The Cronin Group

Research in the Cronin Group is motivated by the fascination for complex chemical systems, and the desire to construct complex functional molecular architectures that are not based on biologically derived building blocks.


...
Digital Chemistry breakthrough with two landmark papers on Chemputer-based Optimisation and Inert atmosphere manipulations

The Schlenkputer, published in Nature Chemical Engineering , is a fully automated system for conducting highly reactive chemical reactions in an inert atmosphere. The system combines a programmable Schlenk line for inertization of glassware with a liquid handling backbone, allowing for the synthesis and manipulation of air and moisture-sensitive compounds. ​ The researchers demonstrated the system’s capabilities by synthesizing four highly reactive compounds, including a colorimetric indicator and a hygroscopic Lewis acid. ​ The Schlenkputer provides a safe and efficient platform for conducting sensitive chemical reactions, potentially revolutionizing the field of chemical synthesis.

Also introduced this month in Nature Communications is a new system for automated chemical synthesis that can adapt to changing circumstances in real-time. ​ The system utilizes low-cost sensors and analytical instruments to monitor and optimize chemical reactions, resulting in improved yields and reduced human intervention. The researchers demonstrated the system’s capabilities by optimizing reactions such as the Ugi four-component reaction and the Van Leusen oxazole synthesis.

Both papers are published as Open Access.

...
Prof. Leroy (Lee) Cronin

Prof Leroy (Lee) Cronin
Regius Chair of Chemistry
Advanced Research Centre (ARC)
Level 5, Digital Chemistry
University of Glasgow
11 Chapel Lane
Glasgow G11 6EW
Tel: +44 141 330 6650
Email: lee.cronin@glasgow.ac.uk

Latest Publications

...

499. Electron density-based GPT for optimization and suggestion of host–guest binders

...

498. A programmable hybrid digital chemical information processor based on the Belousov-Zhabotinsky reaction

...

497. An integrated self-optimizing programmable chemical synthesis and reaction engine

...

496. Autonomous execution of highly reactive chemical transformations in the Schlenkputer

...

495. Universal chemical programming language for robotic synthesis repeatability

...

494. Bringing digital synthesis to Mars

...

493. An Autonomous Electrochemical Discovery Robot that Utilises Probabilistic Algorithms: Probing the Redox Behaviour of Inorganic Materials

...

492. Reaction Kinetics using a Chemputable Framework for Data Collection and Analysis

...

491. Assembly theory explains and quantifies selection and evolution

...

490. Digital design and 3D printing of reactionware for on demand synthesis of high value probes


Find us on

Copyright © 2005 - 2024 Prof Lee Cronin - The University of Glasgow
Joseph Black Building, University of Glasgow, Scotland, UK
Visitors: