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ABSTRACT: The experimental exploration of the chemical space of crystalline
materials, especially metal—organic frameworks (MOFs), requires multiparameter
control of a large set of reactions, which is unavoidably time-consuming and labor-
intensive when performed manually. To accelerate the rate of material discovery
while maintaining high reproducibility, we developed a machine learning algorithm
integrated with a robotic synthesis platform for closed-loop exploration of the
chemical space for polyoxometalate-scaffolding metal—organic frameworks
(POMOFs). The eXtreme Gradient Boosting (XGBoost) model was optimized
by using updating data obtained from the uncertainty feedback experiments and a
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multiclass classification extension based on the POMOF classification from their

chemical constitution. The digital signatures for the robotic synthesis of POMOFs were represented by the universal chemical
description language (yDL) to precisely record the synthetic steps and enhance the reproducibility. Nine novel POMOFs including
one with mixed ligands derived from individual ligands through the imidization reaction of POM amine derivatives with various
aldehydes have been discovered with a good repeatability. In addition, chemical space maps were plotted based on the XGBoost
models whose F1 scores are above 0.8. Furthermore, the electrochemical properties of the synthesized POMOFs indicate superior
electron transfer compared to the molecular POMs and the direct effect of the ratio of Zn, the type of ligands used, and the topology
structures in POMOFs for modulating electron transfer abilities.

B INTRODUCTION

Polyoxometalates (POMs) are anionic metal—oxygen clusters
with diverse structures that consist of early transition metal
ions (V, Mo, W, etc.) in high oxidation states (+5 and + 6)
that are bridged by i, -oxygen atoms. They have been widely
studied for their electrochemical,' catalytic,” bioactive,’
optical,” and magnetic’ properties. Recently, the incorporation
of POMs into metal organic frameworks (MOFs) has been
investigated for discovering novel topologies and multifunc-
tional POM-based MOFs by associating both the properties of
the MOFs and POMs in the same system.”™® In POM-based
MOFs, POMs can be guest molecules encapsulated in the
cavity of MOFs (POM@MOFs)” and act as secondary
building units (SBUs)'® or as part of the framework linker
bound with metal centers and organic linkers,"" thus forming
polyoxometalate-scaffolding MOFs (POMOFs). The main
focus of this work is POMOF systems in the final category,
where POMs are part of the framework and bound with metal
centers and organic linkers.

Organic functionalization of POMs is an important strategy
for integrating them into the structure of POMOFs via
covalent or coordinate bonds. In recent years, Tris-function-
alized Anderson—Evans (AE)-type POMs have helped achieve
significant advances in the construction of POMOFs. In 2007,
we reported a polymeric framework in the solid state in which
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the repeating unit of the chain is built from ditopic amino-
functionalized Tris-AE cluster units connected via a bridging
{Ag,(DMSO),}** unit. The polymeric chain is propagated by a
single Ag(I) ion, which connects the nitrogen atom of the Tris-
AE ligands, while a further {Ag(DMSO),}* unit decorates the
AE POM cluster.'” The amino-functionalized Tris-AE POM
has also been used by Xu et al. for constructing a three-
dimensional MOF via imine condensation with 4-connected
tetrahedral tetrakis(4-formylphenyl)methane.'’ Carboxylate-
functionalized Tris-AE POMs have recently been reported to
form three-dimensional POMOFs with lanthanide ions as
nodes via the different crystallization processes including a
stirring and layering method."> A series of POMOFs has been
reported that were built from different pyridine-functionalized
Tris-AE hybrids acting as linkers coordinating with Zn** and
Cu"."" Despite the presence of pyridyl sites, it was possible for
the terminal oxo units of the Tris-AE POM to coordinate with
Zn** ions, making it difficult to predict the resultant structure
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of the POMOF."" Therefore, considering the large numbers of
variables associated with the synthesis, such as the cation
content, coligands, competing ligands, and heating time, the
discovery of POMOFs based on the pyridine-functionalized
Tris-AE POMs can be both unpredictable and labor-intensive.

In order to explore the chemical space for the systems
involving the multiparameter control of complicated processes
and requiring a large set of reactions, automated systems with
customized machine learning (ML) algorithms recently have
been used to reduce labor and accelerate materials
discovery.'”'> Various machine learning models such as
support vector machines (SVM),'° random forest (RF)
regression,17 neural networks,'® and gradient boosting
algorithms'” have been applied for guiding chemical synthesis
to more efliciently explore chemical space. Among them,
eXtreme Gradient Boosting (XGBoost), a boosting algorithm
based on a regularized ML boosting tree model, can be used
effectively and reliably in the prediction and mining of
classification and regression tasks."”*’ The performance of
XGBoost has been compared with other machine learning
algorithms for predicting the crystallization propensity of
metal—organic nanocapsules (MONCs) by a set of training
data including both successful and failed experiments.'” Here,
the XGBoost model, with a prediction accuracy of >91%,
helped by increasing the speed at which the optimal reaction
parameters were defined from a large set of variables, resulted
in the successful discovery of a new set of crystalline
MONCs."”” POMOF synthesis also has a wide range of
experimental variables in high dimensionality and therefore can
also be guided by XGBoost for investigating the crystallization
propensity in a cost-effective sampling strategy.

In this work, we performed a closed-loop exploration of the
crystallization boundaries of 6-Tris-AE POM-based POMOFs.
This work was facilitated and enriched by an approach that
used two technologically advanced methods synergistically.
The XGBoost algorithm was trained to suggest reaction
conditions and predict the probability of successful crystal-
lizations, while a robotic system executed the suggested
reactions and generated further data, which the XGBoost
algorithm could learn from and use to suggest further
reactions. The assembly of the database, which is the crucial
element of this approach for the discovery of new POMOFs,
was carried out in a feedback loop based on the experimental
result of reactions that had the most uncertainty associated
with their predicted outcome, as determined by the XGBoost
algorithm. Both algorithm design principles and chemistry
knowledge were utilized in the sampling process to enhance
the model’s knowledge of the chemical space. The chemical
space map of a variety of POMOFs was established during the
process, which led to the discovery of new POMOFs including
one mixed-ligand POMOF. Structural, compositional, stability,
gas sorption, and electrochemical characterizations of the novel
POMOFs were achieved alongside chemical space map
generation, demonstrating the level of efficiency that is made
possible through the combination of ML and synthetic
automation.

B MATERIALS AND METHODS

Synthesis Design. As shown in Figure 1a, the §-Tris-based
Mn—-Anderson—Evans (POM-(NH,),, [N-
(C4Hy),4]3[MnMogO,4{(OCH,),;CNH,},]) were selected as
both the metal sources and the linkers that can connect with
the selected aldehyde by forming an imine bond, which was
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Figure 1. Schematic representation of the robotic discovery of
POMOFs: (a) reaction space for the synthesis of POMOFs in one-
pot, (b) robotic platform used for carrying out reactions, (c) the
confirmation and record of reaction results, and (d) uncertainty
feedback for optimizing the machine learning model.

Model training

synthesized as described previously.”' 4-pyridinecarboxalde-
hyde (L1), 3-pyridinecarboxaldehyde (L2), and 3-hydroxypyr-
idine-4-carboxaldehyde (L3) were selected as organic ligands.
Two pyridine ligand-functionalized AE POMs were previously
obtained by the imidization reaction of POM—(NH,), with L1
and L2, which can form coordination polymers with
[Cu(PPh,),(CH;CN),]ClO,.”* L3 with hydroxyl, aldehyde
substituents, and similar pyridine structure to L1 has been
reported to exhibit green fluorescence as the lowest molecular
weight of all dyes.”” Inspired by the coordination-driven self-
assembled capsules formed by the one-pot reaction with
pyridine aldehydes, amine, and metal ions,”** the discovery of
POMOFs in this work followed a similar one-pot synthetic
procedure with Zn(NO;),-6H,0 as the second metal node.
The reaction involves the formation of dynamic covalent (N=
C) and coordinative (N—M and O—M) bonds under
thermodynamic control, in which the reactant concentration
and ratio can be controlled for the formation of POMOFs in
different topologies. Therefore, the reactant concentrations,
single ligands, and competing ligands were focused on to
explore the chemical space and crystallization boundaries of
the POMOFs in a robotic system with the customized
XGBoost algorithm.

Robotic Platform. The core robotic hardware shown in
Figures 1b and S1 consists of a chemical reaction/mixing
module capable of performing parallel synthesis in up to 24
reactors and a larger heating mantle unit that can hold up to 48
reactions (14 mL vials).”® By using the rotation of the Geneva
wheel and high-precision syringe pumps, the chemical reaction
module performs liquid handling to achieve highly accurate
control of the volume of reagents dispensed into reactant
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Figure 2. (a) Schematic representation of working flow for extending the binary classification into the multiclass classification by transforming the
multiclass problem into multiple independent binary classification problems. (b) Accuracy of the final model for each independent binary

classification.

solutions. POM—(NH,),, L1, L2, L3, and Zn(NO;),-6H,0
were dissolved in N,N-dimethylformamide (DMF) separately
as stock solutions. To finely control the concentration of
reactants dispensed, neat DMF was also used as a stock
solution, allowing adjustments to reactive reagent stock
solutions in real time. The volume dispensed from the reagent
stock solutions ranged from O to 2 mL. After reagents were
added, the vials were sealed and transferred manually to the
heating mantle unit set at 80 °C (actual temperature in the
solution was observed to be 65 + 3 °C). All vials were left to
stand for 48 h without stirring, after which images of each vial
were obtained by microscope photography for initially
confirming if there are any single crystals (Figure 1c). Crystal
structures were confirmed by single crystal X-ray diffraction
(SC-XRD).

Model Optimization Loop. Figure 1d indicates the feedback
loop for training XGBoost models to describe crystallization
boundaries of POMOFs with the assistance of the robotic
system. Normally, input and output data settings for machine
learning models are collected from a lar%e database based on
random or manual design experiments.~ >’ Thus far, most
attention has been paid toward choosing a suitable algorithm
rather than a suitable strategy for obtaining high-quality and
relevant data. However, an efficient and reliable strategy for
collecting data not only enhances the quality of data but also
helps limit the number of unnecessary experiments, signifi-
cantly reducing the project’s cost while improving the
reliability of the model. Therefore, we opted to collect data
in a step-by-step approach, in each instance, performing the
reaction with the greatest uncertainty as predicted by the
XGBost algorithm. The type, concentration, and dispensing
sequence of the stock solutions were decided by carrying out a
synthetic screen in the robotic platform (details shown in
Supporting Information Section 2.1). The added volume of
POM~—(NH,), (0.03 mmol/mL), L1 (0.12 mmol/L), L2 (0.12
mmol/mL), L3 (0.12 mmol/L), and Zn(NO;),-6H,0 (0.045
mmol/mL) solutions and DMF were identified as the 6 most
significant variables in the formation of POMOF single
crystals. In order to promote imine bond formation, the
POM—(NH,),, organic ligands, and DMF were added in
sequence, and then the Zn(NO;),-6H,0 was added after 1 h.
After that, the vials were sealed, transferred manually to the
heating mantle, and heated at 80 °C for 48 h.

The initial experiments (42) were carried out by the robotic
platform based on either random (20) or manual design (22).
Once complete, data used to describe the result of reactions
were collected by microscope photography and SC-XRD. The
qualitative descriptions of the reaction results were categorized
into two classes: class “0” indicates the reaction result in which
single crystals for the target POMOFs were not formed, while
class “1” indicates the reaction result in which single crystals of
the target POMOF were formed. A sample is further checked
by SC-XRD to ensure that it is correctly assigned to class “1”
after the initial check by microscope photography. The extra
confirmation step by SC-XRD is necessary because not all
single crystal products are the desired POMOFs. For example,
it was found that the POM—(NH,), can directly coordinate
with zinc ions to form linear coordination polymer (POM—
Zn) crystals, and the aldehyde can be oxidized into the
corresponding acid crystals in DMF (Table $39). These results
would therefore be classified in class “0” as despite the samples
producing single crystals, they are not single crystals of the
desired POMOEF. The results with soluble, amorphous
products or microcrystalline products whose structures cannot
be confirmed by SC-XRD would also be classified in class “0.”

It is impossible for these POMOFs to form if POM—(NH,),
or Zn(NO;),-6H,0O is not present in a reaction system.
Therefore, the results of 65 reactions were set as class “0” as a
part of the initialization data set because even if they were
performed, there would be a 0% chance that the reactions
would yield a result of class 1 (see Supporting Information
Section 2.3). In the initialization data set, a total of 107
reactions were classified into class “0” and class “1” with a ratio
of 81:26, respectively. The initialization data sets were further
shuffled and split into training (80%) and test data sets (20%)
for training the first XGBoost machine learning model (the
details for the XGBoost algorithm are in Section 1.4 of
Supporting Information).

After being trained on the initialization data set, the
uncertainty of the experimental results from different synthesis
conditions were evaluated based on the model. In this context,
uncertainty is associated with the classification probability from
the model for the given experimental conditions. Additionally,
the sampling process of the potential experimental conditions
considered the sampling diversity in the chemical space (see
Supporting Information section 1.4). Following the initializa-
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Figure 3. Chemical space map predicted by the XGBoost for (a) POMOFx, (b) POMOF1, (c) POMOF2, and (d) POMOF3. Adding volume for
POM—(NH,), is fixed in 1 mL; color bar: the possibility for obtaining the target POMOF single crystals.

tion of the algorithm, the chemical space was explored in
parallel with model refinement by an iterative method: the 10
reactions with the highest degree of prediction uncertainty, as
given by the algorithm, were performed, analyzed, and
classified as previously described. Once the reaction conditions
were completed and the corresponding results were added to
the model’s total data set, the model is retrained and used to
generate a new set of reaction conditions. This process was
iterated until the exploration was finished. The whole
optimization loop for the machine learning model is shown
in Figures 1d and 2.

Bl RESULTS AND DISCUSSION

Evaluation of the Model. We recorded the accuracy of
the model based on the updated data for each optimization
cycle. Precision (P) is the ratio of the correctly predicted
positive observations to the total predicted positives, assessing
the accuracy of the positive predictions. Recall (R) is the ratio
of the correctly predicted positive observations to all of the
actual positives, measuring the ability of the model to capture
all of the relevant cases. F1 score (F1) is the harmonic mean of
precision and recall, which provides a balance between P and
R, making it a useful metric when there is an uneven class
distribution. Prediction (PD) is the ratio of the number of
correctly predicted results in a set compared with the total
number of experiments in the said set (Table S54). All of the
calculation details are shown in Supporting Information
Section 1.4.

As shown in Figure S35, the F1 score of the model trained
from the initialization data is 67%. The F1 score was improved
significantly to 92% after the second run. To increase the
training sample size and to discover more POMOF structures,
8 optimization cycles were run in the first stage, in which the
F1 score fluctuated around 80%. In this stage, 7 new POMOFs

had been discovered (POMOF1—1, POMOF1-2, POMOF2—
1, POMOF2—3, POMOF3—1, POMOF3—2, and POMOF1 +
3 are all shown in Figure 3) by mapping the chemical space
through model uncertainty. The nomenclature is given as
follows: for general POMOFx—y, x represents the ligand types
L1, L2 and L3, while y represents the number of phases from
the same ligand. According to their composition, the resultant
POMOFs can be categorized into three classes: (i) POMOF],
(ii) POMORF2, and (iii) POMOF3. A notable exception is
POMOF1+3, which contains L1 and L3 as mixed ligands and
therefore belongs to both classes i and iii.

Applying the target POMOF classification strategy, for
POMOF]1 systems, a reaction would be put into class “1” if it
produced single crystals that contained a POMOF with the L1
ligand. Any other outcome would result in the reaction being
classified as “0.” This strategy was extended to the POMOF2
and POMOEFS3 systems. After the first 8 optimization cycles,
the POMOF1 system had 63 reactions in class “1.” In regard to
the POMOF2 and POMOEF3 systems, there were 3 and 78
class “1” reactions, respectively.

To further explore the crystallization boundaries of the
POMOEF2 system, which was predicted to have a low
probability of a successful synthesis according to the previous
data, we performed 10 reactions. In these reactions, only L2
was added as the ligand, while L1 and L3 were completely
omitted. These reactions were predicted to be class “1” by the
all-inclusive POMOF model (POMOFx, the model that is
trained on a combined data set of all POMOF-ligand
systems). However, the experiment results show that only §
reactions formed single crystals of POMOF2 (Table $33, the
data were also used as the ninth feedback optimization data).
This means that the model trained from the first 8 cycles
cannot predict the POMOF?2 system very well, despite having a
high F1 score. Then, 20 reactions involving all ligands were

https://doi.org/10.1021/jacs.4c09553
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Figure 4. Topology structures of POMOFs based on single crystal structures. The node formed by the AE cluster is simplified as pink Mn atoms
with connection via pyridyl coordination in cyan color and connection via oxo coordination in red color. For POMOF1—1, the bright green colored
framework beside shows the zeolite A-type structure formed by Mn sites (pink) as octahedral apexes with the Zn site (yellow) located on some
edge centers. POMOF1—1, POMOF2—1, and POMOF3—1 have 3-D cubic, 2-D layer, and 3-D 4-connected topology, respectively. POMOF1-2
and POMOF3-2 have the same 3D (4,3) connected topology. POMOF2—2 and POMOF2—3 have the same another 3D (4,3) connected
topology. POMOF1+3 and POMOF3—3 have the same 3-D 4-connected topology.

designed to compare the prediction results to actual reaction
outcomes. For the POMOFx system, these two results match
very well (16/20 attack rating in Table $54 and Figure S36),
which implies that the low accuracy of the POMOF2 system
model can be attributed to the very small number of class “1”
results for POMOEF?2 in the training data set.

Extend the Binary Classification into the Multiclass
Classification. With the aim of improving the accuracy of the
model for all POMOF systems, especially for POMOEF2, the
independent binary classification model for POMOEF2 systems
was optimized by running more experiments through the
feedback loop process. In parallel, the accuracy of the model,
which continuously changed in response to receiving updated
data for POMOFx, POMOF1, and POMOEF3 systems, was
calculated (Figures S36—S39). Therefore, multiclass classi-
fication was achieved by transforming the multiclass problem
into multiple independent binary classification problems
(Figure 2a). The accuracy shown in Figure 2b was recorded
for each class to describe the chemical space.

As shown in Figure S38, the F1 for the POMOF2 system
was recorded from the 11th cycle. This is because there are too
few class “1” results to train the model and calculating the F1
score is inappropriate. Based on the large number of negative

28956

results, the classification model aims to select the conditions
with high uncertainty, which also tend to form POMOEF2
crystals. The selected reaction conditions with high uncertainty
are mostly those without L1 and L3 added, which indicates
that adding L2 as the only organic ligands would improve the
possibility of forming POMOF?2 crystals (Table $37). It should
be noted that data cleaning, which included removing
duplicate data and checking uncertain data, was carried out
during the process. After 18 cycles, the F1 for the POMOF2
system reached 0.85, and the PD, R, and P were 1.00, 0.85, and
0.85, respectively, which is the end of the collection of data.
Selecting the most appropriate data set based on it having an
F1 of >0.8 and the relative highest PD, the final models for
POMOFx, POMOF1, POMOEF2, and POMOF3 were trained
based on the data of 12, 12, 18, and 14 cycles, respectively (the
details are in Supporting Information Section 3).

As shown in Figure 2b, the F1 scores for the final models for
POMOEFx, POMOF1, POMOEF2, and POMOE3 systems are
0.85, 0.82, 0.85, and 0.89, respectively. In addition, their
respective PD value is 0.80, 0.80, 1.00, and 0.95. Therefore,
they not only exhibit high theoretical accuracy but also
demonstrate the ability to accurately predict reaction outcomes
when compared to actual experimental results. Furthermore,

https://doi.org/10.1021/jacs.4c09553
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the optimization loops based on the POMOF2 system
discovered two new phases, POMOF2—2 and POMOF3-3,
as shown in Figure 4.

Chemical Space of POMOFs. To create visual represen-
tations of data with 6 dimensions, chemical space maps based
on the models for POMOFx, POMOF1, POMOEF2, and
POMOEF3 were plotted by dimensionality reduction. The
resulting triangular plots, as shown in Figure 3, illustrate the
distribution of data points. Each edge of the triangle
corresponds to the ratio of one of the three ligands, with
points within the triangle representing various combinations of
these ligand ratios. A detailed explanation of the dimensionality
reduction process is available in Section 1.5 of the Supporting
Information. In Figure 3, the volume of POM—(NH,), is fixed
at 1 mL, while the dispensed volumes for L1, L2, and L3 can
range from O to 2 mL. In addition, chemical space maps with
the dispensed volume of POM—(NH,), ranging from 0 to 2
mL are shown in Figures S2—S5. The color bar, which ranges
from O to 1, signifies the probability of obtaining a single
crystal of the target POMOF. As shown in Figure 3a, the
probability of obtaining POMOF single crystals exceeds 0.7
across the majority of the three ligand ratio combinations. This
high crystallization tendency can be attributed to the carefully
chosen concentrations of reactants that were screened during
the initial stages of the experiments. As for the possibility of
obtaining the POMOF1 single crystals, Figure 3b indicates that
the low L2 ratio, <0.2, would not have a negative effect on
POMOF1 crystallization. Furthermore, we observed via
microscope photography (Figure S14) that adding L1 with a
small amount of L2 can actually help obtain single crystals of
POMOF1 with uniform size and morphology on the
micrometer scale. Similar phenomena were observed when
obtaining POMOF3 single crystals. The addition of a small
quantity of L1 or L2 during the POMOF3 synthesis can affect
the size and shape of POMOF3 crystals (Figures S18, S19, and
S21). By contrast, mixing L1 or L3 with L2 has a very low
possibility, below 0.1, for obtaining POMOF2 single crystals
(Figure 3c). A crucial observation arising from the chemical
space maps of POMOF1 and POMOES3 is that they show
overlap in the area, (Figure 3b,d) which indicates a high
possibility of obtaining both POMOF1 and POMOEF3 single
crystals. In reality, experimental results indicate that POMOF]I,
POMOFS3, and the mixed ligand POMOF1+3 all form in this
area (Table S21). The topological structures of all POMOFs
are listed in Figure 4.

Robotic Synthesis of POMOFs Driven by yDL.
Hardware-independent synthetic procedures in the standard
format represented by the universal chemical description
language (yDL) have been used to describe the reliable
synthesis of organic molecules and nanoparticles.'”*” In  this
work, the unique digital signatures for POMOF synthesis were
created in yDL format (Figure S33). The yDL for POMOFs
synthesis recorded the name and concentration of reagents, the
order and time of reagent addition, and the temperature and
time of heating. See Supporting Information Section 2.5 for a
complete description of the implementation. As shown in
Table S56, the SC-XRD results and yields with the sample
standard deviation ranging from 0.15 to 3.77 mg match well
with the reactions, which were repeated three times, indicating
the high reproducibility of the synthesis of POMOFs by this
robotic platform. The products of the repeat reactions were
used to collect additional characterization data.

Crystal Structure. During the first stage of optimization,
POMOF1-1, POMOF1-2, POMOF2—-1, POMOF2-3,
POMOF3—1, POMOF3—2, and POMOF1+3 were discov-
ered. In the second stage, POMOFs with L2 ligands were the
focus, leading to the discovery of POMOF2—2 and
POMOEF3-3. In total, there were 9 POMOFs discovered by
this robotic platform with the XGboost algorithm.

As shown in Figure 4, a Tris-Mn-AE cluster functionalized
with pyridyl groups as ligands can coordinate to Zn>* nodes in
two ways: one by pyridyl groups indicated by thick cyan sticks
and the other by POM-based bridging oxygen atoms indicated
by thick red-colored sticks. This scheme simplifies POMOF
networks and is consistently used in all following structure
descriptions.

Among these topological structures, the network of
POMOF1—1 has a cubic structure similar to zeolite A type
(the green-colored image on the right-hand side for the
POMOFI1—-1 in Figure 4) forming large cavities and holding
the solvated Zn—DMF complexes. The structure appears to
have high porosity, but current N, adsorption isotherm
experiments have not determined the porosity of activated
POMOF1-1 (Figure S60). This may be attributed to the high
stability of the isolated solvated Zn—DMF complex, which is
formed by additional Zn** ions and DMF ligands in the
cavities.

This solvated Zn—DMF complex balances the charge for the
3-dimensional network of POMOF1—1 with a Mn:Zn molar
ratio of 1 (Mn representing the AE cluster, see Table S61). In
the 3-dimensional network, each AE cluster acts as a 4-
connection node to link Zn ions through coordination of two
nitrogen atoms from the two pyridyl groups and two oxygen
atoms from the cluster. Each Zn also acts as a 4-connection
node, binding two pyridyl groups and two oxygen atoms from
two different clusters. A 4-connection node of the same type
can also be found in POMOF3—1. POMOF3—1 has a Mn:Zn
molar ratio of 1:2 other than 2:3 with some extra Zn centers
coordinating to the imine N atom and the deprotonated
phenol group (see Table S61). This Zn does not form nodes in
the POMOF network and, therefore, is omitted in Figure 4 for
POMOF3—1.

POMOF1-2 and POMOEF3—2 have the same three-
dimensional topological structure. POMOF1—2 has a Mn:Zn
molar ratio of 2:3 and forms a 3D network of Mn as 4-
connection nodes. There are two types of Zn centers in the
structure. One type of Zn center forms 2-connected nodes,
only coordinating two oxygen atoms from a cluster without
pyridyl ligand coordination. The other type forms 3-connected
nodes with one link to oxygen and two links from pyridyl
coordination. POMOF3—2 has a Mn:Zn molar ratio of 2:3
with a tiny Zn excess coordinating to imine and deprotonated
phenol groups. It should be noted that mixed ligands
POMOF1+3 and POMOF3—3 have the same 3-D topological
structure with Mn and Zn forming 4-connection nodes. They
both have a Mn:Zn molar ratio of 1:1 with charge balanced by
a TBA cation. The similar geometry of L1 and L3 not only
leads to similar topologies for POMOF1—2 and POMOEF3-2
but also allows the formation of POMOF1+3, which contains a
mix of ligands L1 and L3.

The POMOF2 structures that were discovered have
different topologies compared to the POMOF1 and POMO3
structures. POMOF2—1 has a Mn:Zn molar ratio of 1:2 with
the charge balanced by an OH- ligand from H,O on Zn
centers. The OH— ligand is disordered, with DMF molecules

https://doi.org/10.1021/jacs.4c09553
J. Am. Chem. Soc. 2024, 146, 28952—28960



Journal of the American Chemical Society

pubs.acs.org/JACS

Table 1. Summary of Electrochemical Properties of POMOFs, POM—Zn, and POM—(NH,),”

wt % POM wt % Zn Mn:Zn total molar

Sample (icp) (icp) ratio
POMOF1-1 43.83 4.37 1:1
POMOF2—-1 29.31 3.97 1:2
POMOF2-3 48.09 5.42 2:3
POMOF3—-1 42.88 5.56 1:1
POMOF3-2 45.02 343 2:3
POMOF1+3 47.89 3.33 1:1
POM—Zn 43.44 4.72 2:3
POM—-(NH,), 50.82

“POM: MnMo,O,s.

AE, Mn™™ E, M/ Capacitance (F/gpoy) 10
(V vs Ag/AgCl) (V vs Ag/AgCl) cycles
0.55 0.40 58.45
0.49 0.43 40.80
0.57 0.41 36.39
0.53 0.29 142.84
0.49 0.32 97.17
0.52 0.34 87.43
0.58 0.41 55.54
0.75 0.50 140.20

acting as ligands. Evidences show that the DMF ligands have
lower occupancies of the dimethyl amine parts than usual. Mn
forms 4-connection nodes, while Zn forms 2-connected nodes,
and therefore, a two-dimensional layer structure is observed for
POMOF2—1. POMOF2—2 has a Mn:Znmolar ratio of 1:1
with the charge balanced by a TBA cation and forms a unique
3D network. There is only one type of Zn center forming a 3-
connected node, while there are two types of Mn nodes. One
type is 2-connected, purely using the two pyridyl groups
coordinating to Zn. The other type is a normal 4-connection
node consisting of two pyridyl groups and two oxygen atoms
coordinating to Zn. POMOF2—3 has a Mn:Zn molar ratio of
2:3 with the charge balanced. All Zn ions are within the formal
POMOF network. There are two types of Zn nodes. One is 3-
connected with 3-fold coordination consisting of two pyridyl
ligands and one oxygen atom from a cluster; the other is 2-
connected with two oxygens coordinating from clusters. The
latter has a terminal ligand of free pyridine-3-carbaldehyde. All
of the remaining terminal ligands on both Zn ions are DMF.

Electrochemical Properties. To examine the electro-
chemical properties of the synthesized POMOFs, cyclic
voltammetry (CV) measurements were conducted in the
solid state using a three-electrode setup in an aqueous solution
(pH = 2.9) saturated with N,. The results obtained from the
selected POMOFs were then compared with those of POM—
(NH,), and POM—Zn chains that only connected by Zn**
under identical conditions. The shapes of the CV curves of all
of the obtained POMOF electrodes with Faradaic capacitive
characteristics show reversible multiple pairs of redox peaks. As
illustrated in Figure S63, all of the POMOF samples exhibited
similar redox features: one broad peak at positive potential in
the range of 0.30 and 0.41 V (vs Ag/AgCl) paired with its
corresponding cathodic peak at negative potential at around
—0.2 V (vs Ag/AgCl). This is indicative that the POMOF
materials display favorable reversibility for redox processes,
involving oxidation of Mn species (from Mn" to Mn'™).2®
Overall, the anodic—cathodic peak separation (AEp) is much
smaller for the POMOFs than the one observed for bare
POM—(NH,), and slightly smaller than the POM—Zn chain,
suggesting the more efficient electron transfer and better redox
reversibility in the POMOFs.”” This AE; of each material is
established by the position of the broadened anodic peak (E,),
as shown in Figure S63. The values of the AE; and E, for all
the POMOF materials are shown in Table 1. Additionally, a
significant correlation exists between AEp (or E, position) and
the ligand in the structure of a POMOF. POMOFs with L3 as
their ligands exhibit superior electron transfer compared with
those with L1 and much more than L2, implying that this
could have an effect on the capacitance of the system. To

further support this hypothesis, electrochemical impedance
spectroscopy (EIS) measurements (Figure S64) confirm this
trend, showing that the solution resistance (Rs) varies
consistently with the ligand present on the POMOF.
Meanwhile, the pristine POM and the POM—Zn complexes
exhibit significantly higher resistance than POMOFs.' In
Figure S65, variation of the current at different scan rates is
depicted. It can be observed that there are minimal changes in
peak separation with the variation of the scan rate for the
POMOFs. There is a significant increase in current intensity
with increasing scan rates. This behavior indicates high-rate
capability and suggests good electron transfer kinetics.

The capacitance of the materials was investigated in order to
compare the ability of energy storage between POMOF
structures, which is indicative of the degree of electron transfer
and electronic connectivity in the frameworks. To do that,
galvanostatic charge—discharge was performed at an applied
current density of 1 A/g of the sample for 10 cycles. Figure S66
shows the 10th cycle charge—discharge curves of the samples,
and the capacitance values are included in Table 1, which were
obtained from the discharge curve and normalized to the mass
of an Anderson—Evans POM (MnMo4O,3) in each POMOF.
The weight ratio of POM in samples was calculated based on
the relative Mo weight ratio measured by inductively coupled
plasma (ICP) analysis. The weight ratio of Zn shown in Table
1 was also measured by ICP. The Mn:Zn total molar ratio
shown in Figure 1 was calculated based on SC-XRD data.

As can be observed in Table 1, the capacitance of
POMOF3—1 is much higher than the POM—Zn and all
other POMOF materials; however, it is only slightly higher
than the capacitance of a pure POM—(NH,),. The capacitance
obtained after 10 cycles for POMOF3 systems was consistent
with the increasing weight ratio of Zn ions in POMOFs,
following the trend POMOF3—1 (142.84 F/gyom) >
POMOF3—-2 (97.17 F/gpom) > POMOF1+3 (87.43 F/
gpom)- Moreover, the capacitance of POMOF3—1 is around
2.6 times higher than that of the POM—Zn chain, whose
loading of Zn is 85% of that of the POMOF3—1.

Consequently, POMOFs with L3 ligands were found to
exhibit both superior electron transfer and capacitance, which
could be attributed to the presence of deprotonated phenol
groups coordinating Zn ions characteristic of the molecular
structure of such ligands. This insight opens up new avenues
for future research where the systematic modification of
ligands could be explored as a strategy to optimize electron
transfer properties and capacitance in these materials.

https://doi.org/10.1021/jacs.4c09553
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B CONCLUSION

We have developed a hybrid algorithm-driven robotic system
that uses the XGBoost algorithm for the closed-loop
exploration of the crystallization boundaries of POMOFs,
within the synthesis platform. After building the initial model
based on the initial data, the XGBoost model was optimized
using iteratively updated data obtained by uncertainty feedback
experiments. To effectively improve the accuracy of the model,
based on the POMOF classification from their chemical
constitution, the binary classification was extended into a
multiclass classification. The final models achieve F1 scores of
0.85 (all), 0.82 (POMOF1), 0.85 (POMOF2), and 0.89
(POMOE3) for each system. The predicted results from these
models match well with the actual experimental results with a
high accuracy around 0.8 and above. In order to visualize the
crystallization propensity of POMOFs with factors in 6
dimensions and guide further synthesis, chemical space maps
in triangular plots were plotted based on the XGBoost model
with dimensionality reduction. In addition, the POMOF
syntheses, driven by the unique digital signatures represented
by yDL, have achieved reproducible crystallization and yields.
Among the 9 newly discovered POMOFs in 2D and 3D
structures, POMOF1—1 has an interesting cubic structure
similar to the zeolite A type, and POMOF1+3 is formed with
mixed ligands of L1 and L3. Furthermore, the electrochemical
properties of the synthesized POMOFs were investigated by
CV measurements to compare their electron transfer and
energy storage abilities. POMOF3—1 with the highest Zn
loading exhibited superior electron transfer compared to pure
POM—(NH,), and achieved the highest capacitance after 10
cycles compared to not only the POMOFs formed by L1 and
L2 but also other POMOEF3s. These results indicated that the
ratio of Zn, the type of ligands used, and the topological
structures of POMOFs directly affect their electrochemical
properties, which will be further explored in future work.
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