Downloaded via UNIV OF GLASGOW on December 11, 2025 at 16:09:17 (UTC)
See https://pubs.acs.org/sharingguidelines for options on how to legitimately share published articles.

JOURNAL OF
CHEMICAL INFORMATION
AND MODELING

This article is licensed under CC-BY 4.0 @ @

pubs.acs.org/jcim

Rapid Exploration of the Assembly Chemical Space of Molecular

Graphs

Ian Seet, Keith Y. Patarroyo, Gage Siebert, Sara I. Walker, and Leroy Cronin*

Cite This: https://doi.org/10.1021/acs.jcim.5c01964

I: I Read Online

ACCESS | [l Metrics & More | Article Recommendations | @ Supporting Information

ABSTRACT: Quantifying how hard it is to build a molecular
graph matters for biosignature detection, chemical complexity, and
cheminformatics. We present an exact, scalable algorithm to
compute the molecular assembly index (MA), which prioritizes the
largest duplicate subgraphs, represents fragmentation with an array
of edge-lists, and prunes the search with both dynamic
programming via a hash table of assembly states and a branch-
and-bound heuristic guided by a conditional addition-chain lower
bound. For organic molecules in the greater-than-500 Da range, our
approach is up to 6 orders of magnitude faster than prior methods

Molecular Graph
a Sort duplicated subgraphs Algorithm
Hash Assembly State Branch and Bound|

Recursive call

‘——— Store Pathway —>

Assembly Index

and yields exact MAs where previous algorithms would have timed out. We compute MAs to convergence for ~300k COCONUT
natural products with <50 bonds, profiling time and memory scaling. Finally, we exploit the speed of our algorithm to calculate joint
assembly spaces and introduce the Joint Assembly Overlap (JAO), a Jaccard-like metric that emphasizes global scaffold reuse, and
show that the JAO vyields substantially different rankings from Tanimoto similarity with ECFP fingerprints and MCS (e.g., in steroids
270—380 Da and short peptides), accounting for substructural similarity beyond local environments. Together, these advances turn
the molecular assembly index into a practical tool for large-scale exploration of chemical space.

B INTRODUCTION

Cheminformatics hinges on quantifying structure, similarity, and
complexity to explore the vastness of chemical space. Standard
tools to quantify similarity e.g.— the fingerprint-based
Tanimoto metrics (e.g, ECFP-4/ 6)" and maximum common
substructure (MCS)*—are fast and effective, but the former
emphasizes local neighborhoods at the cost of global features,
while the latter only considers the largest common substructure,
presenting problems when the targets have many disjoint
common substructures. Assembly theory offers a different
perspective: the molecular Assembly Index (MA) measures the
minimal informational constraints needed to build a molecular
graph—the fewest joining steps required when previously
assembled fragments can be reused (illustrated for benzoic acid
in Figure 1, MA =6). A molecular graph is an abstract
representation of the structure of a chemical compound. The
Assembly Index of a molecule attempts to capture the minimal
informational constraints needed to construct such abstract
representation. As such it is defined as the fewest number of
steps required to make its molecular graph by recursively using
previously made structures. For example, we might consider the
following molecule (benzoic acid), with its bonds as building
blocks (Figure 1a).

We can obtain the assembly index by counting the steps in a
minimal way to construct the molecule using shared vertex
assignments to join bonds and intermediate structures, Figure
1b. The assembly index of a molecular graph was first proposed
by Marshall et al.” in the context of finding biosignatures in the

© XXXX The Authors. Published by
American Chemical Society

7 ACS Publications

search for life in other planets. It has received recent attention for
the exploration of chemical space,” the measurement of
chemical complexity,” and the quantification of evolution and
open-endedness.*”

It would initially appear that a key problem linked to finding
the assembly index of a molecular graph is that of molecular
subgraph enumeration. Enumerating connected subgraphs has
been used to define the complexity of molecular graphs® and for
graph substructure mining with the aim of designing molecular
graphs with specific properties.” Typically, this enumeration is
performed in a depth-first manner,'® and some canonical
ordering is induced depending on the specific application. While
our algorithm enumerates all possible duplicate subgraphs once
at the start of the algorithm, we subsequently store the
relationships between the duplicated subgraphs as a directed
acyclic graph which we reuse. As we do not repeat the
enumeration process, this subgraph enumeration is not generally
the slowest step of the algorithm.

The problem of finding minimal addition chains'' is
equivalent to finding the assembly index of a chain of bonds

Received: August 16, 2025
Revised: November 19, 2025
Accepted: November 21, 2025

https://doi.org/10.1021/acs.jcim.5c01964
J. Chem. Inf. Model. XXXX, XXX, XXX—XXX

Journal of Chemical Information and Modeling

pubs.acs.org/jcim

a) 3
Molecule

b)

>

o _

e

P

N\ A
== O

O
.
: > »«: C
1o

Figure 1. (a) Molecular graph of benzoic acid, with the set bonds being used to represent it. (b) Progressive minimal construction of the molecule
benzoic acid from a set of bonds, at each step a pair of structures are joined or “glued” like Lego pieces in order to construct the desired molecule.

with one bond and atom type. Addition chains and their
properties are extensively studied problems of which one of its
generalizations have been proven to be NP-Complete.'” This
last problem viewed in the context of assembly indexes and
assembly spaces is equivalent to find the joint assembly space” of
a set of chain of bonds with one bond and atom type. Moreover,
as highlighted in Marshall et al,'® both the minimal addition
chain and vectorial addition'* chain are special cases of the
formalism of assembly spaces and are employed to compute
lower bounds of the assembly index of more complex spaces.

The process of calculating the assembly index of a molecular
graph can generate a compressed representation which can be
sent through a communication channel, albeit at considerable
computational cost. One can alternatively represent a molecule
using a molecular specification format, like SMILES"® and
compress the resulting set of strings with a text based
compression technique.'®"” These techniques may generate
more optimal compression for strings, but they lack the
structural properties of the assembly construction process.
Furthermore, there is little evidence that they perform well for
compressing molecular graphs.'® On the other hand the
problem of context-free grammar based text compression,
while also being computationally costly, shares a similarity with
assembly pathways in the hierarchical nature of the representa-
tion of the compressed objects.'”*’

Other than molecular graphs, one can compute assembly
indices of other data structures like strings, pixelated images and
voxelized 3D objects.'” These data structures have compression
techniques that take advantage of the sparse nature of the
objects,”' ~*’ this resembles the way in which the assembly index
construction recursively uses redundant data. If one ignores the
specific nature of the data structures, one could resort to
universal sequence data compression techniques.'® While these
algorithms may provide a considerable compression ratio, they
differ fundamentally from the assembly index construction
process and also do not appear to be effective for molecular
graph compression.'® Our initial algorithms® have used
nauty”**® in the canonical labeling of enumerating all possible
duplicatable subgraphs. While nauty is a fast graph iso-
morphism26 library, it is a general graph isomorphism algorithm
and furthermore does not explicitly handle edge colorings,
forcing additional vertices to be added to simulate edge
colorings. Although there exist algorithms that can solve for
molecular graph isomorphism in polynomial time,”” these
algorithms are difficult to implement. In this work we mostly
consider the case of molecular graphs arising from organic
molecules, where there are relatively few duplicatable cyclic
subgraphs and the maximum degree is low. We thus combine a
strategy of tree isomorphism™ for acyclic subgraphs and a

general graph isomorphism using the VF2 library”” for the rest.
As graph isomorphism is generally not the slow step in the
assembly algorithm, we do not believe it is practically necessary
to implement the polynomial time isomorphism algorithms.

Several measures of complexity for molecular graphs have
been proposed which attempt to capture structural properties of
the graph.**"*
proposed concerning the number of subgraphs in the molecular
graph, these are indices which sum vertex degrees in subgraphs
from the molecular graphs,”” count all the number of subgraphs®
or spanning trees.”’ Such measures differ from the assembly
index by being tied to the specific application for which they
were developed. Also of importance are the measures of
algorithmic information theory”” such as Kolmogorov.’* These
measures attempt to quantify complexity in a universal sense by
finding the shortest computer program that can produce the
molecular graph. Although this is a very powerful measure, it is
incomputable, unlike the assembly index. Differences between
assembly index and computational complexity measures were
expanded in Kempes et al.””

Our earlier research has tackled the computation of the
assembly index of molecular graphs® > and strings.”” Since the
duplicate subgraph enumeration is very computationally
intensive for large molecules, earlier approaches approximated
the process by splitting the molecular graph in large
substructures with little overlap.” Other approximations rely
on random sampling of duplicate subgraphs for molecules” and a
binary tree decomposition for strings. The efficient computa-
tion of an exact assembly index of molecules™"” and strings” has
been explored recently with a depth-first subgraph enumeration
with a logarithmic branch and bound. In this work we build on
this work and introduce a dynamic programming with a
sophisticated branch and bound to compute assembly indices
efficiently of large molecules.

In particular, various measures have been

B DEFINITIONS

Let Gy, = (V,E) be a molecular graph, whereV is the set of vertex
associated with atoms of the molecule excluding hydrogen
atoms. The set E is the set of edges associated with bonds, e.g,,
covalent, organometallic, etc., that can be found between the
atoms of the molecule. The association of vertex and edges with
atoms and bonds is given by the labeling functions 1,,: V' — X,
and I;: E — g, where Xy, and X represent the type of atoms
and bonds present in the molecule, respectively. Given a

molecule or in general a set of molecules {G]iw}?:l, an assembly
construction process, constrained by all the atom and bond

types T, 2 of the set, is a construction procedure generated by

https://doi.org/10.1021/acs.jcim.5c01964
J. Chem. Inf. Model. XXXX, XXX, XXX—XXX

Journal of Chemical Information and Modeling

pubs.acs.org/jcim

Assembly Pool P,

/ —\ Z [\
= S) |2 =
- -

=12 O =

Assembly Pool P,

O

Assembly Pool P;

Rk
—

Figure 2. Three different assembly pools containing the molecule benzoic acid. Only P, and P; are minimal-size assembly pools.

Input Molecule

N

Assembly Index = 10

Remnant
Structure

Duplicate
Structures

D—

Assembly Index =

@\ _j\

Assembly Index = 5

Duplicate Structures Enumeration

-
0D

Figure 3. Fragmentation of a molecule-graph via iteratively searching for and removing duplicatable subgraphs.

a set of objects, called virtual objects or fragments and a set of

joining operations that build fragments from other fragments.
Definition 3.1. The set of virtual objects or fragments Q

represent all molecular graphs with fixed atom and bond types

2‘1;, Eg determined by a fixed set of molecular graphs {wa }:;1

With this definition in mind, we now consider how to build
fragments in this space.

Definition 3.2. Given two fragments x,y € £ we define the
joining operation such that x © y = z is the molecular graph
resulting of the union of x and y plus an identification of a
nontrivial set of vertices of x and y that are made identical.

This formalizes the idea of “gluing” two molecular graphs by a
specific set of common atoms. Note that there are multiple ways
of joining x and y, the notation x © y = z in this case means that
there exists a joining operation which combines x and y into z.

An important subset of objects that are useful for building
fragments is the set of building blocks,

By = {u€Q:|E|=1) (1)

therefore, the building blocks are the set of molecular graphs in
€ with one bond.

Whenever we are performing an assembly construction
process, we accumulate a set of fragments. We formalize this
with the following definition,

Definition 3.3. An assembly pool P is any set of fragments P C
€ such that for all z € P\B,;,3 x, y € Psuch thatx @ y = z.

We can now consider what is the minimum number of steps to
build a fragment x € € or a set of fragments X C € that are
contained in a specific assembly pool P.

Definition 3.4. The assembly index, or molecular assembly
(MA), of a set fragments X C Q is the minimum size assembly
pool that contains X excluding the building blocks,

MA =g, = minP(X)|P(X)\BM| (2)

where P(X)is an assembly pool that contains X. Note that even
though the assembly index is unique, a minimum size assembly
pool for a given X C € is not generally unique. In Figure 2, we
present three examples of assembly pools for the molecule
benzoic acid. P, represents a naive construction, building all the
fragments one bond at a time. P, and P; represent minimal
constructions, but with different elements, exemplifying that
minimum-size assembly pools are not unique.

Given a specific assembly pool P(X), we can generate an
assembly space, we define it as,

Definition 3.5. An unlabeled assembly space I' generated by
an assembly pool P(X) is a multidirected acyclic graph(multi-
DAG) where we have x € P & x € Vi and for
x,9,2E€P,x0y=ze[x 2], [y, z] € Er.

Note that since the graph is a multi-DAG, we can have (x,z)
repeated twice meaning that x was used twice to build z.

If we add an edge-labeling map ¢: E- — V- such that ¢([x,2])
=y and ¢([x,z]) = 2, then we have an equivalent definition of an
assembly space to the general quiver formulation in ref 13. In this
paper we refer to the unlabeled assembly space as assembly space
for simplicity. We shall also refer to the assembly space of a set of
fragments X as a joint assembly space. Finally, we will refer to an
assembly path or assembly pathway as a specific topological
ordering of an assembly space’s vertices. See Figure 1 as the
assembly pathway of benzoic acid generated by the assembly
pool P, from Figure 2.

https://doi.org/10.1021/acs.jcim.5c01964
J. Chem. Inf. Model. XXXX, XXX, XXX—XXX

Journal of Chemical Information and Modeling

pubs.acs.org/jcim

Molecular Graph

Graph
Isomorphism

Grow duplicate Sort duplicated
subgraphs ®- subgraphs Fragment Graph

Store Pathway

R

Hash Assembly
State

Branch and Bound
Pruning

Recursive call
\J

Assembly Index

Figure 4. Workflow of the main parts of the algorithm. All the duplicate graphs are grown and classified as unique via the VF2 graph isomorphism.
Those duplicated subgraphs are sorted and fragmented according to duplicates in reverse order of size using a modified disjoint-set data structure.
Finally, the fragments are recursively hashed into a Hash assembly state and pruned with a tight branch and bound strategy. This process is done until
convergence, and at each step, the best construction pathway is stored for retrieval.

Although we aim to find the shortest pathway required to
construct a graph from two-bond fragments, the graph assembly
algorithm does not directly calculate the assembly index by
searching through the space of possible pathways. Rather, it
attempts to find duplicatable subgraphs in the molecule-graph
and iteratively removes subgraphs (Figure 3).

At each step of the process, we find a duplicatable subgraph
within the molecule graph. We then remove this duplicatable
subgraph from the structure by deleting all edges (but not
nodes) from the original graph and disconnect the replicated
structure associated with the duplicatable subgraph from the
remnant structure. We continue this process until no possible
duplicatable subgraphs remain.

The maximum possible assembly index for a graph is N—1,
where N is the number of edges in the graph. Such a graph has no
duplicatable subgraphs with at least two bonds. In order to
calculate the assembly index using this duplicate-finding
method, for each duplicatable subgraph deleted, we subtract
from the N—1 upper bound the value k—1 where k is the number
of edges in the subgraph. This is because each duplicate of size k
represents a saving of k—1 bonds over a one-bond fragment
during the forward assembly process. The sum of all k—1 values
for all possible duplicates S can be subtracted from N—1 to
obtain the assembly index for a particular molecule.

B DATA STRUCTURES

As all possible fragments generated by the aforementioned
process must necessarily be fragments of the original molecule-
graph, we may efficiently represent such fragments as a boolean
edgelist. A boolean edgelist is an array of boolean variables of size
N where N is the number of edges in the original molecule-
graph. Each boolean variable within the array corresponds to the
presence or absence of a particular edge for a given fragment.
This boolean edgelist may be conveniently implemented as a
bitset variable in C++.

Each step in the assembly process may be stored as an
assembly state. An assembly state consists of an array of edgelists,
where the first element is the edgelist of the last fragment found
in the previous state. The fact that the first element in the
edgelist is the last element taken can be used to ensure that
pathways containing permutations of identical duplicatable
fragments are not investigated more than once. An assembly
state also stores the value of S, the duplicate sum of the pathway
that resulted in this specific collection of fragments. This
duplicate sum can be used to find a lower bound on the assembly
index that would be obtained for a given pathway.

B ALGORITHM

The graph assembly algorithm seeks to find the shortest
assembly pathway and does so by finding the pathway with the
largest value of S. Broadly, it does so by first finding all possible
duplicatable subgraphs in the initial graph. It then iteratively
generates assembly states by removing the duplicatable
subgraphs from the parent graph until no possible duplicatable
subgraphs remain. For most molecule graphs, the duplicatable
subgraph enumeration is not generally the slowest step; rather, it
is the iterative fragmentation to find the pathway with the
maximum value of S which is the most time-consuming part of
the algorithm (Figure 4).

We implement three major heuristics to reduce the time
complexity of the iterative fragmentation. First, we iterate
through duplicatable subgraphs in inverse order of size such that
the largest duplicates are processed first. Second, we utilize
dynamic programming by hashing and storing all assembly states
to prevent the algorithm from processing states it has
encountered before unless those states have a higher value of
S. Third, we implement a branch and bound heuristic where we
exploit the fact that the duplicates are searched in reverse order
of size to establish a tight lower bound on the maximum
obtainable value of S for a given assembly pathway (Figure 4). In
addition to these major heuristics, we implement several other
techniques to prune the search tree which we shall explain in
greater detail in the following sections.

The first step in the graph assembly algorithm is to delete all
unique bonds as they cannot possibly be part of any duplicatable
subgraph. This algorithm is trivially of time complexity O(V + E)
where Vis the number of vertices and E the number of edges of
the molecular graph and only needs to be performed once at the
start of the algorithm.

Subsequently, all potential duplicated matching substructures
are enumerated and hashed (Algorithm 1). The function
Matching_Enumerator() is used to generate a new set of
duplicatable subgraphs from a previous set by adding all possible
adjacent edges to the graph via the function
Duplicate_Generator(). We use a persistent variable Global-
HashMap, a hash map with a graph key and an integer value to
index all distinct subgraphs encountered. If two graphs are
isomorphic, they will have the same key-value pair. We store all
isomorphic sets of subgraphs in the local hash map Local-
HashMap, which has an integer key and a value corresponding to
a list of isomorphic subgraphs. By collecting all isomorphic
subgraphs into a single list, we can find all potential matching
subgraphs by comparing their boolean edgelists to detect

https://doi.org/10.1021/acs.jcim.5c01964
J. Chem. Inf. Model. XXXX, XXX, XXX—XXX

Journal of Chemical Information and Modeling

pubs.acs.org/jcim

overlaps via the function Matching Validity(), with non-
overlapping boolean edgelists constituting valid matches.

While there exist methods to perform molecular graph
isomorphism in guaranteed polynomial time,”” for the purposes
of our algorithm, our inputs are largely organic molecules which
do not generally have a large number of cyclic duplicatable
subgraphs. In particular, many duplicatable subbgraphs will be
acyclic. Tree isomorphism can be implemented in O(N) time
where N is the number of nodes of the trees to be compared.
Constructing an adjacency list from an edgelist and checking if a
graph is cyclic can trivially be performed in O(N) time, thus, if
the duplicatable subgraphs are acyclic, isomorphism can be
performed in linear time.

In the case where the duplicatable subgraphs are not acyclic,
we use the C++ graph canonization algorithm implemented in
the VF2 library”” to check if cycle-containing subgraphs are
isomorphic. Although the worst-case performance for the
general graph isomorphism problem is not provably of
polynomial time complexity, we find that VF2 is fast in practice
when executed on most molecular graphs. For the duplicate
enumeration performed on every assembly state apart from the
original molecule, we keep track of the sorted index of the most
recently removed duplicate (i.e., the first element in the
assembly state’s list of edgelists as mentioned in the section on
data structures). To prevent the algorithm from evaluating
multiple permutations of the same assembly state, we only
evaluate duplicates which have a sorted index smaller than or
equal to the most recently removed duplicate. This restriction
on maximum duplicate size also allows for a tighter lower bound
to be calculated for the assembly index of a given assembly state,
as we elaborate in the next section. During the enumeration, we
keep track of every bond which is part of every potential
duplicatable subgraph with a bitset variable, where we initialize a
bitset variable to 0 and set the bit corresponding to the bond’s
index in the edgelist to 1 if the bond exists as part of any
duplicatable subgraph. If a bond is not part of any duplicatable
subgraph, we remove it from consideration in a process directly
analogous to the preprocessing step.

On the first pass of the algorithm, we organize the duplicates
into a directed acyclic graph (DAG). The nodes of this graph
correspond each unique duplicatable subgraph and each
directed edge points from a given duplicatable subgraph to
every subgraph with one additional edge that was discovered
during the enumeration process. Construction of this DAG can
be accomplished in O(V, +E,) time where V, are the number of
unique duplicatable subgraphs and E; the number of potential
edges of the DAG. Note that although a given duplicatable
subgraph can be constructed from multiple parent subgraphs, we
only maintain an edge from the first such parent encountered,
minimizing the size of the DAG. Furthermore, we do not have to
repeat this step on subsequent passes of the algorithm as the
DAG is preserved.

Function Duplicate Generator (TargetGraphs,LocalHashMap) :
for g € TargetGraphs do
for e € AdjacentEdges do

NewGraph := g.append (e)

if GlobalHashMap.contains(NewGraph) is false then
increment Key by 1
GlobalHashMap.insert (Key, NewGraph)

end

n := GlobalHashMap.keyOf(NewGraph)
LocalHashMap.valueOf (n) . append (NewGraph)

end
end
Function Matching Validity (g;, g;):

if g,.edgelist V g .edgelist | = 0 then
RETURN false

else
RETURN true

end

Function Matching Enumerator (MatchingList, PriorDuplicates) :
Duplicate_Generator(PriorDuplicates, LocalHashMap)
for v € LocalHashMap.Values do
for g, € v do
for g,! = g, € v do
x := Matching_Validity (g, g,)
if x==true then
MatchingList.append (g, , g;)
active := true
end
end
end
end

Algorithm 1: subgraph matching enumeration.

B BRANCH-AND-BOUND HEURISTIC

Before an assembly state is fragmented, it is reasonable to
produce a crude lower bound of the minimum achievable
assembly index for that state and delete this state from the stack
should this lower bound be greater than the lowest assembly
index found thus far. A trivially provable lower bound is log(IN)
where N is the total number of bonds in the assembly state, but
we can achieve a much tighter lower bound by exploiting the fact
that all children of a particular assembly state will have a
maximum duplicate size not greater than the parent due to the
duplicate evaluation heuristic described in the previous section.

This bound on the maximum size of the largest duplicatable
subgraph which may be taken for all children of a particular
assembly state can in turn be used to bound the value of S (and
thus, the minimum obtainable assembly index) by the following
expression:

S=max(b(x): x=2,3,.,m— 1, m) (3)

b(x) = —|log, x L — [L/x]
[g]+Z (4)

where m is the maximum size of the largest duplicatable
subgraph and L is the size of each fragment in the assembly state
up to the ith fragment.

In order to rigorously prove this expression, we define a new
problem: the conditional addition chain problem. This is a
variant of the addition chain problem but where at a specific
integer m must be used and no number larger than this integer
may be used except in combination with a number smaller than
or equal to this integer. This is because there is a limit on the
maximum size on the largest duplicatable subgraph which
corresponds to the limit on the size of m. Thus, the length of the
shortest path solution to this problem is therefore also a lower
bound to the analogous graph problem.

https://doi.org/10.1021/acs.jcim.5c01964
J. Chem. Inf. Model. XXXX, XXX, XXX—XXX

Journal of Chemical Information and Modeling

pubs.acs.org/jcim

We shall now prove that this expression yields a maximal value
of § for a conditional addition chain, and thus also represents a
lower bound on S.

Lemma 4.1: for a conditional addition chain with specific
integer m and size [, the shortest chain length cannot be smaller
than is [I/m] + [log, m] — 1.

Proof: if [is divisible by m, it is trivial to see that that the
number of addition steps not including the steps required to

.1 .
construct m is — — 1. Since m must be used at least once
m

regardless, the term [log,m| which describes the minimum
addition chain length required to construct m must be included.

In the case where [is not divisible by m, there is no benefit to
including a sum where the smaller number is smaller than m

more than once, corresponding to the remainder of L. This is
m

! . 1
because —— where x > 0 must necessarily be greater than —.
m-—x m

Thus, the number of addition steps required not counting the
steps required to construct m is [I/m] — 1.

Lemma 4.2: for a conditional addition chain of a set of
integers of sizes {I;,],...],} with specific integer m, the shortest
chain length cannot be smaller than Zi [l/m] + [log, m] — L

Proof: we can apply lemma 4.1 individually to each integer J;
in turn since each integer’s addition chain is independent of the
others, with the exception that the [log, m| — 1 term need only
be used once.

Lemma 4.3: the optimal pathway for a conditional addition
chain of a set of integers up to a maximal specific integer m
cannot be shorter than the conditional addition chains for
specific integers 2,3,.,m — 1,m for any [>2.

Proof: from lemma 4.1.

From lemmas 4.1 and 4.3, we may now derive eq 4. The upper
bound on the value of S is equal to the lower bound on the
assembly index A from Lemma 4.1 subtracted from the maximal
assembly index of a fragment L—1 for a given m, see (6). From
(6), we may derive (4) by using lemmas 4.2 and 4.3.

L-1-A=S (5

S=L - [L/m] — [log, m] (6)

It is possible to replace the [log, m] term with precalculated
assembly indices for uniform linear strings of length m, but the
effects on time efficiency are not significant, with the improved
lower bound possibly being outweighed by poorer cache
performance.

The simple conditional addition chain heuristic may be
extended further by exploiting the fact that it is rare for L to be
equal to the maximum number of bonds L,, that may be taken
for fragment size m. Thus, one can calculate separate conditional
addition chains for L —L,, with fragment size m—1, and L,, with
fragment size m The sum of the two separate conditional
addition chains may then be used in place of S.

B FRAGMENTATION

As we have now established an ordering of duplicatable
subgraphs, we must now remove the duplicatable fragments
from the list of boolean edgelists. This may seemingly be
accomplished by a simple binary bitwise XOR operation
between the boolean edgelist of the duplicatable fragment and
the boolean edgelist of the parent. However, a complication may
arise if this removal causes the parent to further fragment into
several smaller graphs. Directly hashing the resulting edgelist is
not desirable as there are far more combinatorial possibilities if

the edgelist is hashed directly than if it is fragmented first.
Furthermore, as the branch-and-bound heuristic we use benefits
greatly from having each distinct fragment enumerated, we
require an efficient algorithm to separate the remnant boolean
edgelist corresponding to the former parent graph into a list of
edgelists, each corresponding to the graph of each connected
fragment.

Function Disjoint Set construction (DisjointSet, EdgeList) :
for p € Edgelistdo
if DisjointSet.find (p.first) isfalse then
DisjointSet.insert (p.first)
end
if DisjointSet.find (p.second) isfalse then
DisjointSet.insert (p.second)
end
DisjointSet.union (p.first, p.second)
end
Function Disjoint Set Splitting (DisjointSet, AssemblyState) :
for i € DisjointSetdo
DisjointSet.compress(i)
end
for i € DisjointSet do
HashMap.valueOf(DisjointSet.find(i)).append(i)

end

for j € HashMap.values do
AssemblyState.append(j)

end

Algorithm 2: disjoint-set construction and splitting.

We may accomplish this task by using a modified disjoint-set
data structure to reconstruct all connected subgraphs for a given
edgelist (Algorithm 2). To do so, we first run the disjoint-set
construction function on the target boolean edgelist and then
use the disjoint-set splitting function on that disjoint set. The
result of this operation is a set of boolean edgelists
corresponding to the remaining fragments. The time complexity
of this algorithm is O(Ea(E))*° where E is the number of edges
in the list of edgelists and « is the inverse Ackermann function;
this function is practically linear in E. We then apply the branch-
and-bound heuristic a second time on the fragments produced
by the disjoint-set splitting.

B ASSEMBLY STATE HASHING

The boolean edgelist obtained from the disjoint-set reconstruc-
tion is then sorted in O(N log(N)) time; the comparator
function used for the sorting can be arbitrary as long as it is
consistent. We subsequently append the original fragment to the
set to create a list of edgelists where the original fragment is the
first element, which corresponds to the assembly state previously
mentioned in the section on data structures. Since each boolean
edgelist has a unique hash value, we may use the edgelist hash
function to convert the list of edgelists into a vector of integers,
which may in turn be trivially hashed in average case O(N) time
using any string hashing algorithm. By hashing each assembly
state we prevent identical states from being evaluated more than
once unless there is an improvement in the sum of duplicate
bonds found.

B RECURSION AND PATHWAY GENERATION

With the branch and bound heuristic and the assembly hash
table, we may eliminate the majority of assembly states produced
by the fragmentation step from consideration. We then
recursively evaluate the remaining states in descending order
of m. This arrangement results in the states with the largest
values of m being evaluated first, which intuitively results in a
good upper bound early in the execution and improves the

https://doi.org/10.1021/acs.jcim.5c01964
J. Chem. Inf. Model. XXXX, XXX, XXX—XXX

Journal of Chemical Information and Modeling

pubs.acs.org/jcim

Table 1. Memory and Time Comparison of State-Of-The-Art Methods for Calculating the Assembly Index of Molecular Graphs

Depth-First This Work
Molecule a; Bonds Time (s) Memory (MB) Time (s) Memory (MB)
SR1001 22 31 1444 40.0 0.006 6.82
Quinoline Yellow 11 24 1027 184.3 0.021 7.35
Dienogest 11 26 3089 156.8 0.050 9.27
Pirenperone 19 32 >3600 - 0.051 7.38
Ketoconazole 22 40 >3600 - 0.225 8.39
Cefpirome 25 39 >3600 - 0.113 8.44
Cefiderocol 30 54 >3600 - 4.71 25.0
Cefpimizole 27 50 >3600 - 3.00 24.7
Tetranactin 9 60 >3600 - 102.6 2678
Phosphatidylcholine 22 S5 >3600 - 4.51 215
Erythromycin 20 S3 >3600 - 15.05 57.7
Todotaxol 20 S50 >3600 - 20.71 11.1
a) b)
50 o
) ® Naive ai ® Naiveai
® Approximate ai o A ate ai
Exact ai 50 A . E::): :i‘md !

» %

S40 b

R K

- > 40

% £

330 2

< <30

20 :
10‘5 10 3 1071 10] 10 ’ 10 } 10_] 101 103
Time(seconds) Time(seconds)

Figure S. (a) Progressive approximation of the assembly index from the molecular graph of Iodotaxol given computational time until convergence to
the exact value. (b) Progressive approximation of the assembly index for the molecular graph of phosphatidylcholine given computational time until

convergence to the exact value.

~ 8
~)\
gl TR
o
»)\‘
4 D
AL
_<
.74/\ D)\/g\ D/'\ 2
\ >4 - 3 AAA
P = 1 C > a 4
= ’ Y| [
>\ Y ~
L < B = -
X A
e N Y) Y
A 2
v < g

Z 1 A
s o =N

Figure 6. Pathway reconstruction of the molecular graph of Iodotaxol from the duplicated and remnant structures produced by the algorithm.

ability of the branch and bound algorithm to eliminate states
which cannot reach this bound.

Recovering the assembly pathway can be accomplished by
taking advantage of the fact that all unique assembly states are
stored in a hash table. We retain a pointer between each
assembly state and its immediate parent. Should an assembly
state have its value of S updated, we replace the original pointer

with a pointer to the parent of the state which triggered the
update. Thus, we can reconstruct the pathway by taking the
pointer of the assembly state with the maximum value of S and
iterate through the parents of each pointer until we arrive at the
original assembly state. From this state we obtain the duplicate

and remnant structures mentioned in the section on data

https://doi.org/10.1021/acs.jcim.5c01964
J. Chem. Inf. Model. XXXX, XXX, XXX—XXX

Journal of Chemical Information and Modeling

pubs.acs.org/jcim

a)
—— Depth-First
10° Dynamic-Programming
T 103
=]
2
£ 10!
£
107!
10 20
Length of Configuration

=
-~

—
w
(=]

® Naiveai
® Approximate ai
® lh Timeout

—_ —_
~ [=3 N
W (=] W

Assembly Index

w
(=}

10° 10° 10
Time(seconds)

2

Figure 7. (a) Scaling curves for the computation of the total amount of time needed to calculate all possible configurations assembly indexes of linear
two-bond molecule chains of length # and one atom type. Shown are the dynamic programming approach described in this paper and a naive depth first
approach with a simple log N branch and bound heuristic described in ref S. (b) Progressive approximation of the assembly index the joint assembly
index of the combined molecular graph for standard 20 amino acids given computational time until a timeout of one hour.

Figure 8. Pathway reconstruction of the combined molecular graph of all standard 20 amino acids from the duplicated and remnant structures

produced by the algorithm.

structures. The procedure to reconstruct a specific minimal
pathway is described in the Supplementary Information.

B BENCHMARKING

In order to assess the performance of the proposed algorithm, we
consider several test cases to illustrate the advantages of this
paper’s algorithm when compared to prior state of the art. We
start by considering a test of 12 molecular graphs relevant in
different areas of chemistry (see Table 1).

From this set, only three have an assembly index that can be
calculated exactly with previous methods.” Our method
computes the assembly index up to 6 orders of magnitude
faster. Furthermore, for the remaining nine molecules, the
assembly algorithm described in this paper is able to compute all
the assembly indices where prior state of the art can only deliver
an approximation of the assembly index when allotted an hour of
computing time.

From these molecules we can observe the progressive
calculation of the assembly index, as exemplified with the
molecule Iodotaxol (Figure Sa). This molecule is the anticancer
drug Taxol, but with the phenyl groups replaced by an iodine
atom (Figure Sa). We find that the algorithm finds the correct

assembly index, 4; = 20 in less than 1 s, with the remaining time
being spent on verifying the correctness of the solution. We also
show a reconstructed minimal pathway, Figure 6 from the
duplicate and remnant fragments (Figure 3). In order to
reconstruct this pathway from the algorithm output we used the
procedure described in the Supplementary Information.

For the remaining test cases, we consider molecules with a
total number of bonds from 20 to 60. Within this range our
algorithm is capable of finding the assembly index in less than a
minute, over a wide variety of substructural motifs. The
algorithm also functions well for largely linear molecules such
as Phosphatidylcholine (Figure Sb). This molecule consists of a
long linear backbone with a small side chain that contains just
over 50 bonds in total, with three bond types. As before, the
exact assembly index is calculated in a matter of milliseconds,
and it takes less than five seconds to recurse over the rest of the
search tree to confirm the solution.

Linear chains are also of computational interest, because if we
restrict the number of atom types and bond types we can
enumerate all possible molecules up to a certain length. If we
consider a linear chain with only one type of atom, and only two
types of bonds, we can enumerate all possible molecules, which

https://doi.org/10.1021/acs.jcim.5c01964
J. Chem. Inf. Model. XXXX, XXX, XXX—XXX

Journal of Chemical Information and Modeling

pubs.acs.org/jcim

can be mapped to binary numbers (Figure 7a). We computed
the assembly index of all assembly indices up to length 20 with a
previous method” and up to length 25 with our method. We can
clearly see that our algorithm is both faster by a constant factor
and demonstrates better asymptotic scaling than the previous
best assembly algorithm.

Our algorithm is also naturally capable of computing joint
assembly spaces. In contrast with the standard molecular
assembly index, the joint assembly index is calculated for
multiple disjoint molecular graphs. The joint assembly index is
the minimum number of joining operations simultaneously
construct the set of disjoint molecules. To test the capabilities of
our algorithm, we consider the set of all standard 20 amino acids.
With the current capabilities of our algorithm, we are able to
compute the exact joint assembly index of about 13 amino acids;
for a larger number of amino acids, we can stop the algorithm
early and obtain an approximation. We compute the joint
assembly index of all 20 amino acids for one hour and obtain the
approximation a; = 37 (see Figure 7b).

To probe how much reusable structure exists among biogenic
building blocks, we computed a joint assembly space for the 20
standard amino acids by treating their molecular graphs as a
disconnected input and then reconstructing a minimal shared
pathway from the algorithm’s duplicate/remnant output (Figure
8). The resulting space exposes the expected common motifs,
e.g., the @-amino/a-carboxylate backbone together with small
alkyl and aromatic fragments that are assembled once and then
reused across multiple amino acids. Quantifying reuse by
comparing the joint assembly index of the set with the sum of the
individual MAs we obtain ~70% compression relative to a naive
construction with no reuse of fragments between individual
molecules. In other words, roughly two-thirds of the joining
operations required to build each amino acid independently are
eliminated when shared substructures are propagated through
the joint space (MAy,, ~ 37 after 1 h). This shared pathway
provides a compact, interpretable dictionary of fragments and
joins that both summarizes biochemical regularities and serves
as a lossless, assembly aware representation for large molecular
sets. Because the representation is an assembly space (a DAG of
fragments and joins), it is naturally easier to query and supports
downstream tasks such as similarity (Joint Assembly Overlap,
JAO), clustering, and incremental updates, while preserving
chemically meaningful structure—advantages that generic
string/graph compressors do not provide.

Subse(}uently, we took all molecules from the COCONUT
database’” with less than 50 bonds, equaling a total of about
300,000 molecules and computed their assembly index until
convergence. We kept track of the total amount of time needed
for convergence and the maximum memory usage needed for
computation. The results are shown in Figure 9. In both graphs,
we have grouped the molecules by number of bonds. We clearly
see that the amount of time and memory needed to compute a
molecule with specified assembly index grows exponentially.

The increased speed of our assembly algorithm has lent itself
to a variety of applications that would not have been possible
with prior algorithms, including exploring biochemical space™
or training a machine learning model to estimate MA from mass
spectra,” where the sheer number of molecules for which the
MA must be calculated necessitates high algorithmic efficiency.
A modified form of the algorithm designed to approximate the
assembly indices of graphs with high vertex degree has also been
used for quantifying the complexity of crystalline materials.”’
Beyond these applications, we shall show that the increase in

B Bonds from 0 to 10 B Bonds from 20 to 30 N Bonds from 40 to 50
Bonds from 10 to 20 W Bonds from 30 to 40
a) b)
30 30
% %
2 2
.20 .20 E
5 Zz :
£ £
< 104 < m«;r
103 100 10 10° o e od T 10t
Time(s) Memory(MB)

Figure 9. (a) Distribution of assembly index versus total time of
computation of a data set of around 300,000 of molecules coming from
the COCONUT database. The molecules are grouped by total number
of bonds. (b) Distribution of assembly index versus maximum memory
usage needed for computation of a data set of around 300,000 of
molecules coming from the COCONUT database. The molecules are
grouped by total number of bonds.

speed also allows the MA to be used as a similarity metric that
has substantially different properties from other commonly used
molecular similarity metrics.

B JOINT ASSEMBLY INDEX AS A SIMILARITY METRIC

Unlike most other molecular complexity metrics such as the
well-known Bertz,*' Bottcher,” Whitlock,** or Spacial44 scores,
the Assembly Index calculated for disjoint sets of molecules
(henceforth referred to as joint assembly spaces) is not merely
the sum of the assembly indices of each individual molecule
within the space. Instead, the joint Assembly Index accounts for
common substructural information between molecules in the
joint assembly space and is thus smaller for molecules with
significant substructural overlap. This contrast is most vividly
illustrated when one considers the Bertz/Bottcher/Whitlock or
Spacial scores of a pair of disjoint identical molecules, which is
exactly twice that of a single such molecule. On the other hand,
the Joint Assembly Index of this pair of molecules is equal to that
of a single such molecule because it contains no additional
information.

By treating the Assembly Index of a joint assembly space as the
Assembly Index of the union of the individual assembly spaces, a
Jaccard Index-like metric analogous to the Tanimoto similarity
metric can be calculated, henceforth referred to as the Joint
Assembly Overlap (JAO):

MA, + MAg — MAA’B
MA, g (7)

Where M A, and M Ay are the assembly indices of compounds
A and B respectively and M A, is the joint assembly index of
both A and B. The JAO has been described before,** but only in
the context of MAs estimated via mass spectrometry rather than
exact MAs calculated from molecule graphs.

Although superficially similar in form to the Tanimoto
similarity metric, we can show that the JAO is generally more
sensitive to global symmetries over local symmetries when
compared to the ECFP-4 and ECFP-6 fingerprints most
commonly used with the Tanimoto similarity metric. It is also
more capable of detecting similarities between disjoint common
subgraphs than the MCS similarity metric. In the example
illustrated in Figure 10, the Tanimoto similarity of the two
molecules under the ECFP-4 and ECFP-6 fingerprints is 0.231
and the MCS similarity is 0.333, but the equivalent JAO is 0.667.

]AOA,B =

https://doi.org/10.1021/acs.jcim.5c01964
J. Chem. Inf. Model. XXXX, XXX, XXX—XXX

Journal of Chemical Information and Modeling

pubs.acs.org/jcim

Br

F

Cl

T
éﬁo
w
=
éﬁ

Figure 10. A pair of compounds where the Tanimoto and MCS
similarity metrics diverge substantially from the JAO.

This is because the assembly algorithm can use both FCCBr and
ICCCI fragments independently in the construction of the
assembly pathway.

The example illustrated in Figure 10 highlights the important
point that the JAO can account for substructural similarity
beyond what the ECFP fingerprints and MCS scores can detect.
There exist classes of molecules with similar skeletons but
different local environments, such as steroids (see Figure 11).
The greater efficiency of our assembly algorithm allows us to find
the JAOs (or at least good estimates thereof) of these relatively
large organic molecules (270—380 Da) where previous assembly
algorithms would have been unsuccessful.

Here, the JAO tends to yield a higher similarity than the
Tanimoto similarity metrics, while still being smaller on average
than the MCS. Note that although the JAO and the MCS both
rely on finding common graph substructures, one is not a
monotonic function of the other as can be observed by the MCS
of Cholesterol (1) and Estradiol (3) being substantially smaller
than the JAO of the same compounds when it is greater for most
of the other pairs of compounds.

While we have illustrated examples of the JAO being lower
than ECFP Tanimoto similarity for pairs of molecules, there are
examples for which the reverse is also true. In particular, small

peptides with individual amino acids transposed will in general
have higher ECFP Tanimoto similarities than JAO scores due to
the largely similar local environment (see Table 2).

Table 2. Tanimoto Similarity Metrics with ECFP-4 and
ECFP-6 Fingerprints, MCS Similarity, and JAO Values for
Tripeptides Containing All 20 Standard Amino Acids”

Combination ECFP-4 ECFP-6 MCS JAO
ACD + ADC 0.879 0.652 0.667 0.667
EFG + EGF 0.702 0.565 0.562 0.75

HIK + HKI 0.862 0.704 0.806 0.875
LMN + LNM 0.905 0.7 0.724 0.733
PQR + PRQ 1 0.886 075 0.75

STV + SVT 0.879 0.727 0.826 0.615
WAY + WYA 0.86 0.744 0.641 0.833

“Each tripeptide is represented by the one-letter abbreviations of each
amino acid.

B LIMITATIONS AND FUTURE WORK

Although the assembly algorithm we have presented in this work
is much faster than previous iterations of the algorithm, both the
subgraph enumeration and the exploration of the search tree still
scale exponentially with the size of the molecule. For sufficiently
large molecules or molecules with very high vertex degree, the
initial enumeration of subgraphs will become prohibitively
expensive. Thus, the algorithm as presented is only useful for
single large organic molecules of fewer than roughly 75 bonds if
an exact answer is desired in a reasonable time frame, or fewer

Combination | ECFP-4 | ECFP-6 | MCS JAO
1+2 0.207 0.142 0.429 0.375
1+3 0.257 0.178 0.256 0.333
1+4 0.3 0.219 0.462 0.462
1+5 0.354 0.25 0.447 0.462
2+3 0.203 0.15 0.486 0.375
2+4 0.438 0.33 0.897 0.75
2+5 0.459 0.341 0.828 0.615
3+4 0.286 0.188 0.485 0.267
3+5 0.418 0.321 0.567 0.462
4+5 0.723 0.638 0.852 0.636

Figure 11. Tanimoto similarity metrics with ECFP-4 and ECFP-6 fingerprints, MCS similarity, and JAO values for combinations of steroids
Cholesterol (1), Cortisol (2), Estradiol (3), Progesterone (4), and Testosterone (S).

J

https://doi.org/10.1021/acs.jcim.5c01964
J. Chem. Inf. Model. XXXX, XXX, XXX—XXX

Journal of Chemical Information and Modeling

pubs.acs.org/jcim

than roughly 100 bonds if a reasonable approximation is
acceptable. Multiple disjoint molecules generally have fewer
duplicatable subgraphs for a given number of bonds, and these
limits are therefore higher for joint assembly spaces.

Mitigating this problem will require some degree of
approximation; one 0possibility already explored by the authors
in previous work' is to generate candidate duplicatable
subgraphs in a breadth-first manner analogous to the ECFP
fingerprints with a degree of modification allowed to the
candidate subgraphs based on the addition of edges up to a set
constant. Further improvements to this method are certainly
possible; for instance, via the use of MCS approximation
algorithms to generate candidate duplicatable subgraphs. In
addition, the work we have presented in using the JAO as a
similarity metric is preliminary and may be further expanded
upon. For instance, the JAO may be compared against ECFP
fingerprints and MCS with structure enumeration algorithms, *°
or k-nearest neighbor models’” to determine if there are
significant differences in the way a JAO-based similarity metric
clusters molecules in actual molecular databases when compared
to ECFP and MCS.

B CONCLUSIONS

In this paper we have introduced a novel molecular-graph
assembly index algorithm, specifically designed for organic
molecules with few cycles and low maximum vertex degree. We
have described the algorithm in detail, highlighting the different
stages in its implementation. We have performed an extensive
experimental evaluation on a set of relevant examples in the
chemistry literature and a database of natural products,
comparing the execution time of our algorithm and other recent
assembly index algorithms. The results of the experimentation
confirm that our algorithm has a reasonable memory usage even
for on molecular graphs of substantial size, and its execution
time exhibits several orders of magnitude of improvement with
respect to previous methods such that for organic molecular
graphs, our algorithm is the fastest existing assembly index
algorithm. The increase in speed has allowed the assembly
algorithm to be used for a variety of tasks (exploring biochemical
and crystalline material space and generating a sufficiently large
data set to train a machine learning model) not otherwise
practical with prior algorithms. Furthermore, it also allows us to
use our algorithm as a similarity metric, the Joint Assembly
Overlap (JAO) for relatively large organic molecules. We show
that as a similarity metric the JAO differs substantially from the
two of the most commonly used similarity metrics in
cheminformatics, the Tanimoto similarity metric with ECFP-4
and ECFP-6 fingerprints and the MCS similarity metric due to
its ability to account for disjoint global substructural similarities.

B ASSOCIATED CONTENT

Data Availability Statement

All the code required for assembly calculations and generating
the figures is available at https://github.com/croningp/
assemblycpp-vS. All the data required to produce the figures
are available as a supplementary data file, and a supplementary
document explains how the figures were made.

© Supporting Information

The Supporting Information is available free of charge at
https://pubs.acs.org/doi/10.1021/acs.jcim.5c01964.

Pathway reconstruction; COCONUT Database Compu-
tation; and COCONUT Database Computation (PDF)

Assembly spaces, Banchmarking large molecules, COCO-
NUT benchmarking, and JAO calculations (ZIP)

B AUTHOR INFORMATION

Corresponding Author
Leroy Cronin — School of Chemistry, University of Glasgow,
Glasgow G12 8QQ, U.K,; ® orcid.org/0000-0001-8035-
5757; Email: Lee.Cronin@glasgow.ac.uk

Authors

Ian Seet — School of Chemistry, University of Glasgow, Glasgow
GI12 8QQ, UK.

Keith Y. Patarroyo — School of Chemistry, University of
Glasgow, Glasgow G12 8QQ, UK.

Gage Siebert — School of Earth and Space Exploration, Arizona
State University, Tempe, Arizona 85287, United States

Sara L. Walker — BEYOND Center for Fundamental Concepts in
Science, Arizona State University, Tempe, Arizona 85287,
United States; School of Earth and Space Exploration, Arizona
State University, Tempe, Arizona 85287, United States

Complete contact information is available at:
https://pubs.acs.org/10.1021/acs.jcim.5c01964

Author Contributions

L.C. conceived of assembly theory and developed it with S.I.W.
LS. developed the algorithm and the similarity-metric analysis.
K.Y.P. did the benchmarking and the visualizations, and G.S.
developed the mathematical formalism. K.Y.P., LS., and L.C.
wrote the manuscript with input from all the authors.

Notes
The authors declare no competing financial interest.

B ACKNOWLEDGMENTS

The authors would like to thank Stuart Marshall for comments
and suggestions early in the manuscript, and Amit Kahana for
the idea of benchmarking joint assembly spaces by adding one
molecule at a time. We acknowledge financial support from the
John Templeton Foundation (grant nos. 61184 and 62231), the
Engineering and Physical Sciences Research Council (EPSRC)
(grant nos. EP/L023652/1, EP/R01308X/1, EP/S019472/1,
and EP/P00153X/1), the Breakthrough Prize Foundation, and
NASA (Agnostic Biosignatures award no. SONSSC18K1140).

B REFERENCES

(1) Rogers, D.; Hahn, M. Extended-connectivity fingerprints. J. Chem.
Inf Model. 2010, 50 (5), 742—754.

(2) Zhang, B; Vogt, M; Maggiora, G. M.; Bajorath, J. Design of
chemical space networks using a Tanimoto similarity variant based
upon maximum common substructures. J. Comput. Aided Mol. Des.
2015, 29 (10), 937—950.

(3) Marshall, S. M.; Mathis, C.; Carrick, E.; Keenan, G.; Cooper, G.J.
T.; Graham, H.; Craven, M.; Gromski, P. S.; Moore, D. G.; Walker, S. 1;
et al. Identifying molecules as biosignatures with assembly theory and
mass spectrometry. Nat. Commun. 2021, 12 (1), 3033.

(4) Liu, Y.; Mathis, C.; Bajczyk, M.; Marshall, S.; Wilbraham, L.;
Cronin, L. Exploring and mapping chemical space with molecular
assembly trees. Sci. Adv. 2021, 7, No. eabj2465.

(5) Jirasek, M.; Sharma, A.; Mehr, H.; Bell, N.; Marshall, S.; Mathis,
C.; MacLeod, A.; Cooper, G.,; Swart, M.; Mollfulleda, R;; et al.
Investigating and Quantifying Molecular Complexity Using Assembly
Theory and Spectroscopy. ACS Cent. Sci. 2024, 10, 1054—1064.

(6) Patarroyo, K. Y.; Sharma, A.; Walker, S. L; Cronin, L.AssemblyCA:
A Benchmark of Open-Endedness for Discrete Cellular Automata. 2nd

https://doi.org/10.1021/acs.jcim.5c01964
J. Chem. Inf. Model. XXXX, XXX, XXX—XXX

Journal of Chemical Information and Modeling

pubs.acs.org/jcim

Workshop on Agent Learning in Open-Endedness (ALOE); NeurIPS,
2023

(7) Sharma, A.; Czegel, D.; Lachmann, M.; Kempes, C. P.; Walker, S.
L; Cronin, L. Assembly theory explains and quantifies selection and
evolution. Nature 2023, 622, 321—-328.

(8) Bertz, S.; Herndon, W. C.The similarity of graphs and molecules;
American Chemical Society, 1986.

(9) Yamada, M.; Mahito, S. Molecular graph generation by
decomposition and reassembling. ACS Omega 2023, 8, 19575—19586.

(10) Rucker, G.; Rucker, C. Automatic enumeration of all connected
subgraphs. MATCH Commun. Math. Comput. Chem. 2000, 145—149.

(11) Clift, N. M. Calculating optimal addition chains. Springer 2011,
91,265—284.

(12) Downey, P.; Leong, B.; Sethi, R. Computing sequences with
addition chains. SIAM J. Comput. 1981, 10, 638—641.

(13) Marshall, S. M.; Moore, D. G.; Murray, A. R. G.; Walker, S. L;
Cronin, L. Formalising the pathways to life using assembly spaces.
Entropy 2022, 24 (7), 884.

(14) Olivos, J. On vectorial addition chains. J. Comput. Algorithm.
1981, 2, 13-21.

(15) Weininger, D. SMILES, a chemical language and information
system. 1. Introduction to methodology and encoding rules. Chem. Inf.
Comput. Sci 1988, 28, 31—-336.

(16) Ziv, J.; Lempel, A. A universal algorithm for sequential data
compression. IEEE Trans. Inf. Theory 1977, 23, 337—343.

(17) Huffman, D. A method for the construction of minimum-
redundancy codes. Proc. IRE 1952, 40, 1098—1101.

(18) Besta, M.; Hoefler, T. Survey and taxonomy of lossless graph
compression and space-efficient graph representations. arXiv. 2018.

(19) Lehman, E.; Shelat, A. Approximation algorithms for grammar-
based compression. SODA 2002, 2, 205—212.

(20) Lehman, E. Approximation algorithms for grammar-based data
compression; Massachusetts Institute of Technology, 2002.

(21) Gosper, R. W. Exploiting regularities in large cellular spaces.
Physica D 1984, 10 (1-2), 75—80.

(22) Wallace, G. K. The JPEG still picture compression standard.
IEEE Trans. Consum. Electron. 1991, 34, 30—44.

(23) Schwartz, M.; Seidel, H.-P. Fast parallel surface and solid
voxelization on GPUs. ACM Transactions On Graphics (TOG) 2010, 6,
1-10.

(24) McKay, B.; Piperno, A. Practical graph isomorphism, IL. J. Symb.
Comput. 2014, 60, 94—112.

(25) McKay, B. Nauty user’s guide (version 2.4).Computer Science Dept.;
Australian National University, 2007; pp. 225—239.

(26) Grohe, M.; Schweizer, P. The graph isomorphism problem.
Commun. ACM 2020, 11, 128—234.

(27) Faulon, J.-L. Isomorphism, automorphism partitioning, and
canonical labeling can be solved in polynomial-time for molecular
graphs. J. Chem. Inf. Comput. Sci. 1998, 38, 432—444.

(28) Campbell, D. M.; Radford, D. Tree isomorphism algorithms:
Speed vs. clarity. Math. Mag. 1991, 64 (4), 252—261.

(29) Cordella, L. P.; Foggia, P.; Sansone, C.; Vento, M. A (sub) graph
isomorphism algorithm for matching large graphs. IEEE Trans. Pattern
Anal. Mach. Intell. 2004, 26, 1367—1372.

(30) Bonchev, D. Novel indices for the topological complexity of
molecules. SAR QSAR Environ. Res. 1997, 7, 23—43.

(31) Mallion, R. On the number of spanning trees in a molecular
graph. Chem. Phys. Lett. 1975, 36, 170—174.

(32) Rucker, G.; Rucker, C. Walk counts, labyrinthicity, and
complexity of acyclic and cyclic graphs and molecules. Chem. Inf.
Comput. Sci. 2000, 40, 99—106.

(33) Grunwald, P. D.; Vitanyi, P. M. Algorithmic information theory;
Elsevier, 2008.

(34) Kolmogorov, A. N. Three approaches to the quantitative
definition ofinformation. Probl. Inf. Transm. 1965, 1, 1-7.

(35) Kempes, C.; Walker, S. L; Lachman, M.; Cronin, L.; Assembly
Theory and its Relationship with Computational Complexity. In arXiv,
2024.

(36) Tarjan, R. E.; Van Leewen, J. Worst-case analysis of set union
algorithms. . ACM 1984, 245—-281.

(37) Sorokina, M.; Merseburger, P.; Rajan, K; Yirik, M. A.; Steinbeck,
C. COCONUT online: collection of open natural products database. J.
Cheminf. 2021, 13, 2.

(38) Pagel, S.; Sharma, A.; Cronin, L. Mapping evolution of molecules
across biochemistry with assembly theory. arXiv. 2024.

(39) Rutter, L. A.; Sharma, A,; Seet, L; Alobo, D. O.; Goto, A.; Cronin,
L. Exploring molecular assembly as a biosignature using mass
spectrometry and machine learning. arXiv. 2025.

(40) Patarroyo, K. Y.; Sharma, A.; Seet, 1; Packmore, I; Walker, S. I;
Cronin, L. Quantifying the Complexity of Materials with Assembly
Theory. arXiv. 2028S.

(41) Bertz, S. H. The first general index of molecular complexity. J.
Am. Chem. Soc. 1981, 103 (12), 3599—3601.

(42) Béttcher, T. An Additive Definition of Molecular Complexity. J.
Chem. Inf Model. 2016, 56 (3), 462—470.

(43) Whitlock, H. W. On the Structure of Total Synthesis of Complex
Natural Products. J. Org. Chem. 1998, 63 (22), 7982—7989.

(44) Krzyzanowski, A,; Pahl, A; Grigalunas, M.; Waldmann, H.
Spacial Score—A Comprehensive Topological Indicator for Small-
Molecule Complexity. J. Med. Chem. 2023, 66 (18), 12739—12750.

(45) Kahana, A.; MacLeod, A.; Mehr, H.; Sharma, A.; Carrick, E.;
Jirasek, M.; Walker, S.; Cronin, L. Constructing the molecular tree of
life using assembly theory and mass spectrometry. arXiv. 2024.

(46) Skinnider, M. A; Dejong, C. A.; Franczak, B. C.; McNicholas, P.
D.; Magarvey, N. A. Comparative analysis of chemical similarity
methods for modular natural products with a hypothetical structure
enumeration algorithm. J. Cheminf. 2017, 9 (1), 46.

(47) Cao, Y; Jiang, T.; Girke, T. A maximum common substructure-
based algorithm for searching and predicting drug-like compounds.
Bioinformatics 2008, 24 (13), i366—374.

CAS BIOFINDER DISCOVERY PLATFORM™

PRECISION DATA
FOR FASTER
DRUG
DISCOVERY

CAS BioFinder helps you identify
targets, biomarkers, and pathways

Unlock insights

https://doi.org/10.1021/acs.jcim.5c01964
J. Chem. Inf. Model. XXXX, XXX, XXX—XXX

