The Cronin Group

Research in the Cronin Group is motivated by the fascination for complex chemical systems, and the desire to construct complex functional molecular architectures that are not based on biologically derived building blocks.


...
New Polyoxometalate Flow Battery Explores Ultra-Reduced State

In joint work with the Symes group, the Cronin group have discovered that it is possible to reduce the {M18} Dawson cluster reversibly by up to 18 electrons. This ultra-reduced state is not only stable in water, but it is able to be used in a flow battery system demonstrating very high capacity and stability. This means the highly reduced cluster system might lead to new flexible energy systems both for stationary use and electric vehicles. The fact that the energy is carried in an aqueous liquid form might even mean that it would one day be possible to fill up electric cars, powered by such a battery, with the charged liquid.

The research was published in Nature Chemistry, and Prof Cronin has also written a “Behind the Paper” blog post about this work.

...
Prof. Leroy (Lee) Cronin

Prof Leroy (Lee) Cronin
Regius Chair of Chemistry
Advanced Research Centre (ARC)
Level 5, Digital Chemistry
University of Glasgow
11 Chapel Lane
Glasgow G11 6EW
Tel: +44 141 330 6650
Email: lee.cronin@glasgow.ac.uk

Latest Publications

...

509. High-Nuclearity Polyoxometalate-Based Metal–Organic Frameworks for Photocatalytic Oxidative Cleavage of C−C Bond

...

508. Operational considerations for approximating molecular assembly by Fourier transform mass spectrometry

...

507. Reaction blueprints and logical control flow for parallelized chiral synthesis in the Chemputer

...

506. Experimentally measured assemblyindices are required to determine the threshold for life

...

505. Algorithm-driven robotic discovery of polyoxometalate-scaffolding metal–organic frameworks

...

504. Reaction: Programmable chemputable click chemistry

...

503. Rethinking pharma and biotech outsourcing: A call for data security and supply chain resilience

...

502. Delocalized, asynchronous, closed-loop discovery of organic laser emitters

...

501. Investigating and Quantifying Molecular Complexity Using Assembly Theory and Spectroscopy

...

500. Electron density-based GPT for optimization and suggestion of host–guest binders


Find us on

Copyright © 2005 - 2025 Prof Lee Cronin - The University of Glasgow
Joseph Black Building, University of Glasgow, Scotland, UK
Visitors: