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INTRODUCTION: Modern materials discovery
necessitates intricate workflows that integrate
synthesis, property characterization, formula-
tion, and system-level testing. Often, the re-
quired expertise and research infrastructure
are dispersed across multiple locations and
time zones, which hinders their integration
into advanced discovery pipelines. This chal-
lenge is particularly pronounced in the context
of automated experimentation and data-driven
decision-making with artificial intelligence (AI),
which usually rely on streamlined flows of data
and materials at a single site.

RATIONALE: Synergistically integrating ex-
perimental research infrastructure at geo-
graphically distributed sites requires a central,
globally accessible cloud hub for data trans-
fer; Al-informed experiment design; and lo-
gistics management. Such a decentralized
engine can effectively orchestrate global design-

Modular strategy for functional
molecule design

Automated and parallel
functional molecule synthesis

Cloud hub
for logistics-empowered
Al experiment planning

make-test-analyze loops for materials dis-
covery that would be impractical to estab-
lish in a single laboratory.

RESULTS: We demonstrate the distributed, Al-
guided discovery of best-in-class small-molecule
gain materials for organic solid-state lasers
(OSLs). To overcome the prevalent synthesis
bottleneck in molecular discovery, we devised
a building block-based strategy to rapidly con-
struct molecular function. Leveraging iterative
Suzuki-Miyaura couplings, we developed a
generalizable two-step one-pot protocol for
assembling pentameric OSL gain materials
from modular precursors, spanning a candi-
date space of >150,000 target materials. The
preparation of building blocks was distributed
over the available experimental resources at
four geographic locations. Similarly, the as-
sembly of building blocks to form the gain
material candidates was parallelized and auto-
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forms. This multisite synthesis engine .. ._
complemented by a resource-efficient, end-
to-end automated testing workflow, encom-
passing (i) purification to a degree that allows
for reliable spectroscopic measurements and
(ii) solution-phase characterization through
steady-state and time-resolved spectroscopy.

The resulting laser-like property data, asyn-
chronously obtained from the different “work-
ers,” fed into the central, machine learning-
based experiment planning module hosted on
the cloud hub. This module was supplemented
with physical knowledge from quantum-
chemical simulations and logistic constraints
from multisite experimentation. Taking into
account what could be done, what was being
done, and what had been done at any point
in time, the module maintained a ranked cat-
alog of most-informative next experiments—
from which the following sets of experiments
were allocated to the available robotic plat-
forms at the different sites.

Throughout the development and opera-
tion of this multisite discovery engine, we
found a total of 21 small-molecule emitters
with improved emission gain cross sections
compared with state-of-the-art OSL gain ma-
terials. For their property evaluation on a de-
vice level, on-scale synthesis and purification
introduced further challenges, necessitating
the development of automated workflows for
synthesis with on-line decision-making and
purification through continuous preferential
crystallization. Ultimately, laser-like proper-
ties of three identified materials were mea-
sured in thin films, confirming the discovery
of gain materials with best-in-class amplified
spontaneous emission thresholds.

CONCLUSION: Addressing a frontier chal-
lenge in molecular optoelectronics, this
work demonstrates a blueprint for decen-
tralized (molecular) discovery in the age of
Al. A central, readily accessible hub that
manages data transfer, the logistics of mate-
rials transport and availability, and the ex-
perimental design process has proven to be
of central importance. Eventually, we are con-
vinced that scaling such a framework to flex-
ibly include distributed human and robotic
research resources can pave the way for dem-
ocratizing (materials) discovery.
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Contemporary materials discovery requires intricate sequences of synthesis, formulation, and
characterization that often span multiple locations with specialized expertise or instrumentation.

To accelerate these workflows, we present a cloud-based strategy that enabled delocalized and
asynchronous design-make-test-analyze cycles. We showcased this approach through the exploration of
molecular gain materials for organic solid-state lasers as a frontier application in molecular
optoelectronics. Distributed robotic synthesis and in-line property characterization, orchestrated by a
cloud-based artificial intelligence experiment planner, resulted in the discovery of 21 new state-of-the-art
materials. Gram-scale synthesis ultimately allowed for the verification of best-in-class stimulated
emission in a thin-film device. Demonstrating the asynchronous integration of five laboratories across
the globe, this workflow provides a blueprint for delocalizing—and democratizing—scientific discovery.

fficient molecular discovery for diverse

applications in medicine (I), optoelec-

tronics (2), or energy storage (3) requires

intertwined loops of molecular synthesis,

property characterization, formulation,
and system-level testing. There is an undebated
necessity for accelerating these human-centric
and often laborious workflows to meet the
societal demands for enhanced materials (4).
In response to these demands, there has been
asurge in the development of computational
(5) and artificial intelligence (AI) tools for
materials science (6, 7) along with major ad-
vances in automation and high-throughput
experimentation (HTE) (8, 9) and, eventually,
the integration of both automated experimen-
tation and automated decision-making into
self-driving laboratories (SDLs) (10-13). Early
examples have indicated the ability to substan-
tially accelerate narrow tasks within these

high-level workflows, such as the optimization
of reaction conditions or the identification
of ideal processing or formulation parame-
ters (14-17).

The evolution of the second generation of
Al-guided experimentation is driven by the
principles of distribution and delocalization,
acting as major paradigms in two distinct
directions. First, with the growing complexity
of discovery workflows, the integration of
advanced experimental and computational
modules becomes essential. These units often
rely on domain expertise and specific instru-
mentation, resulting in their distribution over
multiple geographical locations and time zones
(Fig. 1A). Second, the capacity to parallelize
experiments over multiple modules offers solu-
tions to enhance throughput and rapidly vali-
date experimental findings, as showcased, for
example, for chemical reaction optimization

with multiple (distributed) workers (18-20).
Both scenarios—the integration of multiple
modules into intricate experimental workflows
and the parallelization of experimental tasks
across multiple sites—rely on distributed experi-
mentation as the key factor for accelerated
materials discovery. However, the implemen-
tation of distributed experimentation neces-
sitates a central, readily accessible platform
with clearly defined standards for communi-
cation, data transfer, and experiment planning
(21-24). This platform must also be adaptable
to integrate with the specific preexisting in-
frastructures at each site, to account for the
logistics of interdependent experiments, and to
accommodate asynchrony between sites (Fig. 1B)
to minimize disruptions and enhance overall
efficiency. The discussed aspects hold particular
significance in expediting molecular materials
discovery, where (automated) synthesis re-
mains the primary bottleneck (72). In fact,
generalizable and readily automatable syn-
thetic protocols have remained elusive for all but
the most prominent classes of biomolecules—
i.e., peptides (25), oligosaccharides (26), or oli-
gonucleotides (27)—impeding broad molecular
materials discovery endeavors.

Against this background, we demonstrated
a decentralized discovery workflow, showcas-
ing the design, synthesis, and testing of gain
materials for organic solid-state lasers (OSLs),
which are characterized by best-in-class emis-
sion gain cross section in solution and am-
plified spontaneous emission (ASE) in thin
film. The workflow relied on a central closed-
loop protocol encompassing synthesis planning,
automated synthesis, proxy characterization,
and molecular function optimization through
machine learning (ML). Notably, the discussed
synthesis bottleneck was bypassed by segment-
ing the OSL candidate space into a building
block framework (28, 29), which enabled rapid,
parallelizable assembly of OSL gain material
candidates following a “synthesis-to-function”
paradigm. This closed-loop campaign was em-
bedded in a broader discovery workflow,
encompassing upstream and downstream
operations for building block supply, on-scale
materials fabrication, and device-level charac-
terization. Although all tasks were delocalized
across five physical laboratories on three con-
tinents, they were orchestrated by a cloud
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A Delocalizing Materials Discovery

C Gain Materials for Organic Solid-State Lasers
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Fig. 1. Delocalizing molecular materials discovery targeting OSL emitters.
(A) Delocalized complex materials discovery workflows (traditional design-make-test-
analyze cycles) over multiple sites, orchestrated by a single cloud-based application.
Markers on the map correspond to the geographical locations of the laboratories
participating in the current study. (B) Experimental bottlenecks can be bypassed by
distributing experiments over multiple asynchronous worker “threads” running in
different laboratories. Prerequisite for this is a cloud platform that can interoperate

server to ensure continuous learning from
the incoming data and effective prioritiza-
tion of informative experiments. This approach
heralds future research campaigns in which
the expertise and experimental capabilities
of different SDL sites will work synergisti-
cally to expedite the discovery of functional
materials.

The experimental engine for OSL
candidate discovery

OSLs represent an emerging technology to
provide flexible, readily processable, and color-
tunable lasing devices with potential applica-
tions in displays, medical devices, spectroscopy,
or light fidelity (LiFi) telecommunication (Fig.
1C) (30-33). Crucial to the development of OSLs
is the emissive gain material—typically a large,
conjugated molecule, such as 4,4’-Bis[(E)-4-
(IV-carbazoyl)styryl Jbiphenyl (commonly referred
to as BSBCz) (Fig. 1D) (34, 35). These linear,
symmetric molecular structures are inherently
amenable to modularization into LEGO-like
building blocks that can be subjected to auto-
mated syntheses based on iterative Suzuki-
Miyaura couplings (SMCs), which were devel-
oped by Burke and co-workers (28, 29). With
this general scheme, and by analogy to state-
of-the-art emitters (36, 37), we conceived a
palindromic cap-bridge-core-bridge-cap archi-

Strieth-Kalthoff et al., Science 384, eadk9227 (2024)

B Parallelized Asynchronous Experiments
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tecture as a generalizable and synthesizable
blueprint for powerful OSL gain materials
(Fig. 1D). SMC assembly of this framework
requires cap building blocks carrying a boronic
acid ester, bridge precursors featuring both a
halide and a protected boronic acid, and di-
bromo core building blocks (Fig. 2A and data
S1 to S3).

We began by surveying the catalogs of spe-
cialty chemical suppliers and defined a fragment
library comprising 32 cap, 30 bridge, and 161
core building blocks, spanning a hypotheti-
cal candidate space of >150,000 putative gain
materials. Building on recent advances in ite-
rative SMCs (16, 38), we conceived a generaliz-
able two-step, five-component one-pot synthesis
protocol optimized for parallel high-throughput
screening, avoiding the necessity for inter-
mediate purification and enabling facile ad-
aptation on different automated experimental
platforms. This two-step protocol consists of
an initial SMC between a cap building block
and a bifunctional bridge unit followed by an
in situ deprotection and double coupling with
the core building block (Fig. 2A).

First-generation conditions for the two-step
one-pot coupling were derived from literature
reports on the well-established iterative SMC of
N-methyliminodiacetic acid (MIDA)-protected
boronic acids (28, 39). This protocol showed

17 May 2024

Logistics ¢

D Building Blocks for Molecular Function

Function-Encoded
Search Space
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with existing (automated) research infrastructure in different laboratories while
managing the logistics of asynchronous operation. (C) Schematic depiction of dis-
covering gain materials for OSLs by optimizing a proxy objective (the emission gain
cross section) over multiple cycles before evaluating top candidates in thin-film devices.
(D) Formal disconnection of 4,4-Bis[(E)-4-(N-carbazoyl)styryl]biphenyl (BSBCz) into
symmetric cap, bridge, and core building blocks, upon which a vast search space of
functional BSBCz-like molecules can be enumerated from sets of building blocks.

decent applicability for a set of target mol-
ecules with high similarity to the parent BSBCz
scaffold, with product formation observed for
43 of 81 target compounds. Across the overall
candidate space, however, these conditions
proved to be less effective (successful target
compound detection in 32% of all cases; see
table S7 for further details). Circumventing
this limitation, the recently developed 2,2,2’,2-
tetramethyl-N-methyliminodiacetic acid (TIDA)
protecting group for boronic acids (40) allowed
the use of potassium trimethylsilanolate (TMSOK)
in the first coupling step (41, 42), substantially
reducing reaction time from 12 hours to 1 hour,
thus minimizing side reactions (Fig. 2A). Nota-
bly, the challenging second in situ coupling step
was enabled by the general slow-release coupl-
ing conditions for SMCs with protected boro-
nates, which were recently developed through
Al-guided optimization by Angello et al. (16).
In an exploratory seed campaign across 500
representative candidate pentamers selected
through Latin hypercube sampling (see supple-
mentary text, section 3.5, for further details),
this second-generation protocol led to a sub-
stantial increase in the global synthetic hit rate
(74%) (Fig. 2, A and B).

The transition from MIDA to TIDA boro-
nates as the bridge building blocks led to a
shift of the initial building block space because
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$20T ‘8T ABIA U0 MOTSE[D) JO A)ISIQATU() JB S10°90UdI0s MMM //:Sd)Y Wo1J papeo[uMO(]



RESEARCH | RESEARCH ARTICLE

A Automated Two-Step One-Pot Synthesis
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Fig. 2. Overview of the modules for automated synthesis and characteriza-
tion of OSL candidate molecules. (A) Conditions of the iterative two-step
one-pot SMC coupling for synthesizing pentameric structures and evaluation of
the conditions on a representative subset of 500 target compounds, as obtained
from Latin hypercube sampling (see supplementary text, section 3.5, for details).
C, coupling; D, deprotection. (B) Selected examples of automated gram-scale
synthesis of LEGO-like building blocks (top) and parallelized, small-scale

& B el ()
N Q /_\ a2 ® Q N
@ ’ " g
OMe =70 10" cm? (Apg =515 nm) M0

MeN O‘ = OQ NMe,

Gem <1107 cm? (low PLQY)

(examples)

D Automated Property Characterization

Histogram of
PL Quantum Yields

700

PL Lifetime [ns]
[
Sasanss s
saway 1d
Jo weiboisiH

¢

Emission Wavelength [nm]

T T T
0.4 06 08

PL Quantum Yield

T
02

synthesis of OSL target molecules (bottom). PLQY, photoluminescence quantum
yield. (C) Cross-platform optimization of reproducible automated building

block syntheses, enabled by the execution of standardized DL protocols.

(D) Scatter plot and histograms of measured photoluminescence quantum yields
(horizontal axis) and photoluminescence lifetime (vertical axis) for the seed
dataset of 500 attempted OSL candidate compounds from (A). Data points are
colored according to their emission wavelength.

it required access to a library of bifunctional
TIDA-protected haloboronic acids. Unlike their
MIDA analogs, these compounds were not
commercially available. The respective deriva-
tization of commercially available precursors
was rapidly performed across multiple labo-
ratories, distributed through our central cloud
hub (vide infra) and following general proce-

Strieth-Kalthoff et al., Science 384, eadk9227 (2024)

dures encoded in the ¥DL language (43). In
this process, we also explored the execution of
these gram-scale synthesis and purification
procedures in a fully automated fashion (Fig.
2B) (44). Notably, information transfer in the
¥DL format emphasizes the importance of
standardization for reproducible synthesis. As
shown in a recent study by Rauschen et al.

17 May 2024

(45), executing the identical DL protocol on
synthesis robots in different laboratories re-
sulted in identical reaction yields, through the
precise control over synthesis and purification
operations. This laid the foundation for a rapidly
verifiable and transferable global optimization
of synthesis conditions (Fig. 2C) and the auto-
mated gram-scale synthesis of 10 building blocks.
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From these presynthesized building blocks,
small-scale parallel target syntheses were per-
formed on three different automated platforms
across two laboratories (Fig. 2B), again orches-
trated from a single, readily accessible cloud
hub (vide infra). Functional characterization
of the obtained OSL target compounds was
then performed from the crude reaction mix-
ture through a resource-efficient automated
analysis, purification, and characterization
workflow, as reported previously by Wu et al.
(38). Rather than subjecting each reaction to a
time-consuming sequence of conventional iso-
lation and characterization steps, materials
were merely purified to an adequate degree
by analytical high-performance liquid chro-
matography coupled to mass spectrometry
(HPLC-MS), and the product fraction was
subjected to downstream spectroscopic char-
acterization in solution. From steady-state ab-
sorption and emission spectroscopy, relative
quantum yield measurements, and transient
emission spectroscopy, lasing performance
can be approximated through the emission
gain cross section c.p, (see supplementary text,
section 3.3, for further details) (46, 47). This
proxy objective is maximized by those mole-
cules that simultaneously exhibit a narrow
emission spectrum, a high photoluminescence
quantum yield ¢, and a short emission lifetime
1. Arguably, this workflow of automated syn-
thesis, purification, and spectroscopic char-
acterization represents a trade-off between
throughput and accuracy, which leaves room
for improvements through adaptive decision-
making. Full spectroscopic data could only be
obtained for 48% of all characterized com-
pounds, whereas the remaining 52% of mol-
ecules were either emitters that were too weak
(enabling only partial characterization) or had
collected product fractions that were too low
in concentration (Fig. 2A; see table S8 for
further details). An overview of the obtained
data across the exploratory seed dataset is
given in Fig. 2D and fig. S9. Although a series
of target molecules with short emission life-
times (<1.5 ns) could be found, no state-of-
the-art emitters were discovered in those data
because the obtained quantum yields were pre-
dominantly very low.

Data-driven experiment planning for OSL
candidate discovery

Having established the experimental engine to
synthesize and characterize organic laser pen-
tamers, we sought to develop a robust computa-
tional workflow for planning the synthesis of
new, improved OSL gain materials and navi-
gating the search within the space of >150,000
potential target compounds. In the context of
data-driven experiment planning, Bayesian opti-
mization (BO) is regarded as the gold standard
for the sample-efficient optimization of unknown
spaces (48, 49). Its application to efficient mo-

Strieth-Kalthoff et al., Science 384, eadk9227 (2024)

lecular discovery within a large virtual library
necessitates (i) a vectorized encoding of the
molecular structure for training an informed
surrogate model (20) and (ii) a scheme to
optimize recommended candidates across the
discrete search space.

First, we evaluated a series of established
structural representations (molecular finger-
prints, graph-level descriptors, and computed
building block descriptors) for the supervised
learning of the emission gain cross section.
However, the regression performance of mod-
els built on these representations failed to sur-
pass a simple one-hot encoding of building
block identity (Fig. 3A; see supplementary
text, section 4.3, for a full evaluation of dif-
ferent surrogate model types). This observa-
tion indicates the absence of unambiguous
structure-activity relationships within the ex-
perimental data, which is well reflected in the
lack of clear canonical design principles for
OSL gain materials in the literature (37). In
fact, we did not observe any correlation be-
tween the structural similarity for all pairs of
experimentally characterized target molecules
(measured as Tanimoto similarity on finger-
prints) and their respective functional simi-
larity (Fig. 3B).

To obtain a more expressive representation,
we envisioned that additional physically mea-
ningful information obtained from quantum
chemistry simulations could improve the
performance of our models (50). In a high-
throughput computational campaign, excited-
state properties of a large catalog of possible
target molecules were approximated using
time-dependent density functional theory
(TD-DFT) with a vertical-gradient (VG) ap-
proximation for vibrational coupling (for
details on the workflow, see supplementary
text, section 4.2) (51). Including these simulated
properties as molecular descriptors resulted in
a slightly increased predictive performance.
The most substantial enhancement for pre-
dicting the emission gain cross section, how-
ever, was obtained by learning a new molecular
embedding from the computed data. In this
manner, a graph neural network (GNN), trained
on a randomized subset of the entire candidate
space (training set of 92,880 molecules) to
predict a set of simulated properties, achieved
high accuracy [coefficient of determination
(R?) = 0.86 averaged over seven TD-DFT pro-
perties; for network architecture and predic-
tion performance, see supplementary text,
section 4.2]. Extracting the embedding vector
from this GNN in a transfer learning approach
led to improved regression and uncertainty
calibration for the prediction of experimental
emission gain cross sections using a Gaussian
process (GP) regressor (Fig. 3A and tables S13
to S15). Notably, a correlation between pair-
wise embedding distances and experimentally
observed molecular function differences was

17 May 2024

observed (Fig. 3B), which emphasizes the physical
relevance of GNN embeddings as a functional
molecular representation. This representation
space, learned exclusively from simulated data,
exhibited localized domains of high experimen-
tal lasing performance [visualized through uni-
form manifold approximation and projection
(UMAP); Fig. 3C]. At the same time, it fea-
tured a range of activity cliffs—i.e., pairs of
molecules that were close in embedding space
but dissimilar in lasing performance (Fig. 3, B
and C). The existence of such activity cliffs (52)
leaves room for learning more globally in-
formed representations and emphasizes the
importance of an explorative search strategy
for navigating the space of OSL candidates.

Asynchronous, closed-loop optimization of
OSL gain materials

Eventually, driving the decentralized experi-
mental engine with the developed ML models
required a central hub for storing experimental
data, overseeing the logistics of interdependent
asynchronous experiments, and facilitating
informed decision-making for future experi-
ments. Positioned at the core of our workflow
(Fig. 3E), this cloud-based hub was readily
accessible for all teams through both a web
and a software interface. Within the hub, the
Bayesian optimizer, using the GNN-GP as the
surrogate model, continuously maintained a
ranked list of recommended experiments at all
times, taking into account logistic constraints
originating from building block availability
and incomplete experiments.

From this list, top-priority experiments could
be flexibly allocated to the available robotic
platforms in Toronto and Urbana-Champaign,
overseen by human researchers in the respec-
tive laboratories. Although in principle it is
possible to automate the allocation of ex-
periments entirely, we observed that includ-
ing a human in the loop led to more-efficient
management of experimental resources and
dynamic laboratory-specific constraints. After
completion of the automated synthesis, the
crude samples were transferred (when neces-
sary) and subjected to the end-to-end-automated
characterization workflow. Eventually, the ob-
tained characterization data underwent rapid,
hybrid human-algorithmic quality control (QC)
(see supplementary materials for further de-
tails) before being uploaded to the cloud-based
hub. A detailed overview of which experiments
were performed on which automated platform
is provided in data S6.

It is important to note that throughout these
processes, the status of an experiment (e.g.,
available, allocated, on-going, or completed)
was continuously synchronized with the cloud
hub. Any changes to the experimental database
or the building block supply prompted an up-
date of the list of suggested experiments. This
dynamic update mechanism ensured continuous
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Fig. 3. BO for OSL gain material discovery. (A) Supervised learning
performance of a multitask GP regressor for predicting emission gain cross
section across the experimental seed dataset of 287 data points, comparing
different molecular representations. OHE, one-hot encoding; ECFP6, extended-
connectivity fingerprint with diameter 6; DFT (Fragment), per-fragment ground-
state DFT descriptors; TDDFT, calculated excited-state descriptors; GNN, graph
neural network embeddings. Results are given as R? values, averaged over 20 x
3-fold cross validation runs. (B) Scatter plot of pairwise molecular distances (in
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difference in emission gain cross section). (C) UMAP of the GNN embedding
space (gray) and depiction of all experimentally observed data points (colored).
(D) Benchmark of asynchronous and batch-wise BO strategies on the synthetic
Ackley surface (six dimensions, discretized). See supplementary text, section
4.4, for further details on the simulation of asynchronous optimization.

(E) Schematic representation of the asynchronous, multisite optimization
workflow for OSL materials discovery. Solid arrows represent materials transfer,
and dashed arrows represent data transfer. Experiment status updates to the
database are omitted for clarity. Alloc., manual allocation of experiments.

learning from incoming data, enabling maxi-
mally informed decision-making at any point
in time. The hypothesis of continuous learning
was supported by benchmark experiments on
synthetic surfaces, which demonstrate increased
sample efficiency if multiple workers with pa-
rallel experimentation capacities operate in an
asynchronous fashion and constantly learn
from incoming data (Fig. 3D). Notably, the
described workflow allowed for full flexibility,
not only with respect to the number of asyn-
chronous workers but also with respect to the

Strieth-Kalthoff et al., Science 384, eadk9227 (2024)

inherent infrastructure diversity across differ-
ent participating workers. This diversity en-
compasses, for example, the varying degree
of automation and digitization in different
laboratories, the involvement of humans in the
loop, the throughput and downtime of experi-
mentation capacities, and further laboratory-
specific constraints that are often hard to quantify
a priori.

With this engine in hand, a 2-month opti-
mization campaign for OSL gain materials was
carried out, starting from the available seed

17 May 2024

data. Already from the first pool of recom-
mendations, the Bayesian optimizer identi-
fied sets of compounds with state-of-the-art
lasing performance. In fact, from the start of
the optimization campaign, a total of 12 new
compounds with higher-solution gain cross
section compared with that of the parent BSBCz
were discovered. Although a set of promising
candidates had already resulted from early
condition optimization efforts within a narrow
space around BSBCz, our results suggest the
accelerated discovery of high-gain materials
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Fig. 4. Discovered OSL gain materials. (A) Scatter plot of emission wavelength
versus emission gain cross section for all candidates in the OSL gain materials
dataset obtained throughout the optimization campaign. (B) Cumulative number
of discovered materials with emission gain cross sections greater than BSBCz

(green) and the top candidate from Wu et al. (38) (blue). (C) Molecular structure
and optical properties of selected OSL gain materials discovered in the course of
the optimization campaign. (D) In situ monitoring of reactant, intermediate, and
product concentrations for the synthesis of 1 by HPLC-MS as a function of time.

through the inclusion of BO and automated
experimentation (Fig. 4B and supplementary
text, section 3.5). Structures and solution-state
optical properties of selected molecules discovered
in the course of this study are shown in Fig. 4C.
Our candidates represent the small-molecule
emitters with the highest emission gain cross
sections in solution known to date. Because the
optimization campaign did not include any
wavelength constraints, most OSL candidates
were identified in the violet-blue region of the
emission spectrum. Notably, in this wave-
length range, our optimization campaign ap-
proaches the upper limit of the proxy’s linear
range (563)—i.e., the solution-state emission
gain cross section at room temperature cannot
be optimized much further because of physical
constraints to emission lifetime and spectral

Strieth-Kalthoff et al., Science 384, eadk9227 (2024)
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width (see supplementary text, section 3.4, for
a detailed discussion).

A visual analysis of the full dataset of po-
tential OSL emitters (Fig. 4A) suggests the
existence of a Pareto front between the emis-
sion color and the gain cross section within
our current search space. This fact leaves room
for further optimization campaigns with tailored
building blocks, targeting the development
of yellow OSL emitters, which have remained
largely elusive, even for inorganic solid-state
lasers (54).

Evaluating candidates in thin-film devices

To evaluate the identified lasing candidates in
an actual OSL device, synthesis and isolation
of larger quantities of material at high purity
was required. The two-step one-pot synthesis
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600 100 10
Excitation Intensity [uJ cm?]

Blue, reaction intermediate [cap]-[bridge]-B(MIDA); green, Br-[core]-Br building
block; red, mono-dehalogenation side product Br—[core]-H; yellow, bis-dehalogenation
side product H-[core]-H; black, proto-deboronation product [cap]-[bridge]-H
violet, product 1. (E) Schematic depiction of the automated crystallization module
for scalable purification of OSL emitter materials, owing to the incompatibility of
established purification protocols. (F) Thin-film spectral data of 3 [3 wt % in matrix
of 4,4'-Bis(N-carbazolyl)-1,1'-biphenyl]. Emission spectra (left) and emission intensity
(right) as a function of excitation intensity, demonstrating ASE.

procedure optimized for generality was ideal
to increase throughput of the optimization
campaign. However, reaction yields can vary
substantially depending on the nature of each
particular substrate and the accompanying
side product profile, both of which compli-
cate purification. Thus candidates 1 to 3 were
prepared on scale using alternative reaction
conditions (55). Notably, online HPLC was
leveraged to enable the large-scale synthesis of
candidate 1 using a two-step one-pot proce-
dure (56, 57). This revealed a substantial com-
petitive rate of reductive dehalogenation of
the core building block as well as protodebor-
ylation of the intermediate. These side pro-
ducts markedly complicated the purification of
the target OSL gain material but could largely
be mitigated by avoiding the use of P(-Bu); Pd
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G4 and the neopentylglycol boronic acid ester
cap in favor of Xphos Pd G2 and the pinacol
boronic acid ester derivative. Through these
modifications, leveraging online HPLC enabled
the identification of tailored reaction condi-
tions specifically adapted for the synthesis of
1 on a larger scale (460 mg, 63% yield).

At the same time, purification of the ob-
tained materials evolved as a second major chal-
lenge, particularly because high purity (>99%)
is required for device fabrication. In the case of
our OSL material candidates, well-established
chromatography or sublimation protocols were
hampered by poor solubility and decompo-
sition upon sublimation. For this purpose, we
developed a module for continuous preferen-
tial crystallization (CPC) purification (Fig. 4E;
see supplementary text, section 3.8, for further
details) (568, 59). Although leveraging CPC in
this space has largely been overlooked, we
believe that this isolation strategy could prove
particularly adept at purifying these compound
classes. CPCs require only limited solubility of
the targeted compound, are often performed at
ambient temperature with a high degree of
control over supersaturation, and are inherently
scalable without increasing the footprint of the
isolation setup. Together, the optimized syn-
thetic procedure and continuous preferential
purification delivered an exceptionally facile,
solution-process route to access gram-scale
quantities of 1, 2, and 3, which were used for
the preparation of thin-film devices.

Device-level properties were determined by
spin-coating thin films of 1 to 3 (3 wt %) in a
matrix of 4,4’-Bis(N-carbazolyl)-1,1’-biphenyl
(CBP) and subsequent spectroscopic charac-
terization. For all materials, ASE could be
observed, and low ASE thresholds of 1.5 to
1.9 W em™? were determined (Fig. 4F and
figs. S56 to S67). Notably, materials 2 and 3,
initially identified as the highest-gain emitters
in solution, exhibited the lowest ASE thresh-
olds in thin film and outperformed a solution-
processable BSBCz derivative used as a reference
material (Ey, = 1.49 and 1.50 pJ cm™ versus
191 W cm™?) (36). This observation under-
scores their best-in-class lasing performance
and highlights the effectiveness of our proxy-
based materials discovery workflow. In addi-
tion, it is worth noting that the ability to
prepare thin-film devices through spin-coating
represents a further advancement over the
parent BSBCz, where thin films need to be
prepared through vapor deposition.

Outlook

We demonstrated an asynchronous, delocalized
discovery campaign for gain materials for OSL
devices, integrating multiple automated syn-
thesis and characterization modules across
different laboratories and time zones with a
central, cloud-based Al optimizer. From an
experimental perspective, key to the success

Strieth-Kalthoff et al., Science 384, eadk9227 (2024)

of the discovery campaign was the identifi-
cation of a robust two-step, five-component,
one-pot synthesis protocol for assembling
functional targets from prefabricated building
blocks. By optimizing a solution-state proxy
for lasing performance, BO enabled the effi-
cient navigation of a large virtual space of
synthesizable OSL candidate compounds. Over-
all, this study resulted in the discovery of a
library of 21 new gain materials with state-
of-the-art lasing performance. A set of opti-
mized candidate molecules was prepared and
purified on a gram scale, and device-level per-
formance confirmed the identification of best-
in-class gain materials (in terms of amplified
spontaneous emission threshold).

Drawing from these findings, we envisage
three major directions for next-generation
workflows toward improved OSL devices:
(i) Whereas our current synthesis module
operates on a static set of conditions for
building block assembly, adaptive treatment
of synthesizability and substrate-dependent
condition selection can lead to a substantial
improvement of reaction yields and robust
quantification of molecular properties. (ii)
Advanced proxy measurements—e.g., assessing
optical properties in thin films rather than in
solution—are required to provide a more rea-
listic estimation of the lasing performance,
taking into account important parameters,
such as solid packing or matrix effects. (iii) The
systematic identification of sets of function-
infused building blocks would enable encoding
an optimized candidate space, facilitating inter-
pretability and hybrid human-AI molecular
design.

Our work demonstrates a blueprint for de-
localized Al-guided discovery campaigns. The
multifaceted nature of contemporary materials
discovery, characterized by intricate and di-
verse subtasks, makes it increasingly im-
practical to centralize all necessary resources
in one location. Instead, the integration of exist-
ing synthesis, formulation, or characterization
modules distributed over multiple sites across
the globe can enable increasingly complex dis-
covery workflows, synergistically merging the
capacities of automated and human-centric
experimentation. At the heart of such a cam-
paign must be a cloud-based hub for data
storage, logistics handling, and experiment
planning, to enable loss-free data transfer and
continuous learning from incoming data and
to harness the full potential of Al experiment
design. Key requirements for such workflows
are the facile accessibility of the central hub
[through graphical user interfaces (GUIs) and
application programming interfaces (APIs)]
and the ability to account for the inherent
diversity in digitization and experimentation
capacities of different participating laborato-
ries. At the same time, rigorous and, ideally,
automated policies for ensuring robustness and
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reproducibility—e.g., regularly scheduled con-
trol experiments with known outcomes or
intersite experiment reproduction—should be
enacted to ensure high data quality. Eventually,
an integrated platform that is open to anybody
on the globe and that assembles multiple par-
ticipating experimental modules to local (fog)
units and high-level cloud experimentation
workflows can provide a scalable framework
for democratizing scientific discovery (60).

Materials and methods

This section outlines the operation of our de-
centralized, cloud-based discovery engine for
OSL gain materials discovery. Site- and instru-
ment-specific implementations, along with ad-
ditional experimental details, are available in
the supplementary materials.

Synthesis and end-to-end automated
characterization

Throughout the optimization campaign, the
cloud hub maintained the up-to-date list of
most-informative next experiments (vide infra).
From this global catalog, each site was provided
with a tailored view based on the available
building blocks at the respective site. Human
researchers could then flexibly allocate batches
of experiments to the respective automated
platforms, either semiautomatically through
the GUI or in an automated fashion using the
API. Once allocated, experiments were imme-
diately restricted from allocation by other
users.

Automated two-step one-pot syntheses (second-
generation conditions) were performed as fol-
lows: The cap building block (1.1 equiv), the
bridge building block (1.0 equiv), P(t-Bu); Pd
G4 (10 mol %), and TMSOK (1.3 equiv) were
added to a reaction vial, which was evacuated
and backfilled with N,. Anhydrous 1,4-dioxane
(target concentration: 0.05 M bridge building
block) was added, and the reaction mixture
was stirred and heated to 60°C for 1 hour.
After cooling to room temperature, stock solu-
tions of the core building block (in 1,4-dioxane,
0.40 equiv), XPhos Pd G2 (in 1,4-dioxane,
5 mol %), and Na,COs (7.5 equiv, in H,O) were
added, and the reaction mixtures were stirred
and heated to 100°C for 12 hours. Instrument-
specific implementations are detailed in the
supplementary materials.

Crude reaction mixtures (after concentration
in vacuo and shipping, if applicable) were
subjected to the end-to-end automated char-
acterization workflow described by Wu et al.
(38). On the Chemspeed SWING platform, the
reaction mixtures were filtered through a plug
of celite and were injected into the HPLC-MS
instrument. If the desired reaction product
was detected in the chromatogram (see sup-
plementary materials for details), a second
HPLC-MS run was started, and the target
compound fraction was collected downstream.
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This fraction was then automatically subjected
to a sequence of steady-state absorption spec-
troscopy, steady-state emission spectroscopy,
quantum yield determination, and time-
resolved emission spectroscopy [see (38) and
the supplementary materials for a detailed
description]. The collected data were up-
loaded to the cloud-based hub after a rapid,
asynchronous visual inspection by a human
researcher.

Bayesian optimization

The BO algorithm was designed to maintain
the up-to-date ranked list of most-informative
next experiments. For this purpose, the opti-
mizer queried the central cloud hub for the
most recent data on all completed, ongoing,
and pending experiments. A multioutput GP
surrogate model was trained on the spectro-
scopic data from all completed experiments,
using the embedding vectors from the pre-
trained GNN as the molecular featurization.
For all ongoing experiments, the GP posterior
distribution was conditioned on so-called fan-
tasy values. Concurrently, the optimizer re-
trieved data on the available cap, bridge, and
core building blocks at each site to enumer-
ate the currently accessible active search
space (i.e., all molecules that can be synthe-
sized at minimum at one site). Eventually, the
updated list of most-informative experiments
was generated by evaluating the surrogate
model’s posterior across the active search space.
For this purpose, an ensemble of acquisition
functions was iteratively optimized by means
of sequential conditioning (for details on the
algorithm, see supplementary materials).

Building block preparation

Cap building blocks (as boronic acid pinacol
esters) were either purchased from commercial
suppliers or synthesized following literature
procedures starting from commercially avail-
able precursors through (i) esterification of
arylboronic acids, (ii) Buchwald-Hartwig-type
amination of haloarylboronic acid pinacol esters,
or (iii) Miyaura borylation of aryl halides. Details
are given in the supplementary materials.
Bridge building blocks (haloarylboronic acid
TIDA esters) were prepared by esterification of
commercially available haloarylboronic acids.
For this, the haloarylboronic acid (1.0 equiv)
and TIDA (1.0 equiv) were suspended in an
azeotrope solvent mixture [2:1 mixture of
benzene or toluene with dimethyl sulfoxide
(DMSO)], and the mixture was heated at
reflux under Dean-Stark conditions for 3 hours.
After washing with water, drying, and concen-
tration in vacuo, the desired product was pre-
cipitated from a concentrated acetone solution
with hexanes or diethyl ether. This synthesis
procedure was either executed in an automated
fashion using the Chemputer setups in Glasgow
and Vancouver (45) or was performed manually.

Strieth-Kalthoff et al., Science 384, eadk9227 (2024)

All core building blocks were purchased
from commercial suppliers.

On-scale synthesis and purification

For the scale-up of the two-step one-pot syn-
thesis, the cap building block (1.5 equiv), the
bridge building block (1.0 equiv), XPhos Pd G2
(10 mol %), and K3PO,, (9.0 equiv) were added
to a two-necked flask. Under an inert atmo-
sphere, tetrahydrofuran (THF) and water (100
equiv) were added. The reaction was stirred at
room temperature and continuously moni-
tored by online HPLC. Upon completion of the
first coupling step, a stock solution of the core
building block (0.63 equiv) was added, fol-
lowed by an aqueous NaOH solution (3.0 equiv),
and the mixture was stirred overnight. After
workup (see supplementary materials for fur-
ther details), the resulting solid was purified
by CPC (58, 59). For this, the crude product
was loaded to a dissolver flask followed by
the addition of dichloromethane. Continuous
circulation of the liquid between the dissolver
(80°C) and the crystallizer flask (15°C) over
48 hours led to the crystallization of the pro-
duct in the latter flask, which was collected
by vacuum filtration.

Thin-film device fabrication and characterization

Thin films of the purified materials [3 wt % of
emitter in 4,4’-Bis(N-carbazolyl)-1,1’-biphenyl]
were prepared through spin coating from a
chloroform solution. For all films, absorp-
tion spectra, emission spectra, and photo-
luminescence lifetime decay curves were
recorded. ASE characteristics were determined
by recording the emission intensity and emis-
sion line width as a function of excitation
intensity. From these data, ASE thresholds
were determined by separately fitting the
characteristic excitation-emission curves in
the subthreshold and above-threshold regimes.
For each material, thin-film fabrication and
spectroscopic characterization were run in
triplicate. All measurements were performed
under an inert gas atmosphere. Details of the
device fabrication and data analysis are given
in the supplementary materials.
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