mixture 
o move syringe up again above vial 
o empty vial of its contents 
o repeat 8x: pump and deliver 100uL of air through the syringe, ensuring drying 

of remaining acetone 
o wash the vial with 1 mL acetone 

Our syringe driver is compatible with all μL scale Hamilton syringes: 

https://www.hamiltoncompany.com/products/syringes-and-needles/general-

syringes/microliter-syringes/250-microL-Model-725-LT-SYR-NDL-Sold-Separately 

We use dispensing needles from Weller reference KDS231P, see 

http://www.farnell.com/datasheets/514885.pdf 

The 3D designs can be found at: 

1. Modular Actuator: https://github.com/croningp/ModularSyringeDriver 
2. STL Cleaning Vial Holder: 

https://github.com/croningp/dropfactory/blob/master/hardware/3d_parts/various/vial_
holder.stl 

3. Onshape Cleaning Vial Holder: 
https://cad.onshape.com/documents/62d832e8b2dc4f2c03b85d68/w/e45d0051d41b13
9c7004414d/e/640ac0deb1f80bf00c4bdb79 

The code managing the syringes is split into two files: 

1. software/working_station/clean_oil_parts.py for cleaning the syringes, this is because 
the pumps for acetone and waste are shared with the oil vial cleaning station. See 
https://github.com/croningp/dropfactory/blob/master/software/working_station/clean_
oil_parts.py and 
https://github.com/croningp/dropfactory/blob/master/doc/working_stations/oil_cleani
ng.md 

2. software/working_station/make_droplets.py that takes care of the sampling of oils and 
the droplet placement. See 
https://github.com/croningp/dropfactory/blob/master/software/working_station/make_
droplets.py 
 

https://www.hamiltoncompany.com/products/syringes-and-needles/general-syringes/microliter-syringes/250-microL-Model-725-LT-SYR-NDL-Sold-Separately
https://www.hamiltoncompany.com/products/syringes-and-needles/general-syringes/microliter-syringes/250-microL-Model-725-LT-SYR-NDL-Sold-Separately
http://www.farnell.com/datasheets/514885.pdf
https://github.com/croningp/ModularSyringeDriver
https://github.com/croningp/dropfactory/blob/master/hardware/3d_parts/various/vial_holder.stl
https://github.com/croningp/dropfactory/blob/master/hardware/3d_parts/various/vial_holder.stl
https://cad.onshape.com/documents/62d832e8b2dc4f2c03b85d68/w/e45d0051d41b139c7004414d/e/640ac0deb1f80bf00c4bdb79
https://cad.onshape.com/documents/62d832e8b2dc4f2c03b85d68/w/e45d0051d41b139c7004414d/e/640ac0deb1f80bf00c4bdb79
https://github.com/croningp/dropfactory/blob/master/software/working_station/clean_oil_parts.py
https://github.com/croningp/dropfactory/blob/master/software/working_station/clean_oil_parts.py
https://github.com/croningp/dropfactory/blob/master/doc/working_stations/oil_cleaning.md
https://github.com/croningp/dropfactory/blob/master/doc/working_stations/oil_cleaning.md
https://github.com/croningp/dropfactory/blob/master/software/working_station/make_droplets.py
https://github.com/croningp/dropfactory/blob/master/software/working_station/make_droplets.py
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2.1.2.13 Recording station 

Link: 

https://github.com/croningp/dropfactory/blob/master/doc/working_stations/dish_recording.m

d 

Once the droplets are placed on the aqueous phase, the dish is moved under a camera (position 

4 of the aqueous wheel) for the droplet behaviours to be recorded and saved as a video file. 

We use a simple webcam for recording and we need to ensure that the lighting conditions are 

very similar between each experiment. Especially, it is important to remove all light reflection 

on the water surface that hinders the performance of image analysis of the droplets. 

 

Supplementary Figure 68 - A photograph of the recording station 

https://github.com/croningp/dropfactory/blob/master/doc/working_stations/dish_recording.md
https://github.com/croningp/dropfactory/blob/master/doc/working_stations/dish_recording.md
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Supplementary Figure 69 - The 3D design of the recording station 

The webcam we use is the Microsoft 6CH-00002: https://www.microsoft.com/accessories/en-

gb/business/lifecam-cinema-for-business/6ch-00002 

The 3D designs can be found at: 

1. All STL files in the hardware/3d_parts/camera_holder folder: 
https://github.com/croningp/dropfactory/blob/master/hardware/3d_parts/camera_hold
er 

2. Onshape 3D model: 
https://cad.onshape.com/documents/62d832e8b2dc4f2c03b85d68/w/e45d0051d41b13
9c7004414d/e/f1aad30ed184d979bb4387d0 

The code managing the camera working station in software/working_station/record_video.py. 

This simply triggers the recording of a video of given duration into a specified file. See 

https://github.com/croningp/dropfactory/blob/master/software/working_station/record_video.

py 

It utilizes tools from our chemobot_tools library 

(https://github.com/croningp/chemobot_tools), and is interfaced and configured in the 

software/webcam folder, see 

https://github.com/croningp/dropfactory/blob/master/software/webcam 

2.1.2.14 Aqueous Cleaning Station 

Link: 

https://github.com/croningp/dropfactory/blob/master/doc/working_stations/dish_cleaning.md 

https://www.microsoft.com/accessories/en-gb/business/lifecam-cinema-for-business/6ch-00002
https://www.microsoft.com/accessories/en-gb/business/lifecam-cinema-for-business/6ch-00002
https://github.com/croningp/dropfactory/blob/master/hardware/3d_parts/camera_holder
https://github.com/croningp/dropfactory/blob/master/hardware/3d_parts/camera_holder
https://cad.onshape.com/documents/62d832e8b2dc4f2c03b85d68/w/e45d0051d41b139c7004414d/e/f1aad30ed184d979bb4387d0
https://cad.onshape.com/documents/62d832e8b2dc4f2c03b85d68/w/e45d0051d41b139c7004414d/e/f1aad30ed184d979bb4387d0
https://github.com/croningp/dropfactory/blob/master/software/working_station/record_video.py
https://github.com/croningp/dropfactory/blob/master/software/working_station/record_video.py
https://github.com/croningp/chemobot_tools
https://github.com/croningp/dropfactory/blob/master/software/webcam
https://github.com/croningp/dropfactory/blob/master/doc/working_stations/dish_cleaning.md
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This station handles three tubes, one to dispense water, one to dispense acetone, and one to 

empty the dish content to the waste. This later needs to be dipped into the dish, we use our 

modular linear actuator 

(https://github.com/croningp/dropfactory/blob/master/doc/modular_linear_actuator.md) for 

the up and down motion. 

 

Supplementary Figure 70 - A photograph of the dish cleaning station. Two fixed tubes provide the water and acetone and one 
tube is mounted on an actuated z-axis for the waste removal of the dish content. 

 

Supplementary Figure 71 - 3D design of the dish cleaning modular extensions to the modular syringe 

The petri dish cleaning procedure is as follows: 

1. empty petri dish of previous experiment's content 

https://github.com/croningp/dropfactory/blob/master/doc/modular_linear_actuator.md
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2. add 4.5mL of acetone into petri dish 
3. empty petri dish 
4. add 4.5mL of water into petri dish 
5. empty petri dish 
6. add 4.5mL of acetone into petri dish 
7. empty petri dish 
8. add 4.5mL of acetone into petri dish 
9. empty petri dish 

The 3D designs can be found here: 

1. STL Mount: 
https://github.com/croningp/dropfactory/blob/master/hardware/3d_parts/dish_cleanin
g/dish_cleaning_mount.stl 

2. STL Guide: 
https://github.com/croningp/dropfactory/blob/master/hardware/3d_parts/dish_cleanin
g/dish_cleaning_guide.stl 

3. Modular Actuator: https://github.com/croningp/ModularSyringeDriver 
4. Onshape 3D model: 

https://cad.onshape.com/documents/62d832e8b2dc4f2c03b85d68/w/e45d0051d41b13
9c7004414d/e/d76ad1c6bf725a9f379d21d0 

The code managing the dish cleaning working station is here: 

software/working_station/clean_petri_dish.py. See 

https://github.com/croningp/dropfactory/blob/master/software/working_station/clean_petri_di

sh.py 

2.1.2.15 Drying stations 

Link: https://github.com/croningp/dropfactory/blob/master/doc/working_stations/drying.md 

The drying stations for the aqueous wheel are the same as for the oil wheel. 

https://github.com/croningp/dropfactory/blob/master/hardware/3d_parts/dish_cleaning/dish_cleaning_mount.stl
https://github.com/croningp/dropfactory/blob/master/hardware/3d_parts/dish_cleaning/dish_cleaning_mount.stl
https://github.com/croningp/dropfactory/blob/master/hardware/3d_parts/dish_cleaning/dish_cleaning_guide.stl
https://github.com/croningp/dropfactory/blob/master/hardware/3d_parts/dish_cleaning/dish_cleaning_guide.stl
https://github.com/croningp/ModularSyringeDriver
https://cad.onshape.com/documents/62d832e8b2dc4f2c03b85d68/w/e45d0051d41b139c7004414d/e/d76ad1c6bf725a9f379d21d0
https://cad.onshape.com/documents/62d832e8b2dc4f2c03b85d68/w/e45d0051d41b139c7004414d/e/d76ad1c6bf725a9f379d21d0
https://github.com/croningp/dropfactory/blob/master/software/working_station/clean_petri_dish.py
https://github.com/croningp/dropfactory/blob/master/software/working_station/clean_petri_dish.py
https://github.com/croningp/dropfactory/blob/master/doc/working_stations/drying.md
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Supplementary Figure 72 - A photograph of the drying station. Each station is composed of a fan with a simple guide to 
canalize the flow of air to the dish. 

2.1.2.16 Environment Monitoring 

The temperature of the room was controlled via the air-conditioning unit fitted in the room, 

with the settings tailored to reduce temperature variation. The temperature and humidity were 

monitored using a SHT15 SparkFun Humidity and Temperature Sensor. It is available here: 

https://www.sparkfun.com/products/13683 

The platform stores the temperature and humidity values in a run_info.json file in the 

experiment folder at the start of each experiment. 

2.1.3 Software Control 

The platform control, algorithms, and image analysis were all implemented in Python 2.7. 

Aside from the standard libraries, we are using the following libraries: 

1. opencv: Image analysis with python binding. Version: cv2.version is '2.4.8'. 
http://opencv.org/ 

2. numpy: Scientific computing in Python. Version: numpy.version is '1.10.4'. 
http://www.numpy.org/ 

3. scipy: More scientific computing in Python. Version: scipy.version is '0.16.1'. 
http://www.scipy.org/scipylib/index.html 

4. sklearn: Machine Learning in Python. Version: sklearn.version is '0.16.1'. http://scikit-
learn.org/ 

https://www.sparkfun.com/products/13683
http://opencv.org/
http://www.numpy.org/
http://www.scipy.org/scipylib/index.html
http://scikit-learn.org/
http://scikit-learn.org/
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5. seaborn: Statistical data visualization using matplotlib. Version: seaborn.version is 
'0.7.0'. https://github.com/mwaskom/seaborn 

6. explauto: a library that implements the CA algorithm. The original repository is here: 
https://github.com/flowersteam/explauto and we modified it for the purpose of 
integrating it on Dropfactory: https://github.com/jgrizou/explauto 

7. filetools: is python library to help handle files: https://github.com/jgrizou/filetools  

2.1.3.1 Principles 

A full experimental run of 1000 experiments require three steps: 

1. Perform experiments on the droplet system. This task is given to the Dropfactory 
platform. Dropfactory has only one role, it looks for experiments (in the form of a 
params.jon file) to run in a specific folder and executes them. It then saves a video of 
the experiment as a video.avi file and an information file in the form of a run_info.json 
file with time, temperature and humidity information. All the code and information to 
run Dropfactory are available online: https://github.com/croningp/dropfactory 

2. Analyse the results of the experiments. This task is given to a specific, standalone 
and independent software running in its own thread. This process looks for droplet 
videos (in the form of video.avi files) in a specific folder (typically generated by the 
platform once an experiment is finalized) and process the file in three steps. It first 
extract frame by frame the contour of each droplets, then attempt to stitch together the 
droplet in each frame as time sequences and finally computes a bunch of metrics about 
the droplet motion in the form of a features.json file. See section 2.1.5 title “Droplet 
Tracking” of this document. See also https://github.com/croningp/chemobot_tools and 
https://github.com/croningp/dropfactory_exploration 

3. Decide on what experiment to do next. This task is given to a specific, standalone and 
independent software running in its own thread. This process looks for droplet features 
files (typically generated by the video droplet tracking in the form of a features.json 
file) and an experimental parameter files in a specific folder. It gathers all this 
information and, depending on the algorithm selected, output a new experimental file 
(params.json file) for the platform to execute. See 
https://github.com/croningp/dropfactory_exploration 

The all process repeats until 1000 experiments are performed. In the following we details 

how each step of this process are implemented. 

2.1.3.2 Running Experiments on Dropfactory 

The code in the software folder of the dropfactory repository 

(https://github.com/croningp/dropfactory/tree/master/software) implements and orchestrates 

all the working stations (that are specialized modules implemented as threads and able to 

https://github.com/mwaskom/seaborn
https://github.com/flowersteam/explauto
https://github.com/jgrizou/explauto
https://github.com/jgrizou/filetools
https://github.com/croningp/dropfactory
https://github.com/croningp/chemobot_tools
https://github.com/croningp/dropfactory_exploration
https://github.com/croningp/dropfactory_exploration
https://github.com/croningp/dropfactory/tree/master/software
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perform one simple task well) into a fully functional platform able to accept experimental 

files and execute them in a parallel fashion. 

The manager.py file 

(https://github.com/croningp/dropfactory/blob/master/software/manager.py) is the entry point 

and only file to import for using Dropfactory. It contains an add_XP(XP_dict) function that 

adds an experimental configuration (XP_dict) to the manager. The XP_dict can be created as 

showed in xp_maker.py 

(https://github.com/croningp/dropfactory/blob/master/software/tools/xp_maker.py). 

An experiment is fully described by a json file with the following fields. Note that there are 

helper tools to build such a file in xp_maker.py. Below is an example experimental file fully 

documented and explaining each field. 

EXAMPLE_XP_DICT = { 
    # Dropfactory outputs some information about the experimental conditions, such 
as the time of the day 
    # it was run, the temperature, the humidity. The 'run_info' field tell the 
platform where to save 
    # that information for this particular experiment. If the experiment video 
will be stored place in 
    # the "xp_folder" folder, a good practice is to save it at the same place. 
    # By convention we use RUN_INFO_FILENAME = 'run_info.json' (see 
software/tools/filenaming.py) 
    'run_info': { 
        'filename': os.path.join(xp_folder, RUN_INFO_FILENAME) 
    }, 
    # 'min_waiting_time' is the minimum time a dish should stay at any station, 
    # this is to ensure proper drying at the drying stations. 
    'min_waiting_time': 60,  # in seconds 
    # 'video_info' tells the platform how long the record an experiment for and 
where to save that video. 
    # As with he 'run_info' field, it is a good practice is to save it at the same 
place. 
    # By convention we use VIDEO_FILENAME = 'video.avi' (see 
software/tools/filenaming.py) 
    'video_info': { 
        'filename': os.path.join(xp_folder, VIDEO_FILENAME) 
        'duration': 90  # in seconds 
    }, 
    # 'arena_type' tell what type of dish the experiment should be using. Dish 
should be changed manually, 
    # only one dish type can be present at the same time on the platform and the 
ARENA_TYPE field should 
    # be changed accordingly in software/constants.py. This field is mostly a 
security/memory field, 
    # we never used other dishes that a plain glass petri_dish. 
    'arena_type': 'petri_dish', 
    # 'oil_formulation' describe the composition of the oil droplets. 
    # The number will be normalized to sum to 1.0. 
    # The association between the compounds and the associated pumps is defined in 
software/constants.py. 

https://github.com/croningp/dropfactory/blob/master/software/manager.py
https://github.com/croningp/dropfactory/blob/master/software/tools/xp_maker.py
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    # Changes should be reported there accordingly. 
    'oil_formulation': { 
        'dep': 0.36, 
        'octanol': 0.29, 
        'octanoic': 0.0, 
        'pentanol': 0.33 
    }, 
    ## 'surfactant_volume' how much aqueous phase to pour in the dish 
    'surfactant_volume': 3.5,  # in mL 
    # 'surfactant_formulation' is similar 'oil_formulation' but for the aqueous 
phase, 
    # which can be a mixture of multiple aqueous phases. The number will be 
normalized to sum to 1.0. 
    # As for oils, the association between the compounds and the associated pumps 
is defined 
    # in software/constants.py. Changes should be reported there accordingly. 
    'surfactant_formulation': { 
        'TTAB': 1.0 
    }, 
    # 'droplets' is the placement information for droplet, it is a list where each 
elements 
    # corresponds to one droplet. Each droplets is then described by its 'volume' 
(in uL) and 
    # 'position' (in mm relative to the center of the dish). Here we have 4 
droplets, 
    # one at the center and three equally spread around on a circle of radius 5mm. 
    # DEFAULT_DROPLET_VOLUME = 4 uL. 
    'droplets': [ 
        { 
            'volume': DEFAULT_DROPLET_VOLUME, # in uL 
            'position': [0, 0] # relative position in mm from the dish center 
        }, 
        { 
            'volume': DEFAULT_DROPLET_VOLUME, 
            'position': [-5, 0] 
        }, 
        { 
            'volume': DEFAULT_DROPLET_VOLUME, 
            'position': [2.5, 4.33] 
        }, 
        { 
            'volume': DEFAULT_DROPLET_VOLUME, 
            'position': [2.5, -4.33] 
        } 
    ] 
} 
 

Dropfactory is able to read these files and automatically execute the corresponding 

experiments. The code is segmented by functionalities as follows: 

1. software/arduino 
(https://github.com/croningp/dropfactory/blob/master/software/arduino) holds the 
firmware for the two arduino boards that are used to control the entirety of the platform. 
It is based on our Arduino-CommandTools that allows to quickly and flexibly prototype 
Arduino based robots. 

https://github.com/croningp/dropfactory/blob/master/software/arduino
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2. software/pump (https://github.com/croningp/dropfactory/blob/master/software/pump) 
holds the pump configurations for the 10 Tricontinent C3000 pumps used to handle 
liquids for droplet experiments. That is oils and aqueous phases + waste management 
+ cleaning liquids (acetone and water). It utilises our easy to use pycont python library. 

3. software/robot (https://github.com/croningp/dropfactory/blob/master/software/robot) 
contains all the utilities to actuate the platform, such as rotating the geneva wheels or 
precisely pumping and delivering liquids via our syringe systems. It is based on our 
commanduino tool-kit that allows to quickly and flexibly control Arduino based robots 
through Python. 

4. software/tools (https://github.com/croningp/dropfactory/blob/master/software/tools) 
holds various tools used to manage and organize dropfactory. The most important file 
is xp_manager.py that orchestrates the parallelized operation of the robot. 

5. software/webcam 
(https://github.com/croningp/dropfactory/blob/master/software/webcam) contains the 
camera configuration for the MICROSOFT 6CH-00002 we use to video record the 
droplets. It is based on our chemobot_tools library used to detect and analyse droplets. 

6. software/working_station 
(https://github.com/croningp/dropfactory/blob/master/software/working_station) 
contains all the individuals working station that fulfil a single task such as cleaning the 
oil containers, or placing droplet with the syringe. Those stations are implemented as 
threads and orchestrated by the xp_manager.py in the tools folder. 

Finally, the remaining files are helpers used while developing the platform and testing all 

individual step of the processes. 

2.1.4 Droplet Placement 

Each experiment consisted of 4 droplets of 4μL placed in a Y pattern at the centre of a 32mm 

petri dish. The first droplet was placed at the centre of the dish, the three next droplets were 

placed on a circle of radius 5mm and at equally distributed along the circle by 120-degree 

angles. The relative coordinate from the centre of the petri dish, in mm and in the [x, y] 

coordinate of the Dropfactory were as follow: [0,0], [-5,0], [2.5, 4.33], [2.5, -4.33] as described 

in the example experiment json file described in the previous section 2.1.3.2. 

Interestingly, we observed that the placement of the droplets had an influence on the droplet 

behaviour in the petri dish. During our first test of experiments (not reported and not used in 

this work), we used a 5 x 5 mm square pattern placement and noticed that the initial droplet 

placement was influencing the movement of the other three droplet later deposited on the 

aqueous phase. Supplementary Figure 72 shows both droplet placement patterns. 

https://github.com/croningp/dropfactory/blob/master/software/pump
https://github.com/croningp/dropfactory/blob/master/software/robot
https://github.com/croningp/dropfactory/blob/master/software/tools
https://github.com/croningp/dropfactory/blob/master/software/webcam
https://github.com/croningp/dropfactory/blob/master/software/working_station
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Supplementary Figure 73 - Visual representation of both droplet placement considered. On the left-hand side is the square 
pattern placement and right-hand side is the Y pattern placement. The black dots represent the position of the droplet and the 
associated number the ordering of the placement. 

We analysed this effect by comparing a very large number of random experiments performed 

with the two patterns of droplet placement, respectively 2 runs of 1000 experiments for the 

square pattern placement, and 3 runs of 1000 experiments for the Y pattern placement used in 

this work. 

For each droplet experiment, we extracted the position of the droplets through time and 

averaged the position of all droplets at each time step over each set of 1000 videos available 

for each placement condition. The result is 5 averaged trajectories of droplets, each 

representing 1000 experiments, 2 with a square pattern placement and 3 with a Y pattern 

placement. The logic behind this measure is that, because of the very large number of 

experiments, we should expect the average trajectories to cancelling one another and be 

stationary at the centre of the petri dish. If any bias is influencing the droplet motion, then the 

average trajectory would be biased too. 

Supplementary Figure 73 shows these average trajectories. Each cross indicates the first frame, 

that is the start of a video, and the colours differentiate each experimental run. There is a clear 

trend with the square pattern droplet placement, the droplets are on average dragged towards 

the first droplet placed which introduces an important bias in the overall trajectory of the 

droplets. This discovery led us to use the Y pattern placement whose first droplet is placed in 

the centre of the dish which removes all bias on the droplet trajectories.  
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Supplementary Figure 74 - Average position of droplets in time for each run of 1000 experiments depending on droplet 
placement pattern. Left-hand side is the square pattern placement and right-hand side is the Y pattern placement. The black 
dot represents the position of the droplet and the associated number the ordering of the placement. The coloured trajectories 
are the averaged positions of droplets per frame over 1000 experiments. The + symbol is the starting position, i.e. the average 
position at the first frame of all videos. The placement of the first droplet does influence the initial position of the other droplets 
which seem to be attracted towards the first droplet placed, as seen on the left side of the figure where the + are not at the 
centre of the dish but closer to the droplet number 1. We remind that the placement is done a few seconds before the video 
recording starts. This discovery justified changing the droplet placement to the Y placement with the first droplet in the middle 
of the dish. 

We hypothesise that the placement of the first droplet in a fresh aqueous phase results in the 

instantaneous release of oil on the surface of the aqueous phase which establishes a 

concentration gradient originating at the first droplets’ initial position. This is supported by the 

observation that the first oil droplet often undergoes an initial high activity phase, lasting ca. 1 

second, after it is placed. The first oil droplet placed can also usually be identified by viewing 

the recorded video, as it is often smaller and displays slightly different behavioural 

characteristics, which can also be observed in the 15-minute droplet displacement data. It has 
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been shown that droplets are capable of chemotaxis due to surface tension imbalances 25,28 and 

we hypothesize that a similar phenomenon is responsible for the effect described above. Further 

analysis would be required to understand and validate the phenomenon and was not within the 

scope of this research. 

The code used to generate this analysis can be found at: 

https://github.com/croningp/dropfactory_analysis/tree/master/analysis/drift_vs_droplet_place

ment 

2.1.5 Droplet Tracking 

The raw output of a droplet experiment is a video of black droplet moving in front of a white 

background. A video is of size 640x480 pixel and is recorded at 20fps. To extract information 

about the droplet behaviour we implemented a custom image tracking algorithm that comprises 

4 main stages:  

1. First, we detect the location of the petri dish in the video and define an area of interest 
for the tracking. This detection is done using the Hough Transform41 and leverage 
information known about the petri dish used. Only droplets within that area of interest 
will be considered for analysis. 

2. Second, we extract the location and contour of each droplet for each frame of the 
video and within the tracking area defined in the previous stage. This detection is done 
using a thresholding algorithm on the smoothed grey scale image of the droplet. 

3. Third, given the position of each droplet through each frame of the video, we combine 
this information to identify, tag, and extract droplet trajectories through time. This 
is done using a proximity rule, droplets in subsequent frame that are close to one another 
are considered to be part of the same trajectory within some set constraints. 

4. Fourth, given both the frame by frame information on droplet location and time 
sequences of individual droplets we compute a set of averaged metrics on the droplet 
behaviours, such as their speed, visible area, the number of droplets, covered distances, 
etc.  

In the remaining of this subsection we describe each of the four analysis steps in more details. 

All the code associated with droplet tracking and analysis can be found at: 

https://github.com/croningp/chemobot_tools 

2.1.5.1 Detection of the dish and tracking area 

To simplify the detection of droplets, we needed to narrow the area in which to focus our 

droplet detection algorithm. We know that the droplets are limited to the petri dish and observed 

that some experiments tend to generate droplets that stick to the walls of the petri dish – which 

https://github.com/croningp/dropfactory_analysis/tree/master/analysis/drift_vs_droplet_placement
https://github.com/croningp/dropfactory_analysis/tree/master/analysis/drift_vs_droplet_placement
https://github.com/croningp/chemobot_tools
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are both hard to detect by image analysis and not relevant for this study. Hence, we defined a 

tracking area as within a circle centred at the petri dish centre and with a dimeter of 0.8 times 

the petri dish visible diameter. 

The first task is to detect the petri dish in the image and a lot of prior information are available. 

We know that the size of the petri dish is constant with 32mm of outside diameter and that its 

position under the camera is fairly constant given the Geneva Wheel mechanism in use on the 

Dropfactory and the fixed position of the camera. However slight variations can be observed 

which we needed to detect. 

The petri dish is the biggest circle like object observable in our video. The Hough Transform41 

is a feature extraction technique widely used in image analysis that can be applied to detecting 

circular objects in a 2D image and is implemented by default in OpenCV39.  The HoughCircles 

function returns the circle in order of accumulators and our experimentation showed that the 

most likely circle was always the petri dish. The centre of the detected circle was used as the 

centre of the dish and the radius was set to 200 pixels, there were no need to detect the radius 

as the distance of the camera to the petri dish is fixed. To minimize chance of errors, we 

averaged the position of the dish in a given video by averaging the dish position detected every 

100 frames (using the median value to minimize effect of possible outliers). 

The code corresponding to the above detection can be found online at 

https://github.com/croningp/chemobot_tools/blob/master/chemobot_tools/droplet_tracking/to

ols.py as per the function named find_petri_dish and get_median_dish_from_video. 

Finally, the tracking area is defined as a circle of the same centre but with a diameter of 0.8 

times the one of the petri dish to exclude droplet struck on the walls of the petri dish from our 

analysis. Supplementary Figure 74 shows the detected petri dish circle in red and the 

corresponding tracking area in blue. 

The code corresponding to the above detection can be found online at 

https://github.com/croningp/chemobot_tools/blob/master/chemobot_tools/droplet_tracking/to

ols.py as per the function named create_dish_arena. 

 

https://github.com/croningp/chemobot_tools/blob/master/chemobot_tools/droplet_tracking/tools.py
https://github.com/croningp/chemobot_tools/blob/master/chemobot_tools/droplet_tracking/tools.py
https://github.com/croningp/chemobot_tools/blob/master/chemobot_tools/droplet_tracking/tools.py
https://github.com/croningp/chemobot_tools/blob/master/chemobot_tools/droplet_tracking/tools.py
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Supplementary Figure 75 – Red:  The petri dish location and inside diameter detected using OpenCV and the Hough 
Transform algorithm. Blue: The tracking area defined as a circle of same centre and 0.8 times diameter as the petri dish. 
Only droplets in the blue area will be considered for further analysis. In green are the outer contours detected by the full 
droplet detection pipeline. 

The information about the dish and tracking area are then stored into a dish_info.json file in 

the same folder as the video and is used for the subsequent step of our vision analysis pipeline. 

2.1.5.2 Detection of droplet location and contour 

Droplets are black and the background of the video / the bottom of the petri dish is white. To 

detect droplets, we transform the RGB image into a grey scale image that is then smoothed 

using a Gaussian blur (with a 5x5 filter and sigma computed as default in OpenCV) to ease 

processing. We finally apply a threshold that binarizes the image into non-droplet and droplet 

areas. If the grey channel of a pixel is above the threshold (i.e. whiter), the pixel is considered 

as a non-droplet, otherwise it is considered as being part of a droplet. 

The threshold is not a constant value but computed for each video. To determine the threshold, 

we first compute the distribution of the pixel intensities within the tracking area average over 

all frames in the video. Because the distribution is averaged over the all video and the droplets 

are moving within the dish, the pixel intensity distribution is mostly representative of the 

background intensity. To extract the threshold value, we fit a Gaussian distribution on the pixel 

intensity distribution and define the threshold as the intensity above which 99.9% of the 

distribution is contained. This method enables to adapt the threshold to the variability of the 

light intensity in the room. The threshold value and decision curve are plotted and saved within 

each experimental folder. 



95 
 

 

Supplementary Figure 76 – Illustration of the mechanism for defining the binarization threshold of a droplet video. The blue 
line shows the distribution of intensities of the average grey scale image of a full video. The red line shows the Gaussian 
distribution used to model the pixel intensity distribution. The green threshold is the value at which 99.9% of the probability 
distribution is comprised above that value, here 76. The threshold is then used in the binarization process. 

The result is a new binary image of non-droplet and droplet areas. Supplementary Figure 76 

illustrated these steps. Individual droplets, each being a group pixel isolated from each other’s, 

can now be extracted and identified. 

 

Supplementary Figure 77 – Visualization of the image processing pipeline for the detection of droplet. Left: The original RGB 
droplet video with petri dish of white background and 4 dark droplets at the surface of the aqueous phase. Middle: The grey 
scale image of the droplet highlighting the droplet in a single channel image. Right: The binarized image showing in white the 
pixel detected as being part of a droplet and in black the pixel that are not part of a droplet. 

The built-in function findContours of OpenCV can extract contours of blobs of pixels from a 

binarized image using the method described in 42. We set the mode to CV_RETR_EXTERNAL 

to retrieve only the extreme outer contours and the method to CV_CHAIN_APPROX_NONE 

to store all the contour points. The result is a list of the contours of each droplet blob, that is a 

list of pixel location that form the contours of each droplet, as seen on Supplementary Figure 

74. 
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This process provides already valuable information about the droplet number, location and size, 

for each frame in a video. We now need to put that information together through time to 

reconstruct the motion of individual droplets. 

The code associated to this section is available at:  

• https://github.com/croningp/chemobot_tools/blob/master/chemobot_tools/droplet_trac
king/tools.py for the ‘lower level’ functions:  

o binarize_frame for the pipeline of processing a RGB image into a binary image 
as described above. 

o compute_frame_binarization_threshold function for the mechanism of 
threshold detection 

o compute_video_binarization_threshold function for how we apply it to a full 
video, along with the compute_avg_gray_frame  function 

• https://github.com/croningp/chemobot_tools/blob/master/chemobot_tools/droplet_trac
king/simple_droplet_tracker.py for the all pipeline of detecting droplets, see the 
process_video function. 

 

2.1.5.3 Extracting individual droplet sequences 

To extract information from individual droplet motion, we need to reconstruct individual 

trajectory of droplets. We implemented a proximity rule that assigns droplet ids based on their 

spatial proximity between frames. We added additional spatial, time and size constraints to 

ensure id assignment is limited to cases that physically make sense for our system: 

1. Space condition - droplets need to be no more than 100 pixels apart from one frame 
to the next. If the distance is bigger than that the id assignment is probably wrong 
by linking two unrelated droplets. 

2. Time condition - droplet sequences cannot be interrupted by more than 10 frames. 
That means that we allow for small tracking interruption in a time sequences of 
droplet position, those are either due to a miss detection by the image analysis or to 
a droplet moving out and back inside the tracking arena  

3. Size condition - droplets cannot be smaller than 5 pixels in apparent radius. While 
developing the tracking we observed that blob detected of less than 5 pixels in 
radius could be due to false detection. 

When a droplet cannot be linked with any previous droplets, a new droplet id is created and 

assigned to it. This can happen for various reasons: a droplet might split into two or more 

droplets, a droplet could leave the tracking area and reappear further away in space or time, 

https://github.com/croningp/chemobot_tools/blob/master/chemobot_tools/droplet_tracking/tools.py
https://github.com/croningp/chemobot_tools/blob/master/chemobot_tools/droplet_tracking/tools.py
https://github.com/croningp/chemobot_tools/blob/master/chemobot_tools/droplet_tracking/simple_droplet_tracker.py
https://github.com/croningp/chemobot_tools/blob/master/chemobot_tools/droplet_tracking/simple_droplet_tracker.py
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two droplets might bump into one another which temporarily foul the tracking algorithm as 

tracking one droplet instead of two as during a fusion event or a contact between droplets.  

The accuracy of the tracking of a single droplet all along an experiment is not critical in this 

work because only averaged high-level metrics are extracted from droplet videos. In addition, 

our aim is specifically to compare exploration algorithms on the same system rather than to 

measure droplet behaviours with the highest precision. 

The practical implementation of the above grouping algorithm can be found in the 

https://github.com/croningp/chemobot_tools/blob/master/chemobot_tools/droplet_tracking/dr

oplet_feature.py starting with the aggregate_droplet_info function and by following the 

program trail, especially the track_droplets and  group_stats_per_droplets_ids functions. 

2.1.5.4 Droplet Metrics Measured 

Given the individual frame droplet location and the droplet sequences in time, we can compute 

a number of metrics that inform us about the dynamic of the droplets. We designed our metrics 

to be a single number informative about the all duration of an experiment. As a result, most 

metrics are averaged over the all duration of a video and longer droplet sequences have more 

weight in the averaging process. To compute each metrics in standard units (rather than pixels 

or pixel per frame), we know that the frame rate of the video is fixed and of 20 frames per 

seconds and that the petri dish internal diameter is of 28mm. We describe next the logical 

behind each metric and link to their implementation. 

• Ratio frame active – The ratio of frames where at least 1 droplet is detected. 

• Average number of droplets – The average number of droplets in the arena during the 

whole experiment (here 90s). 

• Average number of droplets final second – Mean number of droplets in the arena during 

the final second 

• Average speed – Mean droplet speed throughout the experiment, weighted by the duration 

of each droplet sequences. Video are recorded at 20 frames per seconds. The average speed 

is computed in mms-1. 

• Maximum average single droplet speed – The average speed of the fastest recorded 

uninterrupted droplet sequence. The average speed is computed in mms-1. 

https://github.com/croningp/chemobot_tools/blob/master/chemobot_tools/droplet_tracking/droplet_feature.py
https://github.com/croningp/chemobot_tools/blob/master/chemobot_tools/droplet_tracking/droplet_feature.py
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• Average droplet area. The average droplet area is the visible area of droplets contours in 

an experiment as viewed from the top camera. The value is averaged for all droplets and 

weighted by the duration each droplet is alive. The average droplet area is given in mm2. 

• Average circularity – The circularity, or isoperimetric quotient, of a shape is defined as 

𝑓𝑓𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 =  4𝜋𝜋𝜋𝜋
𝑃𝑃2

, where A is the droplet area (in mm2) and P is the droplet perimeter (in mm). 

The average circularity is the circularity of each droplet in an experiment weighted by the 

duration each droplet sequence. The average circularity is a number between 0 and 1, with 

1 being a perfect circle. 

• Median absolute circularity deviation - the median absolute deviation of the circularity 

weighted by the duration of each droplet sequence. The logical behind this measure was to 

measure wobbling droplets that change their shape continuously while in motion.  

• Average spread – the spread is the average distance of each droplet to the centre of mass 

of the combined droplet visible in the dish weighted by the visible area of each droplet. The 

logical behind this metric is to measure how close the droplets are moving together. The 

average spread is computed in mm. 

• Total droplet path length – The total distance travelled by all droplets during the 

experiment. The path length is computed in mm. 

• Covered arena area – The covered area is the ratio of the number of pixels in the 

tracking area that is visited at least once by a droplet during an experiment. The covered 

area is given as a ratio between 0 and 1.  

https://en.wikipedia.org/wiki/Median_absolute_deviation
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Supplementary Figure 78 - Visualization of the covered arena area metrics. In white are the superimposed droplet position 
for the full duration of a video. The covered area metric is the ratio of white pixel within the blue circle over the total number 
of pixel within the blue circle. It is a measure of how active the droplets have been. 

The above metrics were computed for all experiments and their value are stored in a 

droplet_features.json file in the experiment folder.  

The practical implementation of all the above metrics can be found in the 

https://github.com/croningp/chemobot_tools/blob/master/chemobot_tools/droplet_tracking/dr

oplet_feature.py library starting line 436. 

2.2 Algorithms Implementation 

The exploration of an input to output mapping, for example exploring the droplet behaviours 

accessible from droplet recipes, is usually presented as the exploration an unknown function 

and more formally as follows. 

A learning agent 𝐴𝐴 interacts with a system 𝑆𝑆 through the generation of experimental parameters 

𝑃𝑃 and the observation of the experimental outcomes 𝑂𝑂. The goal of the agent is to learn the 

unknown function 𝑓𝑓 ∶ 𝑃𝑃 → 𝑂𝑂 defining the physical properties of the system. More specifically 

the agent might be interested in predicting the outcome of a given experiment through a forward 

model 𝑓𝑓 ∶ 𝑃𝑃 → 𝑂𝑂 or, more often, in inferring the experimental parameters that will lead to 

specific outcome using an inverse model 𝑓𝑓−1 ∶ 𝑂𝑂 → 𝑃𝑃.  

https://github.com/croningp/chemobot_tools/blob/master/chemobot_tools/droplet_tracking/droplet_feature.py
https://github.com/croningp/chemobot_tools/blob/master/chemobot_tools/droplet_tracking/droplet_feature.py
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The goal for the agent is to estimate 𝑓𝑓 and 𝑓𝑓−1 by collecting (𝑝𝑝, 𝑜𝑜) pairs through its interaction 

with the unknown system 𝑓𝑓, that is by producing a set of experimental parameters 𝑝𝑝 ∈ 𝑃𝑃 and 

observing the outcome 𝑜𝑜 ∈ 𝑂𝑂 where 𝑜𝑜 = 𝑓𝑓(𝑝𝑝). This learning process can be difficult because:  

1. 𝑓𝑓 is often non-linear making the learning of the forward function 𝑓𝑓 from examples not 
easy because the acquisition of (𝑝𝑝, 𝑜𝑜) pairs should be tailored and targeted at the non-
linear portions of 𝑓𝑓 which are yet unknown. 

2. 𝑓𝑓 is often redundant, meaning that many 𝑝𝑝 ∈ 𝑃𝑃 will lead to the same 𝑜𝑜 ∈ 𝑂𝑂. For 
example, many droplet recipes do not produce any movement of the droplets. In such 
cases learning the inverse function 𝑓𝑓−1 becomes more difficult because most of the 
experiment performed will not generate new observations. 

3. Sampling 𝑓𝑓 can be expensive, both in terms of time and budget, such that the collection 
of  (𝑝𝑝, 𝑜𝑜) pairs can be a long and fastidious process. In our case, the experiments can 
only be made on the real system and in real time and make use of relatively expensive 
chemicals. 

The method used to select the experiments to perform on the system can therefore make a 

significant difference in the quality of the estimation of both 𝑓𝑓 and 𝑓𝑓−1. Data are precious and 

not equally useful; thus, their acquisition must be tailored to the specific system in study. This 

problem is one of exploration strategy and has been described extensively in the fields of 

robotics and machine learning11. 

Within the scope of this research, 𝑃𝑃 is a 4-dimensional space where each dimension represents 

the ratio of each oils in a droplet recipe and 𝑝𝑝 is a 4-dimensional vector representing one point 

in 𝑃𝑃, that is one specific experiment / oil recipe. 𝑂𝑂 is a 2-dimensional space where each 

dimension represents the average speed and the average number of droplet in an experiment 

and 𝑜𝑜 is a 2-dimensional vector representing the speed and division values from one specific 

droplet video analysed as described in the droplet tracking section 2.1.5. We note (𝑝𝑝, 𝑜𝑜)𝑖𝑖 the 

pair of parameters and observations vector associated with the 𝑖𝑖th experiment. 

In the following, we describe the two exploration algorithms used in this work, random 

parameter search (called ‘random’) and random goal exploration (‘CA’), as well as the specific 

implementation, forward and inverse model estimators and the parameters values selected for 

this work. We finally detail the exploration metrics used to quantify and compare algorithms. 

2.2.1 Random Parameter Search Algorithm 

The random parameter search algorithm is a typical method used in high-throughput screening  

and does not use any information about the droplet or the observations made. For each 
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experiment, the algorithm randomly samples 4 numbers between 0 and 1 from a uniform 

distribution and creates a vector 𝑝𝑝 that is passed to Dropfactory to be executed. The vector 𝑝𝑝 is 

normalized to sum to 1 such that each dimension represents the ratio of each oil. Each 

experiment is run on Dropfactory, the droplet video is saved and a vector of observation 𝑜𝑜 is 

outputted by the platform associated to each 𝑝𝑝. 

2.2.2 Curious Algorithm: Random Goal Exploration 

The curious algorithm used in this work is called random goal exploration18 (see related 

algorithms in 43,44). We recommend reading the associated literature and we summarize below 

the key concepts and implementation details of random goal exploration as well as the intuition 

as to why it is efficient for increased exploration.  

The random goal exploration algorithm can be decomposed in 4 steps: 

1. Randomly sample a target observation (𝑜𝑜�𝑖𝑖) that we will try to observe from the system  
2. Build an inverse model of the system (𝑓𝑓−1)  using all previous observation (𝑝𝑝, 𝑜𝑜)1:𝑖𝑖 
3. Use the inverse model (𝑓𝑓−1) to infer the most probable experimental parameters that 

will lead to the target observation  𝑝𝑝𝑖𝑖  = 𝑓𝑓−1(𝑜𝑜�𝑖𝑖) 
4. Execute the experiment  𝑝𝑝𝑖𝑖 and observe the results 𝑜𝑜𝑖𝑖 

Repeat for N iteration, in our case N =1000. 

Each step requires to define some parameters and choose some models for the forward and 

inverse model. We used the implementation provided in the explauto Python library45 which 

we adapted to interface with our setup. We describe our implementation next: 

1. Randomly sample a target observation (𝑜𝑜�𝑖𝑖) that we will to observe from the system: 

Our observation space 𝑃𝑃 is 2-dimensional with a speed dimension given in mms-1 and a division 

dimension given as the average number of droplet. 𝑝𝑝 =  [𝑠𝑠,𝑑𝑑] with 𝑠𝑠,𝑑𝑑 ∈  ℝ. Given 

preliminary experiment and previous results reported on oil-in-water droplets 26,37,38, we 

decided to bound our observation space within [0, 20] for both dimensions. That was, for each 

dimension, more than twice the upper bound observed so far for this system. The algorithm 

then samples uniformly a value in [0, 20] as a target observation 𝑜𝑜�𝑖𝑖. 

2. Build an inverse model of the system (𝑓𝑓−1)  using all previous observation (𝑝𝑝, 𝑜𝑜)1:𝑖𝑖: 

The inverse model we use is one of the default one embedded in the explauto library45, it 

requires to first build a forward model 𝑓𝑓 that is then inversed using an optimization algorithm 
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that iterative sample  𝑓𝑓 to find the best  𝑝𝑝𝑖𝑖 that minimize the error on the observation (𝜀𝜀 =  |𝑜𝑜�𝑖𝑖 −

 𝑜𝑜�𝑖𝑖 |), where  𝑜𝑜�𝑖𝑖 is the target observation and 𝑜𝑜�𝑖𝑖 = 𝑓𝑓( 𝑝𝑝𝑖𝑖). The forward model  𝑓𝑓 is built using 

the locally weighted linear regressor46 (with the parameter k set to 20, that is the number of 

neighbour point to take into account) and the inverse model is solved iteratively using the 

CMA-ES algorithm47 (with sigma set to 0.01 and maxfevals set to 20).  

If the number of parameters-observation pairs available is less than 20, the inverse model is 

not computed because the number of data available does allow for a viable computation of the 

model. For the 20 first experiments, the model is replaced by a uniform random sampling on 

experimental parameter. 

3. Use the inverse model (𝑓𝑓−1) to infer the most probable experimental parameters that 
will lead to the target observation  𝑝𝑝𝑖𝑖  = 𝑓𝑓−1(𝑜𝑜�𝑖𝑖): 

The output of step 2 after optimization of the CMAES algorithm is a new set of parameters 𝑝𝑝𝑖𝑖 

that is the most likely to lead to the observation of the targeted observation 𝑜𝑜�𝑖𝑖 according to the 

current model of the system. 

4. Execute the experiment  𝑝𝑝𝑖𝑖 and observe the results 𝑜𝑜𝑖𝑖: 

We sent the experimental parameter to Dropfactory and add the pair (𝑝𝑝, 𝑜𝑜)𝑖𝑖 to the list of all 

previous observation. 

Finally, because of the limitation of our real-world setup, the results from one experiment is 

not available until it has been performed and analysed by Dropfactory. Because Dropfactory 

run several experiments in parallel using a queue system, the model used to predict the 𝑖𝑖 th 

experiment is using all the data up to the 𝑖𝑖 − 8 th experiments. 

Two powerful principles make the random goal exploration algorithm efficient as an 

exploration method:  

- First, random goal exploration explicitly set targets in the output / observation space, 

which is the space of interest for most studies, rather than in the input / parameter space. 

This reduces inefficiency in exploration due to redundancies where many experimental 

conditions lead to the same state of the system (e.g. most of the possible droplet recipes 

lead to no droplet motion or most tested molecules show low affinity).  

- Second, there is no need to understand the inner dynamics of the system to generate 

interesting observations. Random goal exploration only uses previous observations to 

construct a model of the system which limits possible biases introduced by human 
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assumptions. This is important since by definition no model exists for unknown system, 

and, even when simplified models are available, they can only be as good as our current 

understanding which reduces discovery opportunities. Once exploration has been 

undertaken, a human scientist can probe interesting or useful systems for deeper 

understanding of further improvement, as we have done in this work for the temperature 

sensitivity of droplet behaviour. 

The code associated to the algorithm can be found at: 

https://github.com/croningp/dropfactory_exploration/tree/master/explauto_tools 

2.2.3 Exploration Measure 

We quantified the amount of exploration achieved for each experimental run by computing the 

area of the alpha-shape containing all the experimental results at a given iteration for a given 

run on the 2D observation space of speed and division. An alpha-shape is a generalization of 

the convex hull of a set of points that is derived from the Delaunay triangulation, the method 

was first introduced in 48. All alpha-shape were computed with alpha = 15. 

 

Supplementary Figure 79 -Visualization of the alpha-shape (with alpha = 15) used to quantify the explored space for each 
experiment for the random (left) and the CA (right) algorithm. Our measure of exploration is the area covered by the alpha-
shape, that is the combined area of the blue triangles. 

Our measure of exploration is the area covered by the alpha-shape, that is the combined area 

of the blue triangles on Supplementary Figure 78. The more the observations are spread the 

higher the exploration measure. The exploration value used in the main paper was normalized 

into percentages by dividing it by the area of the alpha-shape comprising all observations made 

using the platform, in our case the 6000 experiments (3 repeats of 2 methods). This 

https://github.com/croningp/dropfactory_exploration/tree/master/explauto_tools


104 
 

normalization cannot be made absolute because we cannot know the theoretical minimal 

envelope comprising all possible observations of the droplet system given the experimental 

conditions.  

This measure was judged more representative for our study than computing the area of the 

convex-hull encompassing the observation point or the τ-coverage method described in 44. The 

convex-hull (alpha=0) is highly sensitive to outliers which can increase the convex-hull area 

significantly. The τ-coverage was adequate but judged more difficult to calibrate in an 

objective way due to the high sensitivity of the measure to value of the τ parameter. However, 

we note that all three exploration measures highlighted a strong and significant difference 

between random goal exploration and random parameter search methodology as reported in 

the paper. 

The code to compute the coverage using the alpha-shape method can be found at: 

https://github.com/croningp/dropfactory_analysis/tree/master/figures/exploration_hull, it has 

been called concave hull in the code. 

2.3 Experimental Procedures 

2.3.1 Oil and Aqueous Phase Preparation 

All surfactants and oils used in this work were purchased from Sigma-Aldrich Corporation and 

HoneyWell. Due to the need for maximum consistency throughout experiments, standard 

operating procedures were developed for oil and aqueous phase preparation which are shown 

here. 

2.3.1.1 Preparation of Oil Formulations – Standard Operating Procedure 

1. Measure oil quantities into a glass bottle using a measuring cylinder (usually 500 mL) 
2. Weigh out 0.5 gL-1 Sudan Black B 
3. Add the Sudan Black B to the mixture. 
4. Ensure the dye is dissolved, use a magnetic stirrer. 

Again, oils were allowed to equilibrate to experimental temperature for >12 hours. 

2.3.1.2 Preparation of Surfactant Solutions – Standard Operating Procedure 

Note, a fixed mass of NaOH was used for consistency and the pH recorded, rather than adding 

base and aiming for a target pH. SOP: 

https://github.com/croningp/dropfactory_analysis/tree/master/figures/exploration_hull
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1. Fill a plastic container with distilled water, be precise on the volume (usually 5 L) 
2. Weight out the required amount of NaOH for pH adjustment (8 gL-1) 
3. Add NaOH to the distilled water. Shake to dissolve (care – heat generation on 

dissolution). 
4. Wait overnight for the NaOH(aq) to stabilize in solution and cool down. 
5. Weigh out the required amount of surfactant (20 mM TTAB, 6.728 gL-1) 
6. Add the surfactant to the solution, shake well. 
7. Stir using a magnetic stirrer for multiple hours to dissolve, best to do overnight. 

Solution is ready, but pH of solution is always recorded. 

8. Ensure the pH meter is calibrated using buffers pH = 10, 13 before measuring and 
recording the pH. 

Surfactant solutions were allowed to equilibrate to experimental temperature for >12 hours. 

The average pH of the aqueous phase was measured at 13.12 with a standard deviation of 0.07. 

Below is a table listing all the recorded pH of the aqueous phase: 

Date pH  Date pH 

8/6/2016 13.042  9/3/2017 13.187 

04/07/2016 13.190  10/03/2017 13.162 

08/07/2016 13.087  17/03/2017 13.208 

12/07/2016 13.091  30/03/2017 13.189 

19/07/2016 13.102  10/04/2017 13.240 

18/08/2016 13.088  10/04/2017 13.197 

25/08/2016 13.103  18/04/2017 13.271 

08/09/2016 13.087  18/04/2017 13.284 

12/09/2016 13.104  01/05/2017 13.132 

20/09/2016 13.056  23/05/2017 13.114 

25/10/2016 13.068  05/06/2017 13.040 

25/10/2016 13.087  26/07/2017 13.073 

26/10/2016 13.088  26/07/2017 13.073 

01/11/2016 13.091  22/08/2017 13.084 

06/11/2016 13.115  22/08/2017 13.071 

15/11/2016 13.027  01/12/2017 13.094 
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24/11/2016 13.085  05/12/2017 13.120 

07/12/2016 13.297  7/12/2017 13.143 

 

2.3.2 1H NMR Spectroscopy Experiments 

The 1H NMR method used was based on that reported previously.38 3.5 mL of 20 mM TTAB 

(pH = c. 13) was placed in a glass vial. To this was added 4 × 4 µL droplets of the given oil 

formulation. After the given time, 1000 μL of the lower part of the aqueous phase was sampled, 

taking great care not to sample any oil phase droplets, of which 450 μL was used for analysis. 

All NMR measurements were performed using a two-channel Bruker Avance III HD 600 

spectrometer equipped with a 5-mm BBFO probehead operating at 600.1 MHz for 1H. For 

acquisition of quantitative 1H solvent-suppressed experiments, standard presaturation sequence 

(zgpr from Bruker pulse program library) was used. Temperature was regulated at 298 K. Each 

spectrum was acquired in 4 scans. CW presaturation (1 mW) was applied on resonance during 

relaxation delay (2 s). Each sample included 5 mM maleic acid(aq) as an internal standard, 

present within a capillary inset within the NMR tube and processed on a Windows workstation 

using the TOPSPIN 3.2 software package. 

For each recipe-temperature-timepoint combination at least 6 repeats were undertaken. 

Temperature when preparing the samples was regulated using the air-conditioning unit in the 

room. When regulated to a target of 22°C, temperature at the experimental location was 22.4 

±0.2°C. When regulated to a target of 28°C, temperature at the experimental location was 27.7 

±0.2°C. Following the integration with baseline correction method previously reported, these 

could then be converted into the concentrations of each oil dissolved in the aqueous phase and 

hence the remaining droplet compositions. 

3 Supplementary Movies 

In this section we provide a short description of each supplementary video as well as a link to 

watch them online. All the videos are available at the following link: 

https://www.youtube.com/playlist?list=PLBppiRCztuKo8gxq_kfcYM-5S_A-TlMU1 

 

 

https://www.youtube.com/playlist?list=PLBppiRCztuKo8gxq_kfcYM-5S_A-TlMU1
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• Supplementary Movie 1: https://youtu.be/bY5OoRBJkf0 
 
Operation of the parallelized droplet robot with details of each working station. The 
first ca. 45 seconds gives a general overview of the working platform, whilst the 
remainder of the video shows each working station in operation in detail. 
 

• Supplementary Movie 2: https://youtu.be/E76t9LMbuts 
 
The progression of the exploration for each run of each algorithm at an average 
temperature of 27°C. Each row represents an algorithm (top for CA and bottom for 
random) and each column represents an independent repeat. Each dot on the speed and 
division scatter plot represents a 90-second experiment. The CA consistently and 
rapidly identifies more varied droplet behaviours, and this differentiation only increases 
as more experiments are undertaken. Note how after only 50 experiments 
(approximately 1.5 hours of continuous experimentation) the CA is already exploring 
a significantly greater range of droplet behaviours than random. 

 
• Supplementary Movie 3: https://youtu.be/6wPkWJDxN64 

 
1st, 10th and 50th highest speed droplet recipes from one repeat of each method (top 
CA, bottom random). The 1st, 10th and 50th highest speed experiment observed with CA 
are significantly more active than their respectively ranked experiment from random.  
 

• Supplementary Movie 4: https://youtu.be/zhTeDofB6mk 
 
Effect of temperature on a droplet recipe during a 90s experiment. Recipes is composed 
of 1.9% octanoic acid, 47.9% DEP, 13.5% 1-octanol, and 36.7% 1-pentanol. From left 
to right, measured temperatures are 21.4°C, 25.1°C and 28.3°C. For this specific droplet 
recipe, the higher the temperature the earlier and the faster the droplets start moving. 
 

• Supplementary Movie 5: https://youtu.be/80yAmBkzdmM 
 
Effect of temperature on a droplet recipe during a 15-minute experiment. Recipes is 
composed of 1.9% octanoic acid, 47.9% DEP, 13.5% 1-octanol, and 36.7% 1-pentanol. 
From left to right, measured temperatures are 21.8°C, 25.8°C and 29.0°C. The 
measured droplet speed as quantified by our image processing is shown below each 
video. The video is sped up 5 times. The different phases of motion can clearly be 
observed as well as their temperature dependant onset timing. 
 

• Supplementary Movie 6: https://youtu.be/zOURJEnbmV4 
 
Effect of temperature on the methylene-blue dye released from a droplet recipe 
composed of 1.9% octanoic acid, 47.9% DEP, 13.5% 1-octanol, and 36.7% 1-pentanol 

https://youtu.be/bY5OoRBJkf0
https://youtu.be/E76t9LMbuts
https://youtu.be/6wPkWJDxN64
https://youtu.be/zhTeDofB6mk
https://youtu.be/80yAmBkzdmM
https://youtu.be/zOURJEnbmV4
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during a 5min experiment. From left to right, average temperatures are 17.6°C and 
28.6°C. The video shows two examples at each temperature, alongside the dye release 
over time as quantified by our image processing. The video is sped up 5 times. The dye 
is released immediately at the higher temperature whilst it is released only after 60s 
(12s in the speed up video) at the lower temperature. 
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