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Direct measurement of the thermodynamics of biomolecular
interactions is now relatively easy. Interpretation of these
thermodynamics in simple molecular terms is not. Recent work
shows how the multiplicity of weak noncovalent interactions,
and the inevitable enthalpy/entropy compensation that these
interactions engender, lead to difficulties in teasing out the
different components.
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Abbreviations
DSC differential scanning calorimetry
ITC isothermal titration calorimetry
MB Mercedes Benz
PrP prion protein

Introduction
Thermodynamics impinges on most aspects of biomolecu-
lar interactions, and recent improvements in sensitivity
and usability of instrumentation have made measurements
of thermodynamic parameters relatively straightforward.
Calorimetric methods, in particular isothermal titration
calorimetry (ITC) and differential scanning calorimetry
(DSC), are now popular both as general analytical tools and
as seductively direct routes to fundamental data about
intermolecular and intramolecular forces. What is less
secure is our understanding of what these parameters
might mean at the molecular level. This ‘snapshot’ review
illustrates some of the uses (and abuses) of thermodynam-
ics in biomolecular systems appearing (mainly) during the
past year (up to May 1999), discussing how far we might
have come since earlier work [1,2].

Thermodynamics can be daunting, so it is worth starting
with a brief reminder of the important parameters and
where they come from. The key thermal parameter is the
heat capacity difference (∆Cp), since all other relevant para-
meters derive from this; Equations 1 and 2 show examples:

∆H = ∫ T
0 ∆Cp⋅dT + ∆H(0) (1)

∆S = ∫ T
0 (∆Cp/T)⋅dT (2)

where ∆H is the enhalpy change, ∆H(0) is the enthalpy
change for the process at 0K and ∆S is the change in
entropy. Equation 1 emphasises how enthalpy changes
reflect differences in the amount of heat energy required
to achieve a particular state, whereas Equation 2 shows

that the entropy change is a measure of how easy it might
be to distribute that energy amongst the various molecular
energy levels [3]. (Note: ∆H(0) dominates covalent inter-
actions because there are large changes in ground state
energies, but it is usually less significant in noncovalent
interactions. That is why heat capacity effects are so
important here.)

The Gibbs free energy (G) is the parameter that really mat-
ters in determining (bio)molecular equilibria: it shows the
direction in which processes will tend to go, or the amount
of work that needs to be done to make them go. Equation 3
shows how the change in free energy, for any process at con-
stant pressure, is made up of two contributions: 

∆G = ∆H–T⋅∆S (3)

At the molecular level, this reflects the opposition of two
fundamental effects — the tendency to fall to lower ener-
gy (bond formation, negative ∆H), offset by the equally
natural tendency for thermal (Brownian) motion to disrupt
things (bond breakage, positive ∆S). Equation 4 shows the
standard free energy change: 

∆G° = –RT⋅lnK (4)

where R is the gas constant and K is the equilibrium con-
stant. This shows the change that would take place under
some arbitrary and usually very unrealistic standard condi-
tions. It is probably better viewed as a convenient way of
expressing the equilibrium constant for the process on a
logarithmic scale, with units of energy. With this back-
ground (and apologies to those who are already familiar
with the basics) we may now explore some recent experi-
mental and theoretical developments in biomolecular
thermodynamics.

Models, theories and databases
Much of what we know about the thermodynamics of inter-
actions in complex biomolecular systems is based on what
we hope are relevant model systems, together with theoret-
ical analysis and correlations from experimental databases.

With characteristic flair, the Dill group has recently tackled
the theory of hydrophobic interactions using a two-dimen-
sional ‘Mercedes Benz (MB)’ model of water [4,5••].
Despite its relative simplicity — adopted for ease of com-
putation and clarity of interpretation — this model
reproduces many of the anomalous properties of liquid
water and the transfer of hydrophobic solutes between
aqueous and non-polar solvents. The two-dimensional MB
model simulations support the classical picture of
hydrophobic interactions [1,6•] in which, at least at lower
temperatures, small hydrophobic groups are surrounded by
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a shell of more ordered water molecules with stronger
hydrogen bonding than that found in bulk water. This
ordering difference between shell and bulk water accounts
for the observed negative ∆H and ∆S of transfer of such
groups to water from non-polar environments, the empiri-
cal characteristic of the hydrophobic interaction. Both the
MB model and another theoretical approach based on
information theory [7] give partial explanations for the con-
vergence temperature (TS), a common empirical
temperature at which entropies of transfer become zero.
Other work [8•], however, rightly questions the experi-
mental validity of the concept because of the dependence
of the absolute values of ∆S on an arbitrary choice of stan-
dard state and concentration units, as well as inherent in
accuracies in ∆Cp data used for extrapolations.

Much of what we know about hydrophobic interactions is
based on model studies involving transfer or partitioning
between solvents that are supposed to mimic the various bio-
molecular environments, but these models neglect the
possibly more structured environment, both polar and non-
polar, that might be found within macromolecular structures.
Careful experiments comparing partitioning in amorphous or
partially ordered environments show that the structure of the
environment can completely change the thermodynamic sig-
nature of the hydrophobic interaction [9••].

Compared with the effort expended on the hydrophobic
effect, relatively little effort has gone into understanding
hydrophilic effects, such as hydrogen bonding and electrosta-
tic interactions, in aqueous environments. Despite
indications from the behaviour of small model compounds,
which suggest that H-bonds should be at best thermodynam-
ically neutral in aqueous systems, some experiments (but by
no means all; see below) show that, in protein folding, hydro-
gen bonding might be as significant as hydrophobic
interactions (e.g. [10••,11•]). Compilations of the very exten-
sive literature on the thermodynamics of protein folding are
now available [12•–14•], including a web version [13•].

Isotope effects
One way in which the various components of interactions
might be disentangled is to compare effects in H2O and
2H2O. Studies of protein folding stability in H2O versus 2H2O
show that the small increase in stability in 2H2O cannot be
explained entirely by isotopic responses to changes in acces-
sible nonpolar surface areas [15••], implying that other factors
such as hydrogen bonding must play a significant role. The
relative strengths of H-bonds can be probed using measure-
ments of the partitioning of H and 2H into exchangeable
protein sites in H2O/D2O mixtures. Recent work [16••] sup-
ports previous indications that the strength differences
between intramolecular amide–amide and amide–water 
H-bonds are small. This work also emphasises how the appar-
ent strengths of H-bonds can be very context-dependent and
hard to predict. Model studies [17•] suggest that the sign of
∆Cp for transfer from 2H2O to H2O is different for polar and
nonpolar groups, and this could be a useful diagnostic.

Aqueous solvation effects and the direct involvement of
solvent water are likely to be particularly important in pro-
tein–carbohydrate interactions because of the very
hydrophilic nature of sugars. The importance of solvation
can be demonstrated by comparing the interactions in
2H2O and H2O, as illustrated by a continuing series of ITC
studies [18,19•]. Although it is not possible to predict reli-
ably the magnitude (or even sign) of the effects of
H2O/2H2O exchange on thermodynamic parameters, the
observation of large effects on, for example, ∆H has been
correlated with structural evidence for ordered water in
lectin binding sites and the changes in this ordered water
upon binding of saccharides. Studies with a range of sac-
charide ligands show that binding free energies and
enthalpies are generally non-additive, with no simple cor-
relation, for example, with the number of hydrogen bonds
involved in the complex. Effects of other solvent additives
on the thermodynamics of protein–carbohydrate interac-
tions have been alternatively interpreted in terms of the
effect of osmotic stress on the differential uptake of water
molecules [20•]. It is likely that the overall thermodynam-
ics will involve both direct structural participation of water
molecules and more indirect, non-local effects on bulk sol-
vent structure (as reflected, for example, in osmotic stress).

Pressure effects
After a period of absence, high pressure experiments on pro-
tein interactions are now returning to some popularity
[21••,22•,23,24•], though their execution and proper inter-
pretation remains difficult [21••]. There is a long-standing
paradox here [1,24•] because the effects of high pressure on
protein stability do not correlate with pressure effects on
transfer of small molecules into solution. Such model com-
pound experiments cannot easily take account of specific
macromolecular structure effects, and some experiments
[22•] have confirmed that it is changes to internal void vol-
ume upon unfolding that contribute most to pressure
unfolding, rather than more general hydration effects. Some
theoretical calculations, however, reach an opposite conclu-
sion [24•]. Inevitably, both effects will be present in most
systems, and which (if any) dominates in any particular cir-
cumstance will most likely depend on specific structural
details of the folded and unfolded macromolecules.

Protein folding and misfolding
There is much discussion, relevant to the choice of appropri-
ate small molecule model systems, as to whether the native
fold of a protein is best viewed as analogous to a macroscop-
ic solid or liquid. Experimental data can be ambiguous,
though both views are not incompatible with the mesoscop-
ic nature of proteins [25,26]. An analysis of molecular
dynamics simulations and X-ray diffraction data [27] con-
cludes, perhaps not surprisingly, that the interiors of globular
proteins are more akin to solids in some respects than the
more fluid protein surfaces. A similar analysis of unfolded
and other intermediate states might be useful, especially in
view of the ongoing controversy [28•,29•] as to whether the
‘molten globule’ is a truly discrete thermodynamic state, or
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whether it is just a convenient phrase to encompass the myr-
iad of interconverting conformational states of a polypeptide
that are neither ‘folded’ nor ‘unfolded’ [3].

Controlling the folding stability of proteins by solvent
additives or mutagenesis is of considerable practical impor-
tance. Large increases in stability in the presence of
carboxylic acid salts (which can cause a change in melting
temperature [∆Tm] of up to 22°C at 1 M concentrations)
have been correlated with changes in solvent surface ten-
sion [30•]. The inherent difficulties in interpreting, far
more in predicting, the effects of mutagenesis on the ther-
modynamics of protein folding are highlighted by the
significant consequences of introduction of a simple
amino-terminal methionine [31•].

The thermodynamic basis for prion protein (PrP) activity
has been explored using recombinant variants of human PrP
representing known familial variations with enhanced path-
ogenicity [32•]. PrP is thought to be involved in the
development of spongiform encephalopathies such as
scrapie and, in humans, Creutzfeld–Jacob disease. It is
thought that conformational changes in PrP are responsible
for the brain pathology. The ‘protein only’ hypothesis sug-
gests that the key event is conformational transition from
the mainly α-helical, ‘benign’, native conformer (PrPC) to
the ‘pathological’, predominantly β-sheet conformer
(PrPSc). The latter is unlikely to be thermodynamically sta-
ble by itself, and its accumulation probably results from
aggregation or other non-equilibrium intermolecular inter-
actions — a feature that might be common to many proteins
that aggregate when (partially) unfolded. It is possible, how-
ever, that thermodynamics might play a role in determining
the ease with which PrP might undergo the conformational
switch. Studies of the folding stability of PrP mutants using
the usual thermal and chemical denaturant guanidine
hydrochloride (GdnHCl, a protein-denaturing agent that
disrupts ion–ion associations and H-bonding patterns)
methods show that this is unlikely to be the case. Mutations
associated with enhanced PrP activity do not show any sig-
nificant thermodynamic destabilization of the native
conformer [32•].

Protein–protein and protein–ligand interactions
One contribution to the thermodynamics of association of
two molecules is the loss of translational and rotational
entropy that this entails, and one might have expected the
effects of losses of degrees of freedom to be well under-
stood. Unfortunately this is not the case [33•,34•], since
there seems still to be considerable distance between theo-
ry [33•] (which may be too simplistic) and experiment [34•]
(which may be too complex to extract the desired effect).

An example of how difficult it can be to rationalise even
simple mutation effects is given by work from the Fersht
group [35•,36•]. Using a chymotrypsin inhibitor–subtilisin
BPN′ system (EC 3.4.21.62; a member of the serine
endopeptidase family) [35•], they show that independent

mutation of residues at separate sites in the inhibitor —
one directly involved in the inhibitor–subtilisin interface
and one in a loop distant from this interface — have simi-
lar, destabilising effects on the free energy of binding of
the two proteins. In the case of mutations in the pro-
tein–protein interface such changes are easily rationalised
in terms of direct effects on packing or other interactions.
For mutations remote from the site of structural contact,
however, one has to invoke arguments based upon indirect
effects such as changes in chain conformation or flexibility.
This begs the question: to what extent might such effects
also be present, even in cases of mutations in the interface
contact region? Just because you can ‘see’ the interaction
in the protein structure does not rule out the possibility of
contributions from more subtle, indirect, nonlocal effects,
which can have similar magnitudes. Careful experimental
examination of the barnase–barstar system [36•] emphasis-
es the difficulties, especially when entropy/enthalpy
compensation is involved (as it almost always is — see
below) and when water molecules tend to fill the cavities
created by mutations or other packing defects [36•–38•].

Nucleic acid–ligand interactions
Large ∆Cp changes are usually associated with changes in
hydrophobic or polar group hydration, but theoretical cal-
culations have shown that more general, long-range
electrostatic interactions can also make a significant contri-
bution [39•]. This may be of real significance in
interactions with nucleic acids because of the highly
charged polynucleotide backbone. Direct measurements
of the thermodynamics of drug–DNA interactions are rela-
tively sparse (in comparison with those for protein studies),
but have been reviewed recently by Chaires [40]. Such
interactions can be difficult to interpret because of the het-
erogeneity of binding sites and the large conformational
changes that can be induced in the DNA, especially by
intercalating molecules, but they show the same range of
∆Cp and entropy/enthalpy compensation effects to be
expected for interactions made up of multiple, weak, non-
covalent components.

The absence of any significant H2O/2H2O or osmotic stress
(neutral solute) effects on the thermodynamics of nonspe-
cific protein binding to DNA has been taken to mean that
changes in hydration make only a minimal contribution to
∆Cp in such cases [41]. An ITC study of the effects of high
concentrations of monovalent salts on interactions
between protein and single-stranded DNA shows that
weak-anion binding to the protein can yield large changes
in the enthalpy of binding, with ∆H generally becoming
less negative (less exothermic) with increasing salt concen-
tration [42]. Normally, we would only think of ionic effects
in terms of the highly charged DNA backbone, but we
must not neglect the protein. Other studies of the effects
of high salt concentrations in another protein–DNA system
[43] have been interpreted differently in terms of large
changes in hydration and ion incorporation into the
protein–DNA interface, though the thermodynamic
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argument is somewhat qualitative and cumbersome and
there is no direct experimental evidence for either differ-
ential hydration or ion-incorporation effects in this
particular system.

Entropy/enthalpy compensation
A common thread running through all these studies, espe-
cially as more comprehensive data covering a range of
experimental conditions are obtained, is the way in which
large variations in ∆H and ∆S appear to be correlated in
such a way as to almost cancel, and give correspondingly
smaller changes in ∆G. This is an old observation that (in
many cases) can be attributed to experimental limitations
and deficiencies in the way the data are obtained, espe-
cially when using indirect techniques [44,45•], though it
now has much more substance because of direct calorimet-
ric measurements. Entropy/enthalpy compensation due to
variation in temperature, can be shown to be a simple con-
sequence of finite ∆Cp effects [46], demonstrable from
fundamental thermodynamic expressions of ∆H and ∆S
(Equations 1 and 2). The effect is, however, more general
than that. Frequently attributed to the peculiar properties
of solvent water, it is an almost inevitable property of per-
turbation of any system comprising multiple, weak,
intermolecular forces [47]. Intuitively, the breaking of
bonds in any macromolecular system (including solvent)
will be endothermic (a positive ∆H), but will be compen-
sated by the greater entropy (a positive ∆S) that results
from the increase in molecular flexibility.

The effect is very frustrating, since it means that absolute
values of ∆H and ∆S cannot be viewed as diagnostic of any
particular kind of interaction. In evolutionary terms, how-
ever, it might have homeostatic significance in that —
regardless of the molecular basis for the compensation —
mutations or changes in environment giving large changes
in ∆H and ∆S can be tolerated because of the relatively
much smaller effects on ∆G, which is the only parameter
that really matters for the function of a system (A Cooper,
CM Johnson and JH Lakey, unpublished data).

Thermodynamic fluctuations
Since heat is a manifestation of chaotic molecular motion,
it is inevitable that thermodynamic systems undergo fluc-
tuations, and this is particularly significant in small,
mesoscopic systems such as individual macromolecules
[25,26]. Recent papers have explored this further. Tang
and Dill [48•] have used a lattice model to examine how
conformational fluctuations in a macromolecule might
change with temperature. In agreement with low-temper-
ature crystallographic and spectroscopy experiments, they
found that large fluctuations are frozen out at low temper-
atures, typically below about 200K. The observation that
proteins with more stable folds tend to show fewer large
fluctuations is consistent with intuition, and they make the
point — not new, but worth reiterating — that protein sta-
bility is as much about unobservable conformational states
as the observable native state.

Given the inherent dynamic flexibility of mesoscopic sys-
tems it is pertinent to ask whether folded proteins, and other
compact macromolecules, behave thermodynamically more
like liquids or solids. Experimental data are equivocal here
but, as mentioned earlier, an analysis [27] using the
Lindemann criterion — which compares fluctuations in the
root mean square deviation in an atomic position to most
probable nonbonded near-neighbour distances — concludes
that the truth lies somewhere in between. That is, at physi-
ological temperatures, native proteins behave like
surface-molten solids, with essentially solid-like interiors
but more fluid, liquid-like surfaces. Specific residues
involved in dynamic interchange between different low-
lying conformational states can be identified by NMR
methods [49•]. Recent studies [50] have confirmed that,
even with simple inhibitors, ligand binding affects the inter-
nal conformational motion of a protein. Such changes in
dynamics must contribute to the thermodynamics of the
binding process in ways that are impossible to model using
a simple bond or group additivity picture. This is true also
for more complex systems, as illustrated by the large contri-
bution to entropy of protein–DNA association coming from
changes in conformational motion [51]. It has also been sug-
gested that internal vibrations of a protein might be
significant in determining substrate binding energy and
specificity [52], though such effects might be compensatory
in terms of ∆H and ∆S [53].

Discrepancies, misconceptions, and
paradoxes — the ‘hidden variables effect’
Confidence in experimental data is paramount, and one
must be aware of some of the limitations in obtaining those
data. In view of the importance placed on accessible sur-
face area (ASA) changes in many empirical models, it is
disturbing that different algorithms (or even the same algo-
rithm used by different researchers) can lead to
significantly different values (see [15••] for example).

Experimental baselines can be a problem in both direct
and indirect thermodynamic measurements, where the
data may span an insufficient range and results may
depend on the methods used for baseline extrapolation
and interpolation [21••,54•,55].

Interpretation of experiments can be equally fraught. It is
sometimes implied that heat capacity changes (∆Cp
effects) are somehow decoupled from enthalpy and
entropy changes, showing contributions from solvent
effects not appearing in ∆H and ∆S (see [39•] for example).
In view of the fundamental integral relationships
(Equations 1 and 2), this is hard to defend.

Calorimetry measures the totality of heat effects in any
process, and this has long been used to advantage, for
example to detect otherwise unsuspected protonation
changes involved in ligand binding and other processes (see
[56•,57] for recent examples, though the effects has been in
use for over 20 years). It is sometimes claimed that
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calorimetry is unique in this respect, and that more indirect,
spectroscopic or van’t Hoff methods (based on the temper-
ature-dependence of equilibrium constants [3]) do not
show this. But this is incorrect, as can be shown simply from
consideration of the coupled effects of temperature and pH
on equilibria involving hydrogen ions, including the effects
of temperature on buffer pH (refer to author for details).

Regardless of whether one measures the enthalpy directly
by calorimetry or indirectly using the van’t Hoff equation,
the answer is the same and — importantly — includes any
additional heats due to buffer protonation, whether one is
aware of them or not. The same will be true for any other
‘hidden variables’ (i.e. additional processes that are not
included explicitly in the equilibrium constant expression
used in the van’t Hoff analysis) as a consequence of the
fundamental theories of thermodynamic linkage [57].

Thus, statements such as “...BIAcore only measures the
direct binding between the two interacting partners
whereas microcalorimetry also measures solvent effects...”
[58•] cannot be substantiated. Any discrepancies between
thermodynamic data determined by calorimetric or biosen-
sor methods (for example [59]) are best ascribed to the
inevitable perturbations introduced by macromolecular
immobilisation techniques or other experimental variables,
rather than to some fundamental thermodynamic distinc-
tion. That is not to deny that differences between van’t
Hoff and calorimetric enthalpies can be found, even when
determined from the same experimental data [60,61•], but
such discrepancies probably reflect the inherent inaccura-
cy of the van’t Hoff analysis in situations where
entropy/enthalpy compensation contrives to give relatively
little curvature to the van’t Hoff plot despite the large tem-
perature dependence of ∆H.

New technologies
New developments in single molecule atomic force
microscopy (AFM) techniques have opened up possibili-
ties to study directly the mechanics of protein interaction
and unfolding. For example, Rief et al. [62•] have mea-
sured the force required to mechanically unfold individual
triple-helical repeats in spectrin molecules. Significantly,
they were able to show that individual spectrin repeats
unfold independently when stretched, confirming the rel-
ative lack of cooperative interaction between adjacent
domains. Similar methods have enabled measurements of
the force necessary to pull apart insulin dimers [63•], which
is difficult to do by conventional calorimetric methods [64].
The forces measured in such experiments are spatial deriv-
atives of ∆G, or work necessary to bring about the change,
and are in principle independent of any model assump-
tions that might be needed for determination of ∆G by
other methods. Provided scepticism regarding perturba-
tions produced in single molecules by tethering or
confinement methods can be overcome, such methods
hold considerable promise for our understanding of the
energetics of macromolecular interactions.

Conclusions
It should be easy. We have only a limited menu of
noncovalent interactions, unchanged for 40 years [1]:
hydrogen bonding, hydrophobic, electrostatic, dispersion
and repulsive van der Waals forces, yet it is proving
remarkably difficult to disentangle their separate contri-
butions to the thermodynamics of biomolecular
processes, despite a wealth of experimental data.
Perhaps we need a new way of looking at things; one
that, for example, treats the network of fluctuating
hydrogen bonds in its entirety, rather than as an arbitrary
separation into isolated components.
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