Chapter 1 - Introduction

Chapter 1

Introduction

1.1 Synopsis for non-crystallographers

Chemical crystallography and quantum chemistry encompass our knowledge about the
detailed structure of molecules, their properties and reactions, and the distribution of
electronic charge in their atoms and chemical bonds. On this insight are based all modern
theories of chemical reactivity, and the design principles for new materials and drugs. Great
advances in the last two decades have led to the present theoretical and experimental
methods for determining molecular structure at the electronic level; we can in principle (and
increasingly in practice) obtain not just the positions of atoms in molecules but all other
topological properties of the associated electron distribution (ED).

A beam of X-rays is diffracted by the electrons in a crystalline material, just as visible light
is diffracted by larger objects. Recombination of diffracted light by means of lenses can give
a magnified image of the object; X-rays, having a wavelength about four orders of magnitude
shorter than that of visible light, produce an image of the electron or charge density
distribution characteristic of the diffracting crystal. There exist no lenses as such for X-
rays, but recombination of diffracted rays into an image can be brought about by suitable
detection followed by computational Fourier transformation. The experiment is effectively

an X-ray microscope for the disposition of electronic charge.

In practice we can bypass the Fourier transformation, because quantum mechanics enables
us to construct a mathematical model of the charge density in a crystal. The parameters of
such a model can be adjusted to reproduce the experimentally-measured pattern of
diffracted X-rays, given prior knowledge of the arrangement of atomic nuclei in the crystal
lattice. For chemical (as distinct from biological) molecules this can usually be found
routinely using the methods of conventional crystal structure analysis programmed in
widely available computer packages. This leads to a "ball and stick" model of the atoms and
bonds representing the topology of the charge density at the level of its most salient
features, found at the positions of the atomic nuclei. It is obtained by Fourier
transformation of the diffracted X-ray pattern at relatively low resolution. Next we can
proceed with a far more elaborate, so-called "multipole" model of the crystalline density,
fitting it to a diffraction experiment carried out at high resolution, such that two points as

close together as 0.4X1010 m can be distinguished. As mentioned earlier, we need no
Fourier transformation at this stage because the charge density in fine detail can be
computed directly from the fitted multipole model. One major component of the XD package
is the program for least squares (Isq) fitting of a multipole model to the experimental data.

Once a charge distribution has been obtained experimentally, various chemical and physical
properties that depend on the distribution can be derived. The chemical structure of
molecules can be extracted from an analysis of the topology of the charge distribution, the
features of which are summarized by the curvatures of the charge density at its critical
points. Each feature, maximum, minimum or saddle has associated with it a point in space
called a critical point, where the density is flat. One type of critical point has all three
curvatures in 3-D space negative; it is found at the sites of atomic nuclei. Other types, with
both positive and negative curvatures, are associated with bonding interactions between
atoms. Because the strength and nature of the interactions are characterized by topology,
the chemistry of the molecule can be recovered as a property of its charge distribution. A
program for deriving molecular properties from the multipole model of the charge
distribution is thus another major component of XD. Many of these properties can be
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displayed pictorially, using the 2-D and 3-D graphics programs which plot contour, relief
and iso-surface maps of selected properties such as the deformation density, the Laplacian
of the total density, the electrostatic potential etc.

1.2 Experimental electron densities

X-ray diffraction was first applied with the purpose only of determining the positions of
atoms in crystals and hence the geometrical structure of crystals and molecules. With the
development of single-crystal diffractometers and computing facilities from the middle 1960s
onwards came studies aimed at obtaining an experimental description of the chemical
bonding to compare with the picture given by quantum chemistry theoretical calculations
[1-4]. Accurate experimental measurement of the charge density in a crystal has been
feasible since that time, following the development of sufficiently compact parameterized
descriptions of molecular densities [5,6]. One of the most exciting applications of such an
analysis is the evaluation of one-electron properties in molecular crystals. In a pioneering
paper [7] Coppens et al. demonstrated the feasibility of this technique for a number of
centrosymmetric crystals. However, applications to non-centrosymmetric materials, such as
organic materials with non-linear optical applications, have been relatively few. In part, this
is certainly due to the increased difficulty of obtaining accurate model structure factors
when the phase is a continuous variable. Nevertheless, recent applications have
demonstrated the usefulness and potential accuracy of the technique in the non-
centrosymmetric case [8,9].

ED determinations [10] are based on intensity measurements of X-ray photons elastically
scattered by crystals. In the next section a brief summary is given on some theoretical
aspects of the procedure to extract the ED from X-ray diffraction data. For more detailed
descriptions the reader is referred to references [11,12].

1.3 Theoretical aspects of electron density determination

According to the kinematical theory of scattering [13] the total diffraction intensity is

Itot =/ >T U <| F(h!q)|2>T (Eq.1-1)

where F(h,q) is the Fourier transform of p(r,q), the static ED at a given nuclear configuration
q, h is the Bragg vector with integral components hi, ha, hs relative to the

F(h,q) = jv p(r,q)exp@mr)dr (Eq. 1-2)

reciprocal axes a*, b*, ¢*, Vis the unit-cell volume and ( )r means thermal averaging over all
vibrational states. By disregarding the diffuse scattering altogether

ltot =1 Bragg :|<F(h,q»-|- |2 (Eq. 1-3)

it is assumed that the averaged scattering from a dynamic system can be well approximated
by its main component, the scattering from the average structure [14,15]. This expression
relates the intensity to the ED and its derivation implicitly includes assumptions not directly
deducible from the experiment; assumptions on the coupling between nuclear and electronic
motion and on the partitioning of the molecular ED into atomic components (convolution).
Based on this equation the ED in the crystal can be given by a Fourier summation

p(r) =V > F, exp(2rhr) (Eq. 1-4)
h

This direct evaluation of p to a desired level of resolution, is subject to severe limitations: (i)
the observed structure factors are affected by experimental errors, (ii) the phases are not
measured, (iii) only a finite number of reflections can be collected. Due to these limitations
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the interpretation of the X-ray data necessarily involves modelling the ED and optimizing its
parameters by adjusting the calculated structure factors to those measured.

1.4 Electron density - Structure factor models

Within the convolution approximations the dynamic ED is

(p(r)), =D p(r —q,, —u,)P(u,)du, (Eq. 1-5)

where the summation runs over the density units px centered at qwo and Pilux) is the
probability distribution function (pdf) describing the displacement ux of the k-th center with

respect to its equilibrium position. The structure factor is then the Fourier transform of

(p(x) )7
F(h) =) f (ht, (h)exp@7hq,,) (Eq. 1-6)

where fr is the static scattering power of the k-th density unit and ¢ is the associated
temperature factor. The commonly used scattering models differ in the description of fk and
tc, both of which are, in general, complex functions of static and dynamic parameters,
respectively.

1.5 Conventional formalism

This generalized form (1.6) is reduced to the conventional model if px is taken as the
spherical atomic density and the nuclear motion is described within the harmonic
approximation. This formalism disregards static deformations due to the chemical bonding
and the least squares estimates of the corresponding parameters are likely to be biased.
Such errors ("asphericity" shifts) usually manifest themselves in significantly shorter bond
distances and smaller bond angles (at atoms with lone-pair electrons) relative to the values
obtained by neutron diffraction. The accuracy of the thermal parameters is even more
doubtful as the anisotropic displacements can absorb charge deformation. To overcome the
inadequacy of the isolated atom model several methods can be applied.

1.6 High order refinement

In the atomic regions where the electron density is less affected by the bonding the isolated
atom model is expected to be a fair approximation. The sharp core density has appreciable
contribution to reflections at high Bragg angle where the scattering by the more diffuse
valence or bond density is negligible. For this reason a refinement emphasizing the high-
order data is expected to yield atomic parameters less biased by the inadequacy of the
spherical-atom model [16].

1.7 The aspherical-atom formalism

The accuracy of the parameters can be significantly increased by implementing aspherical
density models into the fit of all measured data. To account for the density deformations due
to chemical bonding, several methods have been developed and applied [17,18]. One of the
most successful refinement techniques is based on the nucleus-centered finite multipole
expansion of the ED [6]. This formalism, refined by Hansen & Coppens [19] is implemented
in XD. The aspherical atomic ED is divided into three components:

p(r) = p.(r) +P,p, (k1) + py (KT) (Eq. 1-7)
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where p. and p, are the core and spherical valence densities (sphv), respectively and

Py (K1) = TR (KN Y RoYin () (Bq. 1-8

is the term accounting for valence deformations. The ym are density normalized, real
spherical harmonics, such that:

2 et
LFOL:(J y,. |dQ=21>0 (Eq. 1-9)
=1,1=0 (Eq. 1-10)

while R; are properly chosen radial functions, and an element of solid angle dQ =siné&d&d¢ .

The isolated-atom valence density and the radial functions R; are modified by the screening

constants (K and K, respectively) to account for the radial expansion or contraction of the
valence shell. The corresponding scattering factor is

f(h)=f (H)+ Pva(hj+z<3(%j >iﬂmy,m[%j (Eq. 1-11)

K |
where (Ji) is the [-th order Fourier-Bessel transform of R
<J|>=4ﬁ'jjI (27Hr)R (r)r2dr (Eq. 1-12)

with ji being the I-th order spherical Bessel function. Closed-form expressions for evaluating
(Ji using different types of radial functions have been given in reference [18].

1.8 Orbital vs. Multipole formalism

For a single-Slater determinant atomic wavefunction composed of orthogonal spin-orbitals
the electron density is given by

p=2nlaf (Eq. 1-13)

where niis the orbital occupation number (1 or 2) of the ith atomic orbital,

wl = (onlm = RnI ylm (Eq- 1'14)
If the radial part Ru is expanded in terms of basis functions
R, = Z C.iO; (Eq. 1-15)
i

the density unit pym corresponding to ¢hmis given by the following linear combination:

Poim = [2 D, O, O i|ylm Yim = Rri YimYime (Eq. 1-16)
K

The spherical harmonics form a complete basis set, thus their product can be expanded
over spherical harmonics:

YimYim = ZC LI MY (Eq. 1-17)
LM
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Clebsch-Gordon coefficients (Crymmm) are given for both complex and real spherical
harmonics (up to [, [ ' = 2) in the literature [12]. It follows that the orbital product
representation of the atomic density is completely equivalent to the multipolar description.
This equivalence does not hold for molecules because of the two-center orbital products
occurring in expression (1.13).

1.9 Radial functions and scattering factors

The core and spherical valence density are calculated from Hartree-Fock atomic
wavefunctions [20] expanded in terms of Slater-type basis functions:

O =[2n()] (24" "0 exp(Zin) (Eq. 1-18)
where (i are energy optimized orbital exponents.

The radial functions of the deformation density are also taken as simple Slater functions:

an+3
R(r)=———r""exp(a,r) (Eq. 1-19)

() +2)!

with n()) = [ to obey Poisson’s equation [21] and with values for a: as deduced from the
single-{ wavefunctions. As shown above, the evaluation of the scattering factor of an orbital
product requires the calculation of Lth-order Fourier Bessel transforms of O:Or ((joyr). The
simple scheme below shows how L is related to [ and ' (=0,1,2 for s,p and d, respectively):

INL | s P d
s 0 1 2
P 02 13
d 024

Taking the carbon atom as an example, the following scattering factors can be generated
from the wavefunction:

core: (joy(lsls)
sphv:  (jo)(2s2s) + (o)(2p2p)

Dipolar (I =1) and quadrupolar (I = 2) radial scattering functions included in the deformation
term in (1.8) could be composed as the Fourier-Bessel transforms of sp and pp type orbital
products:

defv:  (1)(2s2p), (2)(2p2p)

1.10 The temperature factor

In harmonic approximation the vibrational pdf of the nuclear displacement vector u, taken
with respect to the equilibrium position (u = g-qo), is a normal distribution:

P, (u) = (271)%"* (detU) ™™? exp1/2u'U ™u) (Eq. 1-20)

where U is the mean-square displacement amplitude (MSDA) matrix.

The corresponding atomic anisotropic temperature factor is the Fourier transform of Ps(u):
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t, (h) = exp(2/7°h'Uh) (Eq. 1-21)

Anharmonic models in practical use are based on statistical approaches. If the
anharmonicity is small the corresponding pdf can be expanded about the normal
distribution. In the Gram-Charlier expansion [22] implemented in XDLSM, the anharmonic
pdf is approximated in terms of zero and higher derivatives of the normal distribution:

1

P(u)=(1+%cjk,ij,+—c H,. +.)P

o

1 km T jim (Eq. 1-22)

where Hjulllare three dimensional Hermite polynomials being functions of U and u, while the
coefficients Ciillllare the quasi-moments being related to the moments of the pdf. The
advantage of this form is that its Fourier transform is reduced to a simple power series
expansion about the harmonic temperature factor:
4 2
T(H):(l_gnglcjmhjhkh +§7T4C hjh.hh, + .. )T, (H) (Eq. 1-23)

jkim

1.11 Deformation electron density

The conventional model is based on the pro-molecular density which is the superposition of
the spherical atomic densities pk(r) centered at the actual nuclear positions in the molecule.
The promolecule can serve as a reference state relative to which charge migrations due to
bond formations are expected to become visible [23].

IP(r) = P (r) = A (r =1y) (Eq. 1-24)

To interpret the Jp(r) one always has to critically examine not only the method yielding the
molecular electron density but the effect of the preconceptions applied in composing the
promolecule. For atoms with a degenerate ground state, px is obtained by sharing the
valence electrons among orbitals of different angular dependence regardless of their ability
to form a bond in the actual arrangement of the atoms. As a result the obtained
deformation electron density may not show the expected features of the covalent bond or
lone-pair density [24].

In order to obtain a chemically meaningful deformation electron density, an alternative
promolecule has been proposed for which the configuration and the orientation of the
ground state of each constituent atom is correctly specified by a fitting procedure [25]. To
elucidate important aspects of delocalization, effects of substitution or intermolecular
interactions, one can consider fragments or molecules to choose as the basis for comparison
[26,27]. Atoms prepared for bond formation can also serve as references [28].

If the deformation electron density is evaluated by a Fourier summation

dp(r) = [F, (h) - F.(h)] exp(-27ihr) (Eq. 1-25)

the series termination error is considerably decreased. The phases and the F. are usually
calculated from the promolecule with atomic and positional parameters obtained from (i)
neutron diffraction data (X-N) [29], (ii) conventional refinement on high-order X-ray data (X-
Xho), (iii) full-data aspherical-atom refinement (X-Xmu).
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1.12 Experimental requirements

The applicability of the above formalism depends on the compound to be studied and its
crystalline form, the radiation used and the method of the data collection. The kinematic
theory is valid only in a certain frequency range: ;> [l > Uk, where Pk corresponds to the K
absorption edge of any atom in the molecule and | is the frequency limit, where relativistic
effects occur. Accordingly, atoms with high atomic number (Z > 18) are not well suited for
charge density studies when a standard X-ray source is used. Bonding effects are likely to
be invisible for atoms with small valence to core electron ratio [30].

The most important requirement for an accurate measurement is to maintain kinematical
conditions or to make the systematic errors, due to dynamic scattering, correctable. To
reveal these effects equivalent reflections should be measured. To minimize the diffuse
scattering the data should be collected at low temperature. Details of the data reduction can
be found in references [31-34].

1.13 Determination of atomic and structural properties from
charge distributions

1.13.1 Critical points of the charge density

Once a charge distribution has been obtained experimentally, various chemical and physical
properties that depend on the distribution can be derived. Bader [35] shows how the
chemical structure of molecules can be extracted from an analysis of the topology of p(r), the
features of which are summarized by the curvatures of p(r) at its critical points. Each
feature, maximum, minimum or saddle has associated with it a point in space called a
critical point, where the first derivatives of p(r) vanish. At such a point, denoted by position
vector rc,

~0p0 -0 ~ 0
Dp(rc) = |_p+J_p+k_p =
ox oy 0z
where iA, I , IZ are unit vectors. Whether a function is a maximum or minimum is

determined by the sign of its second derivative, or curvature, at the stationary point. In
general, for an arbitrary choice of coordinate axes, there will be nine second derivatives of
the form 0°00xdy in the determination of the curvatures of p at a point in space. Their
ordered 3x3 array, the Hessian matrix of the charge density, can be diagonalized to yield the
principal axes of curvature, with respect to which the magnitudes of the three second
derivatives of p are extremized. The principal axes and their corresponding curvatures at a
critical point in p are obtained as the eigenvectors and corresponding eigenvalues (A) of the
Hessian matrix of g(r). The rank wof a critical point is the number of non-zero eigenvalues or
curvatures of p at the critical point, while its signature ois the algebraic sum of the signs of
the curvatures at that point. The critical point is labelled by giving the pair of values (w,0).
With few exceptions the critical points of charge distributions for stable molecules are of
rank three, and there are four possible signature values and labels:

(3,-3) all curvatures are negative and p is a local maximum at r..

(3,-1) two curvatures are negative and p is a maximum at r. in the plane defined by
their corresponding axes. p is a minimum at r. along the third axis, perpen-
dicular to this plane.

(3,+1) two curvatures are positive and p is a minimum at r. in the plane defined by
their corresponding axes. p is a maximum at r. along the third axis, perpen-
dicular to this plane.

(3,+3) all curvatures are positive and p is a local minimum at rc.
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The traditional association of nuclear positions with local maxima in p(r) can now be
formalized as the statement that nuclear positions behave topologically as (3,-3) critical
points in the charge distribution.

1.13.2 Interatomic surfaces and chemical bonds

A useful function is obtained in the form of the gradient vector field of the charge density,
represented through a display of the trajectories traced out by the vector Op. The gradient
vector points in the direction of the greatest increase in p, so these trajectories are
perpendicular to the contour lines of p. They have the property of originating or terminating
at critical points in p. The charge distribution is partitioned into disjoint regions by surfaces
for which

Op(r)In(r)=0

where n is the vector normal to the surface. These so-called zero flux surfaces are the
interatomic surfaces or quantum mechanical boundaries of the atoms, and contain (3,-1)
critical points when the atoms are chemically bonded. The pairs of gradient paths which
originate at each (3,-1) critical point and terminate at the nuclei define a line through the
charge distribution linking the neighbouring nuclei, along which p(r) is a maximum with
respect to any neighbouring line. This line is called a bond path and the (3,-1) critical point
is referred to as a bond critical point. This is the topological definition of a chemical bond,
formalizing the theoretically predicted and experimentally observed accumulation of charge
between bonded nuclei. Chemical structure can thus be recovered as a property of the
charge distribution. The strength and nature of the chemical bond can be characterized by
the value of various properties evaluated at the bond critical points, e.g. bond order, bond
ellipticity, p(rJ, 0°p(r) [35].

The value of pc in a bond measures its strength [36]; the trace of the Hessian at rc measures
the extent of depletion or concentration of charge; and the ratio of eigenvalues of this matrix
(the bond ‘ellipticity’ € ) measures the degree of planarity or conjugation. More precisely, € =
(A2/A1)-1, where the A’s are the two eigenvalues of the Hessian corresponding to directions
perpendicular to the bond.

Stationary points in p have been applied in characterizing benzenoid aromaticity [37],
homoaromaticity and hyperconjugativity [38-40], and electrophilic substitution [41,42]. A
number of applications of the topological properties of experimental charge distributions
obtained from neutron and X-ray diffraction data for organic molecular crystals have been
reported [43-40].

1.13.3 Lewis electron pairs - the Laplacian

The trace of the Hessian matrix, the quantity
2 2 2

sz(r)za p.o°p 0°p
ox> dy* 0z°
is termed the Laplacian of p and has physical meaning as representing local concentrations,
where O°p(r) < 0, and depletions, where 0°p(r) > 0, of the charge density. Electronic charge is
compressed above its average distribution in regions where the Laplacian is negative, and
expanded relative to its average distribution where the Laplacian is positive. Maxima and
minima in the function 0%(r) are to be distinguished from local maxima and minima in the
charge density itself. Although the topology of p yields a faithful mapping of the chemical
concepts of atoms, bonds and structure, there is no indication of maxima in p
corresponding to the localized electron pairs of the Lewis model of electronic structure, of

great importance to our interpretation of chemical reactivity and molecular geometry. The
physical basis of this model is one level of abstraction above the visible topology of the
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charge density and appears instead in the topology of the Laplacian of p, the scalar
derivative of the gradient vector field of the charge density.

The Laplacian distribution recovers the electronic shell model of an atom by exhibiting a
corresponding number of pairs of shells of charge concentration and charge depletion. For
a spherical free atom, the outer or valence shell of charge concentration (VSCC) contains a
sphere of uniform concentration of electronic charge. Upon entering into chemical
combination, this shell is distorted and maxima, minima and saddles appear. The maxima
correspond in number, location and size to the localized pairs of electrons assumed in the
Lewis and VSEPR models of electron pairs. A local charge concentration is a Lewis base or
nucleophile, while a local charge depletion is a Lewis acid or electrophile, and a chemical
reaction corresponds to the combination of complementary features of the VSCC of the base
and acid. The Laplacian distribution can thus be used to locate possible sites of
nucleophilic attack, and to predict characteristics (such as hydrogen bonding) of the
chemical reactivity in general.

Stationary points in [°p(r), points of maximum charge concentration or depletion, are being
extensively applied in studies of basicity and acidity [47-52]; to more general reactivity [53-
56]; in accounts of molecular geometries [57]; and to directionality of hydrogen bonding
[58,59]. Such points may generally be associated with either bonded or non-bonded electron
pairs. Experimental determinations of 0°p distributions are included in [60-63].

Finally we note that the use of the bipolar model for characterising chemical bonds solely on
the basis of the magnitude of p(r and the sign and magnitude of 0%(rq [35], is a useful
model for light atom compounds (i.e. elements from the first three periodic rows). It ceases
to be so useful for compounds of heavier elements such as the transition metals, where the
bond critical points involving these elements invariably lie in a region of positive [?p(rc). The
reader is directed to recent reviews [64,65], which discuss extentions to the bipolar model in
considerable detail.
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