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Chapter 4 
 
XDLSM - Least Squares Program for Multipole 
Refinement 
 
4.1 Overview 
 
XDLSM is a full-matrix least squares program based on the generalized scattering model detailed 
in the Introduction. Its present version includes multipole expansion up to l=4 and anharmonic 
treatment of the thermal motion up to 4th order of the Gram-Charlier expansion. XDLSM, being 
based on the Hansen-Coppens formalism [1], necessarily has many common elements with 
MOLLY, the algorithm of which has been rebuilt and extended to allow for further developments. 
XDLSM supports sophisticated density modelling,  and features of previous refinement programs 
have been incorporated (LSEXP [2]). Further important aspects of XDLSM provide methods to 
locate inadequacies in the model, to control the refinement and to monitor the results. 
 
4.1.1 The method of least squares 
 
In this chapter some aspects of the method of least squares are discussed, whose knowledge are 
necessary for the user to handle the input and output of XDLSM. This introduction is based on 
reference [3], to which the reader is referred for more details. 
 
Consider a given set of m observations yo{yo1,yo2,yo3,…yom} represented by the corresponding set of 
model functions yc{yc1,yc2,yc3,...ycm}=yc(x), where x is the n-component vector of the parameters 
x{x1,x2,x3,…xn}. The best unbiased estimates of x can be obtained by minimizing the square of the 
residual:   
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where W, the weight matrix, is to be chosen as the inverse of the variance-covariance matrix of the 
observations (in practice, it is taken to be diagonal), and Q is an upper triangular matrix, i.e.  Q'Q 
is the Cholesky decomposition of W. If yc can be expanded about xo in Taylor’s series retaining 
only the first order terms, then  

 )()( oocc xxDxyy −+=  (Eq. 4.2) 

with Dij=dyci/dxj being the design matrix. Eq.  (4.1) becomes:   

 ][][2 xZyxZy ∆−∆′∆−∆=R  (Eq. 4.3) 

where ( ))( oco xyyQy −=∆ , ∆x=x-xo and Z=QD. 

 
The n conditions  
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 for i = 1,2,3...n (Eq. 4.4) 

lead to the system of normal equations  

 ΔyZxZZ ′=∆′  (Eq. 4.5 

whose solution vector is  

 yZBxx ∆′+= −1
o  (Eq. 4.6) 
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with B=Z'Z. 
 
An alternative solution of the least-squares problem is provided through the singular value 
decomposition of the standardized design matrix Z. Let  

 VUGZ ′=  (Eq. 4.7) 

where U is an m×n column orthogonal matrix, G is a diagonal matrix of the singular values and V 
is an n×n orthogonal matrix. 
 
A solution of the over-determined system of equations  

 yxZ ∆=∆  (Eq. 4.8) 

can be given as  

 yZx ∆=∆ −1  (Eq. 4.9) 

where  

 UVGZ ′= −− 11  (Eq. 4.10) 

 
This solution can be proved to be the best possible solution in the least-squares sense as ∆x is the 
vector which minimizes the residual:   

 yxZ ∆−∆=R  (Eq. 4.11) 

The solution of the least-squares problem through the system of normal equations (4.6) has the 
disadvantage that it fails if B is singular or ill-conditioned. A clear distinction should be made 
between ill-conditioning of an analytical and that of a numerical nature.  The former case is likely 
to occur for an over-parametrized model, when some combination of basis functions are irrelevant 
to the fit.  The normal equation matrix has zero or nearly zero eigenvalues and the inversion gives 
no or only a formal solution.  This problem manifests itself in undesirable correlations among the 
variables.  The method used for establishing hidden indeterminacies in the model is the singular 
value decomposition of the matrix of observation-equations (4.8). This procedure gives a diagnosis 
of the degeneracies and provides a solution minimizing the residual.  The matrix can be 
considered ill-conditioned if its inverse condition number, the ratio of the smallest to the largest 
eigenvalue, is comparable with the machine precision.  The components of the eigenvector (a row 
or column vector of V) corresponding to the smallest eigenvalue define a linear dependence among 
the variables (orthonormal basis for the null-space) which leads to the singularity.  Zeroing an 
eigenvalue in the calculation of the inverse matrix (4.10) means introducing the constraint given 
by the corresponding eigenvector. The term numerical ill-conditioning refers here to an unbalanced 
least-squares matrix which is due to the fact that the model function is simply not equally 
sensitive to the changes of the different parameters, i.e. the components of the design matrix can 
differ by many orders of magnitude. A condition number of the order of 10 is typical for the 
multipole-model based structure factor least-squares matrix. This number indicates that a small 
change (error) in an element of the design matrix (Z) can cause large changes in the elements of B-

1. That is why the solution via the inversion of the normal equation matrix is susceptible, to a 
considerable extent, to roundoff errors and requires double precision arithmetic.  This problem 
can be overcome if the elements of the Z (or B) matrix are brought to a common scale. In XDLSM 
the normal equation matrix is analyzed and its conditioning is accomplished by a similarity 
transformation:   

 2/12/1 )(diag)( −−= BBBB diagc  (Eq. 4.12) 

Inversion, based on the Gauss-Jordan elimination method [4], is the default option to solve eq. 
(4.5). If the matrix inversion fails or if diagonalization has been selected as the method of solution, 
the eigenvalues are calculated by the Householder reduction [4], and the singularities are reported 
and eliminated. The eigenvalue filtering is based on the inverse condition number. The lowest 
eigenvalues are rejected (zeroed) from the inverse calculation until the inverse condition number 
reaches a user specified limit. While this procedure gives a mathematically correct solution, its 
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indiscriminate application does not necessarily reveal the physical meanings of the 
indeterminacies that made the least-squares equations singular or nearly singular in the first 
place. 
 
4.1.2 Model ambiguities 
 
The XD package will be available for a wide scientific community. This Section tries to help those 
who have not yet been involved in charge density research. In particular, it tries to help those 
users who have not yet had the uncomfortable feeling of getting stuck at a certain stage of the 
refinement. This happens when decisions need to be made as to which parametrization is 
preferable among several alternative ones which perform equally well in fitting the data. 
 
The scattering model described in the Introduction formally allows 66 parameters per atom (in the 
present implementation of XD) to be included in the refinement.  However, any interpretation of 
the data set using an "all-parameter" fit is hardly feasible, nor is it appropriate.  Even if one could 
afford it (i.e. even if enough data points were available) and even if convergence was reached with 
a satisfactory fit, the physical significance of the results would certainly be doubtful.  While the 
total dynamic ED obtained could account for the data very well, any property which is a function 
of a subset of the variables could well be meaningless.  As mentioned above, the reason for this is 
that many basis functions of the structure factor expansion have a similar dependence on the 
components of the scattering vector. Consequently the data cannot differentiate between them.  A 
typical example of this type of bias is that introduced into the static density deformations by the 
inadequate decomposition of the thermal smearing.  This is caused by the formal similarity 
between density basis functions and pdf’s of the nuclear displacements.  Strong correlations, as 
high as 80-90%, are likely to occur between quadrupole populations and second order 
displacement parameters.  The Gram-Charlier model has been shown to be as adequate as the 
multipole expansion in accounting for static density asphericities [5]. Such indeterminacies can 
appear especially pronounced for non-centrosymmetric structures. 
 
The flexibility of the model and the limited number of observations forces one to limit the 
optimization to a subset of parameters or to their combinations.  The variables are usually 
selected on the basis of simple chemical arguments or preconceptions.  The outcomes must be 
tested in order to judge their physical significances.  A careful study should not neglect an 
independent analysis of static and dynamic parameters. 
 
4.1.2.1 Testing the results 
 
The most important test to judge the success of the model and the quality of the fit is to evaluate 
the residual ED through a Fourier summation (Fobs - Fmodel). This provides a direct-space 
representation of the extent to which the model accounts for the observations.  A featureless 
residual map is a necessary condition for the adequacy of a model, but is far from being a 
sufficient one for judging its physical significance. Another usual procedure is to compare the 
static deformation density obtained from X-ray data with that calculated theoretically.  
Deformation peak-shapes and peak-heights are subject to specific conditions that are 
characteristic for the different methods to be compared.  The ab-initio ED depends on the level of 
the theory applied and on the quality of the basis sets. Both factors place severe limitations on 
any direct comparisons, especially for larger systems. However, without such comparisons, the 
interpretation of the results in terms of the deformation ED remains only of a qualitative nature. 
This is because of the arbitrariness in selecting the reference state and the sensitivity of the ED to 
the structural parameters. 
 
We suggest that the experimental ED is tested through its local and global topological 
characteristics and by evaluating its integrated properties.  XDPROP makes it feasible to trace the 
refinement process almost "continuously" by inspecting the different stationary points of the total 
ED and related scalar properties.  In this respect the Laplacian of the ED, as a sensitive measure 
of charge concentrations, should play an important role.  A static ED which fails to reproduce the 
characteristic topological features of a typical covalent bond, e.g. (3,-1) CP's, bond charge 
concentrations shown by the Laplacian,  is likely to be suspect. 
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One-electron properties are directly obtainable from the ED and their comparison with the 
outcomes of independent measurements and/or theoretical results are of great importance.  The 
molecular dipole moment and the electrostatic potential are the quantities most frequently 
evaluated from the experimental ED. Such applications are being explored with a promising 
success. 
 
One way to gain information on the physical significance of the thermal parameters is to test them 
against the rigid-body motion model [6] which is based on the observation that in molecular 
crystals the external (lattice) vibrations make the major contribution to the atomic motion.  
Satisfactory agreement between observed and calculated anisotropic displacement parameters 
may suggest that the molecule is rigid to a good approximation or the thermal parameters are 
uniformly affected by systematic errors. Significant residuals after the rigid-body fit may indicate 
either the importance of soft internal modes or simply a bias in the atomic displacements. A 
directly applicable test for the correctness of the atomic displacement parameters is the rigid-
bond test [7]. 
 

If 2
,BAz  denotes the mean square displacement amplitude of atom A in the direction of atom B, 

then for every covalently bonded pair of atoms A and B  

02
,

2
,, =−=∆ ABBABA zz  

Conversely, if in parts of the molecule this rigid bond postulate is not fulfilled, one may deduce 
that the structural model is insufficient.  Hirshfeld estimated that for atoms at least as heavy as 
carbon  ∆A,B should normally be smaller than 0.001 Å2. Verification of the model and the 
anisotropic displacement parameters by this test strengthens confidence in the experimentally 
determined ED. 
 
A very useful visualization of the atomic displacement parameters is provided by the computer-
graphics program PEANUT [8], developed recently to analyze observed (fitted to diffraction data), 
calculated (as given by a model) or residual (observed- calculated) thermal parameters in terms of 
closed surfaces defined by the root-mean-squares displacements (〈u(n)〉1/2=(n'Un), where n is a 
unit vector in any direction). Applications are given in reference [9]. 
 
A plausible approach to reduce ambiguities in the model is to introduce constraints into the 
refinement.  It is desirable to replace external checks on one of the possible, mathematically 
equivalent solutions by internal constraints applicable to support the physically most relevant 
solution.  An advanced feature of XDLSM is to allow for general linear restrictions on any set of 
variables.  Efforts are being made to further develop this option in order to incorporate more 
'physics' into the refinement model. 
 
4.1.2.2 Constraints in XDLSM 
 
The treatment of constraints in XDLSM is based on the technique of direct elimination. Consider a 
system of nc linear equations, each of which defines a constraint among nv variables:  

 )()(),( ncnvnvnc axC =∆  (Eq. 4.13) 

By decomposing the matrix C 
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with S being a diagonal matrix of nr non-zero singular values (nr ≤ nc), two sets of new variables 
can be introduced:  

 xRx ∆′=∆ 11 )(nr  xRx ∆′=−∆ 22 )( nrnv  (Eq. 4.15) 

where the first set can be eliminated by means of eq. (4.13) and (4.14):  
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 aPSx ′=∆ −1
1  (Eq. 4.16) 

This leads to a decomposition of the unconstrained variables 

 2212211 xRaPSRxRxRxRx 1 ∆+′=∆+∆=∆=∆ −  (Eq. 4.17) 

The equations of observations 4.2 becomes 

 22
1 xDRaPSDRy 1 ∆=′−∆ −  (Eq. 4.18) 

and the system of normal equations is reduced to 

 2222 yZRxB ∆′′=∆  (Eq. 4.19) 

where  

 222 ZRZRB ′′=  and aPSDRyy ′−∆=∆ −1
12  (Eq. 4.20) 

The elimination through the singular-value decomposition of the constraints matrix has two 
advantages; 
1. the dimension of problem is reduced by the number of independent constraints 
2. the restrictions can be formulated in an automatic way as all accidental redundancies are 

easily filtered out.  
Some of the constraints mentioned below have already been implemented in a user-friendly way, 
others will be available in subsequent releases of XDLSM. 
 
 
4.1.2.3 Restrictions on the multipole populations 
 
Electro-neutrality constraint.   The sum of the monopole populations, by definition, gives the 
number of valence electrons in the molecule (unit cell). This statement is part of the multipole 
expansion formalism which involves "atomic" partitioning and thus provides a particular 
assignment of the atomic charge to the corresponding monopole population.  The electro-
neutrality constraint keeps the unit cell neutral.  In XDLSM it is possible to define any subset of 
atoms (i.e. any functional group) for which the total number of valence electrons is kept constant.  
This option then precludes any charge transfer between the group(s) selected and the rest of the 
atoms in the unit cell. 
 
Local pseudo symmetry, "chemical" symmetry.   Preconceptions based on chemical intuition 
can also be applied to reduce the number of multipole populations to be refined.  One can assume 
a simple hybridization scheme which corresponds to the actual geometrical arrangement of the 
atoms. This is usually achieved by imposing site symmetry in a properly chosen local Cartesian 
frame and using symmetry adapted angular functions.  The symmetry restrictions for real 
spherical harmonics are given in Table 4-5. Another feasible restraint is to keep the valence 
density of chemically equivalent or similar atoms to be the same during the refinement.  This is a 
widely accepted practical approach in studies on larger molecules.  The real question is how to 
judge the actual applicability and success of our chemical expectations implemented in such a 
way.  Static equivalences might be hampered in an unconstrained refinement by dynamic non-
equivalences of the atoms considered.  Another important aspect is that in crystals, the 'chemical 
symmetries' characteristic of the isolated molecules may not be preserved.  Any subsequent 
enforcement of static equivalencies may result in the effects of the crystal field becoming 
unobservable. 
 
4.1.2.4 Restrictions on the radial functions 
 
The shape of Rl’s are controlled by n(l) and al (see eq. 1.19), the latter being estimated from the 
Hartree-Fock-optimized single-ξ values.  In case of quadrupolar atoms (which have only ss, sp, 
and pp type orbital products) the selection of al for l > 2 is not straightforward.  The corresponding 
"virtual" density basis functions are shown to account for bond densities [10]. The usual practice 
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is to keep al = a for all l and optimize κ' scaling of a. Even under this severe restriction κ' becomes 
highly correlated with the populations and convergence can be troublesome.  In this respect, κ' is 
by far the most critical parameter of the formalism. This may indicate that the constraint 
implemented is not adequate. Model studies on di-atomic molecules showed that a satisfactory fit 
of the HF ED with one-center multipole densities requires, in certain cases, highly structured 
radial functions while in other cases, depending on the level of expansion, simple Slater functions 
are sufficient [11]. The extent to which this statement applies to many-atom molecules remains to 
be examined.  A trivial choice for improving the situation is the use of radial functions 
corresponding to extended basis HF atomic orbitals.  In studies on transition metal complexes, 
the HF radial scattering factors were shown to be superior to those of single Slater functions [12]. 
 
4.1.2.5 Restrictions on the vibrational parameters 
 
Rigid-body or segmented-rigid-body models could be incorporated into the structure factor 
refinement.  Both approaches require a linear transformation of the design matrix leading to a 
reduction in the number of dynamic variables.  Severe indeterminacies, depending on the 
formalism, can be introduced. 
 
A more elegant alternative procedure applied in XDLSM is to define rigid molecules or segments 
by invoking rigid-bond and rigid-link constraints.  This is a very efficient way to define the degree 
of flexibility, but a full control requires a detailed knowledge of the intramolecular motion.  Normal 
coordinate analysis, if a suitable force-field is available, provides the MSDA matrix associated with 
any normal mode.  For molecules of first row elements, standard force fields are readily available 
and procedures are in general use to refine them against spectroscopic data.  Frequencies at the 
HF level are typically 10% larger than those of measured, and even semi-empirical methods can 
provide fair estimations. Incorporation of calculated ADP’s for hydrogen atoms into charge density 
refinements has been recently reported by a number of authors, using differing methodologies 
[30-33].  See Chapter 11.1 concerning the program XDVIB for inclusion of calculated ADPS's.  
 
An easy to handle approach is to apply constraints of  the rigid-bond (rigid-link) type to the shift 
of the ADP’s calculated from an intramolecular force field. Such shifts give only rigid-body type 
contributions to the ADP’s and the procedure preserves atomic displacements due to 
intramolecular vibrations. The success of such applications depends on the extent to which the 
mean-field approximation is valid. Another difficulty is that the optimized molecular geometry 
needed to calculate the harmonic force field can considerably differ from that found in the crystal. 
Another approach is to start from a set of ADP’s predicted by the TLS model. These ADP’s satisfy 
the Hirshfeld condition for all internuclear separations. By invoking the rigid-body constraint to 
all covalent bonds between atoms of comparable mass the bias in the ADP’s can be reduced 
significantly. 
 
4.1.2.6 Restrictions on the reflection phases 
 
There are well established problems [28,29] which arise when refining a multipole model for a 
non-centrosymmetric crystal structure. These arise because of the phase ambiguity and can 
result in poorly determinations of the odd-order multipole populations, which are invariant under 
certain crystal-class symmetry operations. In essence, some combinations of  odd-order 
multipoles may make very small contributions to the structure factor amplitudes, but have 
significant contributions to the phases. In such cases, great care needs to be taken to ensure that 
physically meaningful parameters are obtained from the least squares procedure. As has been 
shown [28,29], the eigenvalue filtering method (used by default in XLDSM for singular or near-
singular normal matrices) greatly alleviates these problems, though sometimes a 'slack constraint' 
on the scale factor  (e.g. by including F(000) as an additional observation with unit weight) may 
also be necessary [29]  to obtain accurate parameters. 
 
An alternative solution is to use fixed phases, determined from, say, a fully periodic ab initio 
calculation. In XD2006, a phase-constrained refinement is implemented through a special format 
for the reflection file XD.HKL, see Table 2-2. The NDAT entry must be specified as -7, and the 
phase angle (in radians) must be supplied as the seventh data item for each reflection. No extra 
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instructions in the master file are required. This phase-constrained strategy may be useful when 
refining against theoretical structure factors calculated on a non-centrosymmetric crystal 
structure. 
 
 

4.2  Refinement strategy 
 
A general rule, it is strongly advised that the complexity of the model should be increased in a 
stepwise manner.  Each stage of the refinement could provide a hypothesis for the next step. In 
this respect it is difficult to suggest a specific scheme, in advance, according to which one should 
proceed.  The spherical-atom refinement could serve as a reference for comparison during the 
whole fitting procedure.  This could be followed by a restricted multipole refinement in which all 
possible chemical constraints and atomic pseudo-symmetries are applied.  As argued above, the 
extent to which these restrictions should be applied depends on many factors.  In most cases the 
number of observed intensity data limits the number of free variables.  The ratio of the number of 
reflections to the number of variables should not fall considerably below 10. Atoms with the same 
valence and first coordination sphere should always be considered chemically equivalent at this 
stage of the fit.  The spherical HF radial screening parameters ( κ ) can already be included.  These 
variables, in contrast to those scaling the Slater exponents ( κ' ), are much more stable and their 
changes should stay below 5-10%. If the resolution and accuracy of the observations allows, the 
different restrictions can be released in subsequent refinement cycles, in the hope of testing the 
adequacy of the assumed chemical equivalences.  In this way, ’second order effects’ (crystal field, 
conformation differences, second neighbours, etc.) on the valence density might become visible.  
To decide if a new variable contributes significantly to the fit, the ratio of its value to its standard 
deviation and the change in the goodness of fit are to be checked.  More sophisticated statistical 
tests will be available in follow-up versions of XDLSM. 
 
Because of their low scattering power and intense thermal motion, hydrogen atoms should be 
treated with a special care.  A poor model for their static density manifests itself in unreliable 
dynamic parameters and conversely, no reasonable estimate of the charge transfer can be 
obtained without meaningful displacement parameters.  In organic molecules a considerable 
amount of the charge transfer occurs at the expense of charge on the hydrogen atoms.  Due to the 
electro-neutrality constraint these uncertainties can seriously affect the result.  To overcome this 
difficulty, the following strategies can be applied.  The position and thermal parameters of the 
hydrogen atoms should be fixed at the values obtained by neutron diffraction, when such data are 
available.  An overall scaling of the neutron displacement tensor components should be applied to 
account for the temperature difference (or rather the difference in the diffuse scattering) between 
the two data collections [26].  In the absence of neutron data, the parameters of the hydrogen 
atoms could be obtained from spherical-atom refinement using the contracted scattering factors 
of Stewart et al. [13]. The isotropic displacement parameters can then be fixed during the 
multipole refinement.  The correctness of this estimation can be judged by the distance of the 
bonds to the corresponding hydrogen atoms and by their net charges obtained in such a way.  
The ADP’s of the hydrogen atoms can also be estimated by fitting the rigid-body or segmented 
rigid-body model to the motion of the non-hydrogen atoms.  A simple riding model could also be 
feasible (U(H) = 1.5 * Ueq(non-H) ). Such a constraint can easily be incorporated.  The density 
asphericities of the hydrogen atoms can be represented by a bond-directed dipole.  For those 
involved in a strong hydrogen bond an additional quadrupole can also be introduced. The RESET 
BOND command (Section 4.6.5) is very useful here to constrain X-H distances to neutron 
determined standard values. 

 
4.3 Dimensioning 
 
The parameters in Table 4-1 are used in certain DIMENSION and COMMON statements. These 
are the current limits for XDLSM. Future versions will have full dynamic memory allocation. 
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4.4 Variable names and order numbers 
 
See Table 4-2 for a list of symbols and code numbers to be used as variable identifications. 

 
 
4.5 Files used and created by XDLSM 
 
Input:  xd.mas, xd.inp, xd.hkl, xd.bnk_* 
Output:  xd_lsm.out, xd.res 
Optional output: xd.fou, xd.der, xd.mat, xd.cov 

 
 
4.6 Input instructions for XDLSM 
 
The next section describes those commands which are interpreted by the program. All of these 
instructions must be placed between the MODULE *XDLSM and the END XDLSM lines in the 
xd.mas file. 
 
4.6.1 Control instructions 
 
4.6.1.1 SELECT 
 
SELECT (*)model m1 m2 m3 m4  based_on (f|f^2)  (*)test  verbose verbose_level 
SELECT cycle cycles dampk dampk cmin cmin cmax cmax eigcut r  convcrit convcrit 
 
(*)model m1 m2 m3 m4    
This option provides a global control over certain parameters which characterize the structure 
factor formalism applied in the refinement. These parameters are shown in Table 4-3 
 
The values given after the model option are applied for all atoms only as an upper limit. The 
option has only limited applications but can provide an easy way to reduce the complexity of the 
scattering formalism without having to modify all necessary parameters one by one. Note that 
certain combinations of the control parameters are meaningless, which might not be recognized 
by the program. If model is not starred, then it is assumed that m3 = 1, i.e. that the reflection 
data contain anomalous dispersion effects. If theoretical data (or experimental data with 
anomalous dispersion removed) are being used, then  *model x x 0 x must be used. An alternative 
approach in this case (if a global model control is not desired) is to set all the values of f′ and f′′  in 
the SCAT table (see 6.4.2.7 below) to zero. 
 
based_on (f|f^2)   The refinement is based on structure factors or on their squares.  The data in 
the reflection file xd.hkl are transformed accordingly. 
 
(*)test   If flagged an input test is performed.  This includes calculation and printing of   

1. the scattering factor tables,  
2. the local coordinate systems,  
3. the variable-parameter list,  
4. the matrix of constraints, together with the result of its singular value decomposition  
5. a file xd_scat_atom.out is printed for each atom type read in scat table in order to check 

two different calculations of the scattering factors (from the analytical expansion and 
from the wave function databank selected)  

 
verbose verbose_level   Setting verbose_level greater than one switches on extra printout to the 
log files.  
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cycle cycles [0]    

>0  The number of least squares cycles requested.  
=0  Structure factor calculation.  
<0  Scale factor refinement.  

 
dampk  dampk [1.0]. This is a damping parameter applied to refinement of kappa's. 
 
cmin cmin [0.6] cmax cmax [1.]   Lower and upper limit used as a criteria for printing the 
correlation matrix elements. 
 
eigcut r [1.e-10]   If the solution of the system of normal equations are obtained through 
diagonalization,  r is used as a cutoff limit for the singularity test. Eigenvalues are considered to 
be zero and omitted from the calculation of the inverse matrix until the inverse condition number 
is smaller than r:   

min(eigenvalue) / max(eigenvalue) < r 
This test is applied to the eigenvalues of the reduced matrix (derived from the constraints) and the 
conditioned matrix (see Introduction).  The same parameter is used as a criteria for eliminating 
linear dependencies among the constraints. This is singular value decomposition of the matrix of 
the constraints, also known as eigenvalue filtering. 
 
convcrit convcrit [0.0]  If the maximum shift/su in the current cycle of refinement is less than 
convcrit, the program immediately proceeds to the final cycle and finishes the requested XDLSM 
job. 
 
 
4.6.1.2 SAVE 
 
SAVE (*)deriv (*)lsqmat (*)cormat 
 
deriv   If starred, the structure factor derivatives for each reflection (design matrix) in the last 
cycle are saved in the binary file xd.der (see Section 2.7). 
 
lsqmat   If starred, the least squares matrix and vector in the last cycle are printed to the binary 
file xd.mat (see Section 2.8). 
 
cormat   If starred, the variance-covariance matrix is written to the binary file xd.cov. This file 
is needed for estimating the standard deviations of different properties. The structure and the 
content of the file is given in Table 2-4. 
 
 
4.6.1.3 SOLVE 
 
SOLVE [*]inv (*)diag [*]cond 

 
The solution of the least squares normal equation can be obtained through inversion or 
diagonalization. 
 
inv   If starred, the Gauss-Jordan for inversion method is implemented.  The program will 
automatically switch to diagonalization if the matrix is found ill-conditioned (or singular) during 
the inversion in the first cycle. The matrix inversion is the default option. 
 
diag   If starred, the Householder reduction and QL algorithms are used for the calculation of the 
eigenvalues and eigenvectors. These are considerably faster than the Jacobi method used in 
previous versions of XDLSM. If an eigenvalue fails the test based on the condition number (see 
eigcut), the corresponding eigenvector is eliminated and printed. 
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cond   If starred, the normal equation matrix is conditioned via the transformation 4.12, 
irrespective of the method of solution selected. 
 
 
4.6.1.4 SKIP 
 
SKIP (*)obs obsmin obsmax [*]sigobs sigmin sigmax (*)sinthl snlmin snlmax 

 
The SKIP instruction defines criteria for rejecting observations from the refinement (not from the 
structure factor calculation). It is important to note that the rejection criteria are always applied, 
starring these options merely allows the use to change the values of the default criteria.  If more 
than one are starred, the "AND" logic is applied.  The rejection criteria and default values are:  

 
obs [0.0, 1.0e10]  all observations for which obsmin > obs  or  obs > obsmax   
sigobs [3.0, 1.0e10] observations for which sigmin*sigobs > obs or  obs > sigmax*sigobs  
sinthl [0.0, 2.0] lower and upper limit in sinθ/λ 
 
IMPORTANT  The obs and sigobs cutoffs are applied to the data in the XD.HKL reflection file, 
after any conversion implied by the based_on criterion (Section 4.6.1.1). This action (which is 
more logical) is different from that previously applied in XDLSM, where the cutoffs were applied 
before conversion. 

 
4.6.1.5 PRINT 
 
PRINT (*)sinthl snlmin snlmax (*)obs obsmin obsmax (*)delta dmin dmax [*]del% min% max% 
(*)extcn extmin extmax (*)abssc 

 
The PRINT instruction defines criterion for printing observations. After the last cycle the following 
quantities can be printed:  

no h k l sinthl scgrp obs calc delta (del%|flag) extcn code 

where 
no the order number of a reflection 
h k l reciprocal-lattice components of the scattering vector 
sinthl sin(θ)/λ 
scgrp scale group number 
obs Fo or F2o 
calc Fс or F2с 
delta Fo – Fc or F2o or F2c 

flag a flag based on f = |100 * (obs – calc) / obs| It is a four character long string as 
follows: 

 ’ ’  for 0 < f < 5 
 ’* ’  for 5 < f < 10 
 ’** ’  for 10 < f <15 
 ’*** ’  for 15 < f < 20 
 ’****’  for 20 < f < 25 
 ’????’  for 25 < f < 30 
del% f is printed instead of a flag 
extcn the extinction correction in percentage 
code 0  included in the refinement 
 -1 rejected based on criterion obs 
 -2 rejected based on criterion sigobs 
 -4 rejected based on criterion sinthl 
 -3 rejected based on criteria obs and sigobs 
 -5 rejected based on criteria obs and sinthl 
 -6 rejected based on criteria sigobs and sinthl 
 -7 rejected based on criteria obs and sigobs and sinthl 

The options, if flagged, serve as a lower and an upper limit applied for printing. Again, the 'AND' 
logic applies. 
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(*)sinthl snlmin snlmax [0 2]   
 
(*)obs obsmin obsmax [0 10]   
 
(*)delta dmin dmax [-50 50]   
 
(*)del% min% max% [80 100]   
 
(*)extcn extmin extmax [80 100]   
 
(*)abssc   if flagged the observations are printed on an absolute scale 
 
4.6.2 The SCAT table 
 
The SCAT table provides a compact format for defining different scattering factors or modifying 
the entries in the databank file xd.bnk_*.  In contrast with previous versions of the program, 
the SCAT table now includes all atomic orbitals. If an old xd.mas file is used, this table must be 
modified otherwise it will not be read correctly. The heading of the SCAT table is:  
 
SCAT core sphv defv 1s 2s 3s 4s 2p 3p 4p 3d 4d 4f 5s 5p 6s 6p 5d 7s 6d 5f ∆f ' ∆f '' nsctl 

 
core core scattering factor 
sphv spherical valence scattering factor 
defv scattering factors due to valence deformation functions 
1s 2s 3s … occupations of HF atomic orbitals 
∆f ' real part of anomalous dispersion correction 
∆f '' imaginary part of anomalous dispersion correction 
nsctl neutron scattering length 
 

This SCAT line has to be followed by as many input lines or subsegments as atom types are 
present in the unit cell. Each row should begin with the element name that must be identical to 
one of the atom types stored in xd.bnk_* (see element naming convention in section 2.5). If the 
element name is the only string in the input line, the data on the corresponding segment of the 
databank file will be used to create the scattering factors. The databank file can be extended by 
introducing new segments assigned to dummy atom names.  In this way considerable freedom is 
provided for designing scattering factors from atomic wavefunctions expanded over Slater-type 
basis functions. All the entries indicated above have default assignements. To change the default 
assignement of a particular entry all preceding entries in the list have to be given. For example, to 
change the default values for the anomalous dispersion corrections ( ∆f' and  ∆f " ) all three types 
of scattering factors as well as the occupations have to be input. 
 
For the scattering factors the following options are available: 
 
core [chfw] rdtb 
sphv [chfw] rdtb rhft 
defv chfw rdtb [cszd] rdsd 
 
 
4.6.2.1 chfw - Clementi’s Hartree-Fock Wavefunction 
 
This is the default option for the core and sphv scattering factors and it means that the Slater-
type atomic orbitals stored on the xd.bnk_* file are used.  The user has the freedom to decide 
what to consider core and what valence density.  This is done by specifying the orbital 
occupations, which have to be positive or negative integers for core or valence orbitals respectively. 
If they are omitted, the default configuration in xd.bnk_* is taken. The order of the orbitals is 
given in the heading of the SCAT table.  For example, the default configuration of the ground state 
carbon atom is (1s2), (2s2,2p2) and the corresponding line in the input table is:  
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C    chfw chfw cszd   2 -2  0  0 -2 
 
In this case 2〈j0〉(1s1s) and (2〈j0〉(2s2s) + 2〈j0〉2p2p))/4 is calculated, respectively, for the core and 
the spherical valence scattering factors. Note, that the sphv scattering factor is normalized, but 
not the core. 
 
A 'frozen' spherical atom (only core or spherical atom scattering) could be defined as 

 
C    chfw chfw cszd   2  2  0  0  2 

 
while that of with radial screening (only valence or spherical atom scattering) 

 
C    chfw chfw cszd  -2 -2  0  0 -2 

Another application of the orbital occupations is to form spherical valence scattering factors 
corresponding to an assumed hybridization.  For example, one can 'generate' an sp3 type carbon 
atom with the following input 

 
C    chfw chfw cszd   2 -1  0  0 -3 

which assigns (〈j0〉(2s2s) + 3〈j0〉(2p2p))/4 to the spherical valence scattering factors. Since more 
than one sets of scattering factors can be generated from the same wavefunction, the multiple use 
of an element name is allowed. 
 
4.6.2.2 rdtb - Read table 
 
This option is available for all three types of scattering factors. It indicates that the corresponding 
scattering factor table is to be read from the master file. For an unknown element (not stored in 
the xd.bnk_* databank file) the rdtb option must be specified. The input should consist of ngrd 
values (8 entries/lines) of the function taken at an equidistant grid of sinθ/λ with a step size of 
grd. ngrd and grd are parameters with default values of 40 and of 0.05, respectively, in the 
present version of XDLSM (See  Table 4.1). The first grid point must be zero.  The default setup 
requires the table to be given up to 1.95 in sinθ/λ. The parameters ngrd and grd should be 
adjusted to the wavelength of the radiation used for the data collection. The scattering factor at an 
arbitrary scattering angle is interpolated and the derivatives with respect to the expansion-
contraction parameters are numerically obtained.  Accurate evaluation require a considerably fine 
grid size (not exceeding 0.06 Å-1). 
 
Example:  
 
C    RDTB RDTB CSZD 
  2.00000   1.99642   1.98575   1.96816   1.94394   1.91349   1.87726   1.83581 
  1.78973   1.73965   1.68621   1.63006   1.57183   1.51212   1.45148   1.39046 
  1.32950   1.26904   1.20944   1.15100   1.09400   1.03863   0.98506   0.93343 
  0.88381   0.83628   0.79085   0.74754   0.70632   0.66717   0.63004   0.59488 
  0.56163   0.53021   0.50055   0.47258   0.44621   0.42137   0.39798   0.37597 
 
  1.00000   0.93697   0.77692   0.58120   0.40061   0.25845   0.15714   0.08962 
  0.04686   0.02103   0.00626  -0.00155  -0.00512  -0.00622  -0.00596  -0.00502 
 -0.00381  -0.00256  -0.00140  -0.00037   0.00048   0.00118   0.00173   0.00216 
  0.00247   0.00269   0.00283   0.00291   0.00294   0.00294   0.00291   0.00285 
  0.00278   0.00269   0.00260   0.00250   0.00240   0.00230   0.00220   0.00210 
 
4.6.2.3 cszd, rdsd - Single-zeta density parameters for defv 
 
By default, the radial functions of the valence deformation density are of single Slater-type (cszd). 
The parameters of the radial functions (n(l), ξ(l)) are obtained from the corresponding single-ξ 
wavefunctions of Clementi & Roetti [14] stored also in xd.bnk_* files. In previous versions of 
XD, the option cszd in the SCAT table computed the exponents for the radial deformation 
functions by simply averaging the valence exponents of the "best" single-ξ orbitals (Clementi and 
Raimondi [15]) of the default configuration. The new version of the program now computes ξ’s by 
weighting the orbitals by their occupation. For noble gases and closed shell ions, ξ is computed 
thus :  
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• from the (weighted) exponents of the outermost shell of the core for noble gases and anions 

(e.g. the 2s and 2p orbitals for F-, Ne etc.) 
• from the exponents of the first empty orbital(s) for closed-shell cations (3s for Na+, Mg2+ etc.; 

3s and 3p for Al3+, Si4+ etc.; 4s for K+, Ca2+; 3d for Sc3+, Ti4+ etc.).  
 
The closed-shell configurations recognized are those of the noble gases (thus, 2, 10, 18, 36, 54 
electrons), and those of some cations of the 4th and 5th row (like Cu+, Ga3+, Sb5+), which may have 
28 or 46 electrons (single-ξ exponents considered are those of 3d and 4d orbitals, respectively). All 
other configurations missing the valence electrons are not recognized by the program, which then 
stops. 
The orbitals used to compute the average are directly linked to the SCAT table configuration. 
Thus, if the user modifies the number or the type of valence electrons (at his own risk!) in the 
SCAT table, then Z will change. Note that in the previous versions of XD, the SCAT table was 
intended to modify just the SPHV monopole, evaluated by the multi-exponent HF wave functions 
of Clementi and Roetti [14].  
 
Warning messages will appear in the output if the configuration chosen is unusual or dangerous 
and severe stops are applied if the requested orbitals are not stored for a given atom. 

 
The default values can be modified by using the option rdsd which makes it possible to input all 
n(l) and ξ (l) in atomic units:  
 
C    chfw chfw rdsd 
n(0) zeta(0) n(1) zeta(1) n(2) zeta(2) n(3) zeta(3) n(4) zeta(4) 
 
 
4.6.2.4 The chfw option for defv 
 
An advanced feature of XDLSM is to allow for the use of HF radial functions for the deformation 
density. Such application needs each 〈Jl〉 to be attributed to a proper combination of orbital 
products. The Table given in the Introduction (Section 1.9) summarizes the different order of 
Fourier-Bessel transforms that occur for the different orbital products. An orbital product is given 
by the names of the comprising orbitals in brackets:  (2s2s), (2p2p), (3d3d), etc. If more than one 
product contributes to 〈Jl〉 they should be connected by the plus "+" sign.  The character string 
composed in such a way must contain no embedded blanks :  (2s2s)+(2p2p) ... etc. A product or a 
sum of products contributing to 〈Jl〉 has to be specified for each l. Note that not all radial densities 
can be constructed from a given wavefunction. To satisfy Poisson's equation [27], 2(n-1) must be ≥ 
l,  so for example a 2s orbital cannot be used to construct octupole or hexadecapole radials parts. 
To make a complete set, all options available for defv can be combined, as explained below.  If 
neither cszd nor rdsd is specified for sphv the program expects additional input lines with one of 
the following contents:  
 
l [cszd] 
l chfw conf 
l rdsd n(l) zeta(l) 
l rdtb 
NOTE : The chfw option in XD means that the radial part (and only the radial part) of the 
specified orbital product will be used to construct a density function. The XD program allows such 
a radial function to be associated with any multipole, so that a chfw directive such as "1 chfw 
<3d3d>"  is permissible, depite having limited physical meaning. 
 
For each l, an option can be selected which determines any further input. If no line is given for 
certain l values the default (cszd) applies. For chfw the configuration (conf) is to be given in terms 
of orbital products or their sum. For rdsd the parameters of the radial functions are needed. After 
rdtb a scattering factor table is to be read as described above. 
 
Example:  
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C    chfw chfw chfw   2 -2  0  0 -2 
0 chfw  (2s2s)+(2p2p) 
1 chfw  (2s2p) 
2 chfw  (2p2p) 
3 rdsd  3 3.71 
4 rdtb 
 0.00000   5.99918   4.95113   3.64245   2.42954   1.49816   0.87092   0.48586 
 0.26409   0.14158   0.07557   0.04045   0.02182   0.01190   0.00658   0.00370 
 0.00211   0.00122   0.00072   0.00043   0.00026   0.00016   0.00010   0.00006 
 0.00004   0.00003   0.00002   0.00001   0.00001   0.00001   0.00000   0.00000 
 0.00000   0.00000   0.00000   0.00000   0.00000   0.00000   0.00000   0.00000 
In the above example 〈J0〉 is the sum of the 0-th order transforms of ss and pp type radial 
functions and irrespective of the normalization it is equivalent to sphv. The 〈J1〉 and 〈J2〉 functions 
are related to sp and pp type orbital products, respectively. The scattering factor for octupoles is 
created from single-ζ radial functions while that for hexadecapoles is read in. 
 
 
4.6.2.5 rhft - Relativistic Hartree-Fock scattering factors for sphv 
 
If a spherical atom model is selected, the RHF scattering factors, as given in the International 
Tables [16] or in references [17,18] in the form of an expansion over Gaussian functions, can also 
be used. The rhft option for hydrogen selects the contracted scattering factors of Stewart, 
Davidson & Simpson [13]. 
 
 
4.6.2.6 Current Limitations 
 
The calculation of the static electron density and of electronic properties requires the evaluation of 
the radial functions within an accuracy that can hardly be reached by numerical inverse Fourier 
transform of the scattering factors. The default choice, the use of Slater-type HF wavefunctions 
(chfw, cszd or rdsd), means analytical representation of both direct and reciprocal space 
functions. For a refinement to be consistent with the property calculation, it must be based on the 
wavefunctions stored in xd.bnk_*. The corresponding scattering factors are certainly not the 
best available ones and can slightly differ from those found in the International Tables.  
Relativistic effects are important only for heavier elements - this can be seen by comparing the 
total chfw spherical scattering factors with those based on relativistic numerical wavefunctions. 
Efforts are being made to eliminate this limitation. 
 
4.6.2.7 Anomalous scattering 
 
delf’ delf” 
The defaults correspond to Mo radiation.  
 
4.6.2.8 Neutron Scattering Length 
 
nsctl 
The last entry of a SCAT line is the neutron scattering length. NOTE Compounds containing 
elements with very large absorption cross-sections (B, Cd, In, Sm Eu, Gd, Dy), have an imaginary 
component of the scattering length, and cannot be dealt with in the current version of XDLSM. 

 
 
4.6.3 The ATOM table 
 
For each atom included in the structure factor calculation the following entries are to be given:  
ATOM atom0 ax1 atom1 atom2 ax2 r/l tp tbl kap lmx sitesym chemcon 
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4.6.3.1 Atom name conventions 
 
The atom name is a continuous string of up to 8 characters, starting with a correct, case sensitive 
chemical symbol (e.g. ‘Na’ and not ‘NA’) used in the SCAT table and followed by further characters 
enclosed in parentheses (). Legal atom names are:  
 
Cu(3)  Ti3+(1a) 
 
4.6.3.2 The local coordinate system 
 
The entries in the first seven columns define the local coordinate systems. atom, atom0, atom1 
and atom2 are atom names from the ATOM table list.  ax1 and ax2 stand for different axis 
assignments, each being either x or y or z. The first axis (ax1) is given by the internuclear vector 
from atom to atom0 (v1). This together with the second vector from atom1 to atom2 (v2) define the 
(ax1,ax2) plane. The third vector (v3) is taken perpendicular to this plane. 
 
v1 = (r0 – r) v2 = (r2 – r1) v3 = v1 × v2 
 
Finally, an orthonormal vector triplet (eax1, eax2, eax3) is formed which can be chosen to be either 
right (R) or left (L) handed 
eax1 = v1/|v1| eax2 = (v3 × v1)/|(v3 × v1)| eax3 = v3/|v3| 
 
where r, r0, r1 and r2 are the position vectors of atom, atom0, atom1 and atom2, respectively 
(MOLLY). 
 
4.6.3.3 tp - the Order of the Atomic Displacement Tensor 
 
0 no thermal parameter is applied (static scattering model) 
1 isotropic U 
[2] anisotropic Uij 
3 anharmonic 3rd order Gram-Charlier expansion Cijk 
4 anharmonic 4th order Gram-Charlier expansion Dijkl 
 
If this value differs from that in the input file the thermal displacement parameters will be 
converted:  
 
xd.mas xd.inp 
1  2  from anisotropic to isotropic 
2  1  from isotropic to anisotropic  
 
4.6.3.4 tbl - The Core Scattering Table 
 
Refers to the core scattering table.  It is the order number of the corresponding element given in 
the SCAT table. 
 
 
4.6.3.5 kap - the Kappa Set 
 
Defines the kappa set applied to the valence radial functions. If a new set is introduced or the 
previous arrangement is redefined, the corresponding changes must also be made in the parameter 

file xd.inp and/or to the KEY table.  If the values in the parameter file are not changed the 
refinement will start from the default value (1.0) for all kappa sets. 
 
4.6.3.6 lmx  - the maximal level of multipole expansion 
 
0 Monopoles (sphv and defv) 
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1 Dipoles (default for hydrogen atoms) 
2 Quadrupoles 
3 Octupoles 
4 Hexadecapoles (default for non-hydrogen atoms) 
 
4.6.3.7 sitesym [no] 
 
The point group number of the atomic site symmetry.  It is not used in the present version. 
 
4.6.3.8 chemcon 
 
Refers to the atom to which the valence deformation density of the atom considered is 
constrained. If the same set of multipole populations are to be shared by two or more atoms, the 
definition of the local coordinate systems of the corresponding atoms must be consistent. 

 
4.6.3.9 Dummy Atoms 
 
To enable one to define a local system of arbitrary orientation, dummy atoms can be used.  These 
are to be specified after the atom list but within the atom table by giving a name, composed of the 
string "DUM" and a number, followed by the three coordinates (free format) in the crystal system. 
Example:  
 
ATOM     atom0    ax1 atom1    atom2   ax2 r/l tp tbl kap lmx sitesym  chemcon 
O(1)     O(2)      X  O(1)     DUM0     Y   R   2  1   1   4  NO 
O(2)     O(1)      X  O(1)     DUM1     Y   R   2  1   1   4  NO       O(1) 
  . 
  . 
  . 
DUM0     0. 0. 0. 
DUM1     -0.4800  0.5335  0.0973 
END ATOM 
 

 
4.6.4 GROUPn 
 
GROUPn atom(1)… with n > 1 
 
The GROUP command selects a set of atoms to be considered as a unit for special applications.  
Such applications available presently are the electroneutrality and rigid-body, rigid-link type 
constraints see (KEEP instruction). The first group (GROUP1) is, by definition composed of the 
atoms in the asymmetric unit. An atom is allowed to be part of more than one group. The atom 
list defining a group can be on more than one input line, but each line must start with the same 
GROUPn command. 
 
4.6.5 KEEP 
 
The KEEP instruction simplifies the application of certain constraints. 

 
KEEP kappa set(1) … 
For each set defined κ'l, the expansion-contraction parameter of defv, is kept the same for all l. 
This is a default constraint that is suggested to apply, at least in the initial stages of a refinement. 
 

IMPORTANT  The fit is always very sensitive to κ', even if a single parameter is refined for all l 
values.  The results of κ' refinement should always be critically examined and compared to those 
obtained with κ' = 1.0. For HF radial functions, the chance of obtaining convergence with reliable 
estimates of different κ'l parameters is expected to be better than for single Slater orbitals.  A 
separate κ'l refinement is worth trying for transition metals.  
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KEEP charge [group1] groupn … 
 
Each group defined by the GROUP command can be treated as a closed unit for which the total 
charge is kept fixed during the refinement. The total charge of the group is given by the sum of 
the starting monopole populations of the comprising atoms.  The user is free to define any subset 
of atoms (even having common elements) which are excluded from charge transfer. Each group 
fixed in this way adds one new equation to the system of constraints. A zero singular value of the 
matrix of constraints means inadequate grouping and the redundancy found will be rejected. 
 
KEEP rigid [group1] groupn … 
Each group defined by the GROUP command is kept rigid in the sense that the shifts in the ADP’s 
of the atoms comprising the group are constrained to satisfy Hirshfeld’s rigidity postulate. To 
make such a restriction work, all ADP’s of all atoms in the group must be refined. The equation of 
constraint is set for all internuclear connections in the group and the linearly dependent 
equations are eliminated leading to the necessary reduction in the number of restrictions. 
 
 
RESET BOND  atom H-atom distance (Å) 
The distance between  an H-atom and its bonded atom is reset to the designated (usually neutron 
determined) distance at the end of each cycle. The H-atom must be listed second, and its 
coordinates should not be refined. 
 
 
4.6.6 The Weighting Scheme 
 
WEIGHT a b c d e f 
 
a [0.0] b [0.0] c [0.0] d [0.0] e [0.0] f [1/3] 
 
For refinement on F2, the weighting scheme as implemented in SHELXL is used:  
 

w2 = q / [s22 + (ap)2 + bp + d  + e × sin(θ)] 
where 

s2 = σ(Fo2) 
p = f × Fo2 + (1-f) × Fc2 
q = 1.0    if c = 0 
or q = exp[c × (sinθ/λ)2]  if c > 0 
or q = 1.0 - exp[c × (sinθ/λ)2]  if c < 0 

 
For refinement on F, the weight (w1)  is calculated as follows:  
 

w1 = [ Fo × sqrt(w2)  + α ]2 
where 

α = 0.0 if  β < 0.0 ;   α = sqrt(β)  if β > 0.0 
β = (Fo2 × w2) + sqrt(w2)  where w2 is calculated as above. 
 

IMPORTANT  This general weighting scheme has been developed for refinement based on a 
conventional, spherical atom model and thus may not be adequate for multipole refinement. 
 
There are two special weighting schemes ; when a = -1.0 and when a < -1.0. These two schemes 
are applied regardless of the input values of the other weighting parameters b - f. For a multipole 
refinement on F, it is suggested to set a < -1.0, when statistical weights [i.e.  w2=1/σ2(Fo2) and w1 
=1/σ2(Fo)] will be applied. The default XD.MAS written by XDINI has a = -2.0, which sets this 
condition for refinement on either F or F2. Note that the values of zero for the parameters a - e 
given above also imply statistical weights for refinement on F2, but NOT for refinement on F ! 
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To apply units weights, set a = -1.0. The parameters of the weighting form cannot be refined. Two 
goodness of fit parameters are printed in xd_lsm.out, one (GOFw) based on the weighting 
scheme used in refinement, and one (GOF) based on statistical weights w = 1/s2.  
 
 
4.6.7 DMSDA 
 
DMSDA rmin rmax 
rmin [1.1] rmax [1.8] 
The difference of the projections of the mean square amplitude tensors of two atoms to the 
corresponding internuclear vector are calculated if the interatomic distance falls in the range 
given by rmin and rmax. As discussed in the Introduction, Hirshfeld’s rigid-bond test [7] can help 
to reveal model inadequacies and should always be a part of a careful analysis.  The positional 
coordinates and the anisotropic displacement parameters in an orthogonal system are also 
printed. 
 
4.6.8 Extinction refinement 
 
The following instruction line for extinction correction appears in xd.mas: 
 
EXTCN (*)iso (*)aniso (*)type_1 (*)type_2 (*)type_3 (*)distr_g (*)distr_1 (*)msc_0 (*)msc_1 
 
For any extinction refinement, the absorption weighted path length (tbar) has to be stored in the 
reflection file xd.hkl. For an anisotropic extinction refinement, an additional six entries for each 
observation are required (see Table 2-2). If tbar is missing from xd.hkl, then for an isotropic 
extinction only, an identical value of 0.5 mm is assumed for all reflections (version 5.3 or later). 
This assumption will, in general, lead to incorrectly scaled extinction parameters, but this is not 
often of major concern. 
 
By default the EXTCN command appears as a comment in xd.mas. To get it activated the 
exclamation mark (!) has to be removed. The extinction correction is based on the models 
proposed by Becker and Coppens [19-21], which can be summarized as follows: 
 
 
4.6.8.1 Isotropic extinction (*iso, default): 

 
extinction type: 
• type 1 (*type_1, default):  mosaic spread, the g' coefficient is refined (variable EXT11); 
• type 2 (*type_2):  particle size, the ρ coefficient is refined (variable EXT11); 
• type 3 (*type_3, *type_g is also accepted): generalized type, mosaic spread and particle size (g' 

and ρ) are simultaneously refined (variables EXT11 and EXT22, respectively); 
 

mosaic spread distribution (active only for type_1 and type_3): 
• Gaussian (*distr_g, default): a Gaussian distribution is assumed; 
• Lorentzian (*distr_l) : a Lorentzian distribution is assumed; 

 
 

4.6.8.2 Anisotropic extinction (*aniso): 
 

extinction type: 
• type 1 (*type_1, default): mosaic spread, the Z tensor is refined (variables EXT11-EXT23) 

(g(D)=(DtZD)1/2; D is a unit vector perpendicular to the diffraction plane); 
• type 2 (*type_2):  particle size, the W tensor is refined (variables EXT11-EXT23)  

(ρ(N)= λ(NtWN)-1/2; N is a unit vector in the diffraction plane, perpendicular to the incident 
beam); 

• type 3 (*type_3, *type_g is also accepted): generalized type (mosaic spread and particle size), Z 
tensor and ρ simultaneously refined (variables EXT11-EXT23 for Z; variable RHOEX for ρ); 
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mosaic spread distribution (active only for type_1 and type_3): 
• Gaussian (*distr_g, default): a Gaussian distribution is assumed; 
• Lorentzian (*distr_l) : a Lorentzian distribution is assumed; 
 
mosaic orientation (active only for type_1 and type_3): 
• Coppens and Hamilton (*msc_0): the distribution proposed by Coppens and Hamilton [22]; 
• Thorney and Nelmes (*msc_1, default): the distribution proposed by Thorney and Nelmes [23]. 

In this case the Y tensor is refined instead of Z (g(D)=(DtYD)-1/2). 
 

Given the expression for tensors W, Y, and Z, a switch from isotropic to anisotropic correction 
requires the following variables in xd.inp:  

(1) g' to   Z: 
EXT11 = EXT22 = EXT33 = (g'iso)2 
EXT12 = EXT13 = EXT23 = 0.0 
(2) g' to   Y: 
EXT11 = EXT22 = EXT33 = 1/(g'iso)2 

EXT12 = EXT13 = EXT23 = 0.0 
(3) ρ to W: 
EXT11 = EXT22 = EXT33 = 1/( ρ iso)2 

EXT12 = EXT13 = EXT23 = 0.0 
 
When a non-positive definite tensor (W, Y or Z) is obtained, the program stops if the automatic 
resetting of the tensor fails. 
 
In the output file xd_lsm.out, the following parameters are reported: 
 
• for isotropic extinction: the mosaic spread, η (η is proportional to 1/g', units in seconds) and 

the domain size r (r = g'λ10-4, units in centimeters) are given, as derived from the refined g' 
and/or ρ. 

• for anisotropic extinction: The principal axes of mosaic spread η(D) (if *type_1 or *type_3) or 
domain size r(N) (*type_2) distribution are given; the corresponding 'equivalent' η and r scalars 
are computed (or the refined r is printed if *type_3 is applied). 

 
 
4.6.9 FOUR - Structure factor calculation 
 
FOUR fmod1 m1.1 m1.2 m1.3 m1.4 fmod2 m2.1 m2.2 m2.3 m2.4 
 
The FOUR command ensures that a Fourier file xd.fou is written after the last cycle. Structure 
factors based on two models but on the same set of parameters are calculated and saved together 
with Fobs and the phases. The latter quantities may have the effects of anomalous dispersion 
removed [34] as follows. 

)( 00
calccalc

calc

calcobs
obs AA

F

AF
A −−=  

 

)( 00
calccalc

calc

calcobs
obs BB

F

BF
B −−=  

 
20200 )()( obsobsobs BAF +=  

where A and B are the real and imaginary parts of the structure factor F and a zero superscript (0) 
designate terms without anomalous dispersion. The standard deviation of Fobs0 is estimated as 
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( ) ( ) ( ) ( )
calcobs

calcobscalcobs
obsobs FF

BBAA
FF

0

2020
0 +

= σσ  

The phases are based on the model applied in the refinement (see instruction MODEL).  
 
 
Each of the structure factor models (fmod1, fmod2) is specified with four integers, in the same 
way as described above. The combination of fobs, fmod1 and fmod2 makes it possible to generate 
six different Fourier maps (see XDFOUR & XDFFT). By default, the FOUR command appears as a 
comment line in xd.mas. In the example below, a Fourier file is created with two calculated 
structure factors.  The first one based on a multipole model (lmax=4), the second one on a neutral 
spherical atom model (lmax=-1). Both are free of anomalous dispersion and extinction.  
 
FOUR  fmod1 4 2 0 0  fmod2 -1 2 0 0 
 

IMPORTANT  In contrast to earlier versions of the program, it is the values of m1.3 and m1.4 for 
fmod1 which determine the treatment of Fobs. Anomalous dispersion effects will only be removed 
from Fobs if m1.3 is given as zero. Likewise, Fobs will only be corrected for extinction effects (if any) 
when m1.4 is given as zero. Since it is normally desired that Fourier syntheses should represent 
the electron density, and be independent of the wavelength used for the experiment, the effects of 
anomalous dispersion must be removed from experimental Fobs [34,35]. The values of m1.3 and 
m1.4 must therefore be given as zero, as in the above example. 
 
Another new feature in version 5.3 is the addition (at the end of the xd.fou file) of an entry for 
reflection F(000). The inclusion of F(000) in Fourier summations ensures a correct absolute scale 
for the electron density. 
 
Only those reflections used in the refinement will be written to the XD.FOU file. 

 
 
4.6.10 CON - General linear constraint 
 
CON a1 var1 a2 var2 a3 var3 … = c 
 
The CON instruction defines a linear combination among a set of variables used as a constraint.  
A list of the coefficients (a1,a2,a3,…) and variable-symbols (var1, var2, var3,…) are to be given 
terminated by the equal sign ("="), which is followed by the last entry (c) to define the right side of 
the equation.  The coefficients and the variable names are read as numeric and character fields, 
respectively.  A variable name is composed from the corresponding symbol described before (Table 
4.2) and from a number (if needed) referring to the atom (kappa set or scale group) to which the 
variable is assigned. The two components of the name are divided by the slash ("/"). The resulting 
character string must not contain blanks. The following are correct variable names:  
 

X/1, U12/12, C333/1, M1/2, H4+/11, KS/3, K2/2, SCALE/1, EX12 
 
The list of coefficients and variable names must be terminated by the equal sign.  More than one 
line can be input with the same CON command. A new line is read until the equal sign is found. 
Note, that here, what is meant by the term "variable" is actually, the shift in that variable and not 
the variable itself. 
 

Applications of great practical importance are the constraints due to crystallographic site 
symmetries. Unlike in SHELXL97 and other modern refinement programs,  these constraints are 
NOT treated automatically in XDLSM !  The violation of a symmetry restriction leads to singular 
least squares matrix.  If the solution is obtained via diagonalization, the singularity can be 
eliminated (the corresponding constraint is introduced). Although this procedure might work in 
most cases, it is not advisable to let a numerical procedure handle the symmetry.  After several 
cycles, round-off errors are likely to break the symmetry in the shifts. Symmetry restrictions can 
easily be formulated.  Either the variable itself or the combination of two variables are fixed.  The 
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former does not need extra CON card since the corresponding variable is simply not refined (see 
KEY table). 
 
Example: Formula KHF2, space group I 4/mcm (No. 140). The three atoms in the asymmetric unit 
occupy the following special positions:  

 
No. atom Wyckoff letter x y z 
1 K a  0 0 1/4 
2 F h  x x+1/2 0 
3 H d  0 1/2 0 
 
The corresponding CON cards are:  
 
CON  1 X/2 -1 Y/2 = -0.5 
CON  1 U11/1 -1 U22/1 = 0 
CON  1 U11/2 -1 U22/2 = 0 
CON  1 U11/3 -1 U22/3 = 0 
 
Another example of practical importance is in the use of Kubic harmonics. Table 4-4 shows  the 
density normalized Kubic harmonics as linear combinations of density normalized spherical 
harmonics, and also indicates which Kubic harmonics are symmetric with respect to the cubic 
site symmetries (and hence are allowed). Suppose that atom 1 is at a site of -43m symmetry in a 
cubic space group.  Table 4-4 shows that the only symmetry allowed Kubic harmonics (of 
relevance to the current version of XD) are  K0,1 K3,1 and K4,1. The first two simply correspond to 
M1,M2 and O2- (y00 and y3,-2) while K4,1 is a linear combination of the hexadecapoles H0 and H4+ 
(0.78245 H0 + 0.57939 H4+). The corresponding constraint is thus 
 
CON  0.57939 H0/1 -0.78245  H4+/1 = 0 
 
or more simply  
 
CON 1 H4+/1 -0.74048 H0/1 = 0 

 
Site symmetry restrictions on spherical harmonics are given in Table 4-5 [25]. Tables 4-6 to 4-9 
(simplified versions of Tables 5.5A - 5.5D from reference 24) are reproduced with kind permission 
of the IUCr. These Tables provide the site symmetry restrictions on the Uiij anisotropic thermal 
motions tensors and on the Gram-Charlier anharmonic coefficients Cijk and Dijkl. The order of 
indices for Cijk and Dijkl in these Tables follows the order of symbolic names used by XD (see Table 
4-2). Table 4-6 should be consulted first, to obtain the appropriate cross reference key for the 
crystallographic site symmetry in question.  
 
IMPORTANT  In the current version of the program, there is an idiosyncracy concerning the CON 
instruction. If more than two parameters are involved in a particular constraint, e.g. if 
U11=U22=U33, then all three constraints should be explicitly given. The linear dependency is 
noticed and removed, but the user should still use this procedure, otherwise the program may 
fail.  

 
4.6.11 The KEY table 
 
KEY xyz -U2- ----U3---- ------U4------- M- -D- -Q- -O- ----H---- 
 
This input segment is to specify which parameter is to be refined and which is not.  It is done by 
giving the KEY-integer array with values 0 or 1 for a fixed or for a refined parameter, respectively.  
The order of the parameters is as defined before in Table 4-2. First the atomic parameters (x,y,z, 
Uij, Cijk, Dijkl, Plm) have to be given for all of the atoms included in the structure model. These are 
followed by the "shared" (κ, κ’l) and by the "global" parameters (extinction, overall thermal 
parameter, scale factors). The heading of the KEY table helps in keeping account of the variables. 
The different abbreviations are as follows:  
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xyz 3 positional coordinates 
Un,Cn,Dn nth order displacement tensor components.  There are 6, 10 and 15 components 

for n=2,3 and 4, respectively 
M 2 monopole populations; the first for sphv and the second for defv 
D 3 dipole 
Q 5 quadrupole 
O 7 octupole 
H 9 hexadecapole populations 
KAPPA 1 for sphv and 5 for defv (κ’l, l=0,lmx). It should be given for each KAPPA set defined 

in the ATOM table 
EXTCN 1, 6 or 7 extinction parameters 
OVTHP 1 overall thermal parameter 
SCALE NQ scale factors  
 
As many atom entries are to be given as in the atom table. The atom names used here have to be 
identical to those in the atom table otherwise the program terminates with error message. 
Similarly, the number of kappa entries must be equal to the maximal number used in the atom 
table to refer to kappa sets (see 4.6.3.5) If the command KEEP kappa is applied to a set then all 
but the first kappa-integers for the corresponding devf (κ’l, l=1,4) should be zero. The number of 
key integers for the scale factors should be less than or equal to the number given in xd.inp 
(NQ). The key integers are interpreted according to the maximal level of the thermal motion and 
multipole expansion defined in the atom table for each atom by the parameters tp and lmx, 
respectively. 

 
Important!  The multipole populations of the atoms involved in "chemical constraints" (those which 
are constrained) may either be fixed or free in the KEY table. On the other hand, parameters 
involved in any other constraint must be made variables (i.e. set to "1" in the KEY table). The 
program will halt if this is not the case. An example is : 
 
KEY     xyz --U2-- ----U3---- ------U4------- M- -D- --Q-- ---O--- ----H---- 
O(1)    111 111111 0000000000 000000000000000 10 110 10011 0110011 100110011 
  . 
  . 
KAPPA   110000 
EXTCN   0000000 
OVTHP   0 
SCALE   111 
    END KEY ---------- 

 
4.7  Appendix 
 
4.7.1 Treatment of the reflection data by XDLSM 
 
Regardless of the format of Yobs (i.e Fobs or F2obs) supplied in the reflection file XD.HKL, all the 
values Fobs, σ(Fobs),  F2obs and  σ(F2obs) are calculated. The standard interconversions, given below, 
are used. The refinement procedure minimises either w(∆F) or w(∆F2), depending on the based_on 
record in XD.MAS, but R-indices for both F and F2 are always reported. Since a zero or negative 
value for σ(Yobs) leads to physically meaningless weights in a least-squares refinement, any record 
in XD.HKL which has a zero or negative σ(Yobs) is ignored (i.e. it is immediately skipped and not 
counted). A warning message is issued on the console, and such reflections should be removed 
from XD.HKL 
 
The expressions for deriving the quantities Fobs, σ(Fobs),  F2obs and  σ(F2obs)  from each other are : 
 
If Fobs and σ(Fobs) are supplied in XD.HKL then 

F2obs  = (Fobs)2  but  F2obs retains the sign of Fobs (see note 1) 
σ(F2obs)  = 2×σ(Fobs) ×|Fobs| for the case where |Fobs| > 0 
σ(F2obs)  = 2×σ(Fobs) for the case where Fobs = 0  (see note 2) 
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If F2
obs and σ(F2
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σσ ×=  for the case where |Fobs| > 0 (see note 2) 

σ(Fobs)  = 0.5×σ(F2obs) for the case where Fobs = 0 
 
These conventions ensure that σ(Fobs) and σ(F2obs) are always > 0, but Fobs or F2obs may be either 
negative, zero or positive. 
 
 
4.7.2 Definitions of the Residual indices used in XDLSM 
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The scale factors k1/k2 place Yobs and Ycalc on the same scale. The moduli signs (||) are only used 
here to indicate the absolute value of the appropriate quantity and not the commonly used 
alternative meaning of |F| as the phaseless modulus of a structure factor. This distinction is 
important in summations where Yobs may have a negative value (see note 3). The indices R(F), 
R(F2), wR(F) and wR(F2), reported in the file XD_LSM.OUT, are computed only for those reflections 
used in the refinement (i.e. those passing the rejection criteria on the SKIP directive). The indices 
Rall(F)  and Rall(F2) have the same definition as R(F), R(F2), but also include those reflections 
rejected by the rejection criteria - this will mean all reflections in XD.HKL, except any ignored 
because of zero or negative σ(Yobs). 
 
4.7.2 Definitions of the Goodness of Fit indices used in XDLSM 
 
The Goodness of Fit (GOF) indices are defined thus : 
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where Nref is the number of observations and Nvar the number of independent variables in the 
least-squares refinement. The definitions of ∆f and ∆fs depend of whether refinement was based 
on F or F2, and unlike the R-indices, the GOF indices are only reported for the actual refinement 
mode. 
 
For refinement on F 
∆f = (Fobs - k1Fcalc)   and ∆fs = (Fobs - k1Fcalc)/σ(Fobs)   
 
For refinement on F2 
∆f = (F2obs - k2F2calc)   and ∆fs = (F2obs - k2F2calc)/σ(F2obs)   
 
GOFw  uses the reflection weights w as defined on the WEIGHT directive in the XDLSM section of 
XD.MAS (see Section 4.6.6). GOF is the Goodness of Fit using statistical weights i.e. 1/σ2(Yobs), so 
the two GOF indices will be identical if this weighting scheme is used (i.e. if the a parameter on 
the WEIGHT directive has a value less than -1.0). Note that the default values of zero given for 
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parameters a - e in Section 4.6.6 will also imply statistical weighting if refinement is based on F2, 
but NOT if refinement is based on F ! 
 
If the general form of the XD weighting scheme is used, the definitions of the weighted R indices 
given above have the unfortunate property of being dependent on the overall scale of the data 
being summed.  The weighting scheme used for refinement on F2 (which is the same scheme as 
used in SHELXL), in its most commonly used simple form, where only the a and b parameters are 
non-zero, is given by : 
 

w  = 1/(σ2(F2obs) + a2P2 + bP) 
 
where P = (2F2calc + F2obs)/3 for the default value of parameter f.  
 
If the observations used to accumulate the R-indices are on some arbitary scale compared with 
the absolute scale, then F2obs, F2calc and σ(F2obs) are all effectively multiplied by a constant s, so we 
are dealing with sF2obs, sF2calc and sσ(F2obs). The expression for wR(F2) becomes 
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If unit weights are used, then clearly the wR indices are independent of s. The same pertains if 
statistical weights are used.  In this case w = 1/s2σ2(F2obs)  and the constant s2 is eliminated. 
However if the general form of the weighting scheme given above is used, the weight is now given 
by 
 

w  = 1/(s2σ2(F2obs) + s2a2P2 + sbP) 
 
and a dependence on s remains. Since the current version of XDLSM accumulates the 
summations on the observational scale, while the structure factors in XD.FCO are on an absolute 
scale, it is impossible to correctly compute the weighted R-indices if a general form of the 
weighting function is used. It would be more logical to accumulate the indices in XDLSM on an 
absolute scale. 
 
4.7.3 NOTES 
 
Some minor changes in the above definitions in XD for version 6.02 may result in small changes 
to reported R values, compared with earlier versions. 
 
1. Previously F2obs was simply taken as (Fobs)2, but this has been changed to distinguish between 

positive and negative Fobs. Since the majority of data reduction programs will never report 
negative Fobs, this change is unlikely to have any consequences. 

 
2. For this case σ(F2obs) or σ(Fobs) were previously either undefined, or arbitarily set to the value of 

the input σ(Yobs). For refinements which use any type of sigma cut-off, this change will not 
have any consequences. 

 

3. Previously, the denominator for R(F2) was simply Σ F2obs, while that for R(F) was Σ|Fobs|. For 
consistency, both summations now use the absolute value of the summand, as indicated 
above. In cases where data sets contain negative F2obs, this change may means small 
differences in Rall (F2) and possibly in R (F2), compared with previous versions. 
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Table 4-1 : Dimensioning of XDLSM 

 
Name Values Description 

nat 2000 maximum number of atoms in the asymmetric unit 
ntx 31 maximum number of displacement tensor components: 

6 Uij + 10 Cijk + 15 Dijkl = 31 
lmx 4 maximum level of multipole expansion 
nzz 30 maximum number of kappa sets 
nto 1 currently not used 
nsc 20 maximum number of scale factors 
ntb 20 maximum number of core, valence scattering factor tables 
nov 2500 maximum number of variables allowed 
ncst 200 maximum number of constraints 
nao 18 maximum number of atomic orbitals allowed in the wavefunction input for 

the scattering factors: 1s, 2s, 3s, 4s, 2p, 3p, 4p, 3d, 4d, 4f, 5s, 5p, 6s, 6p, 
5d, 7s, 6d, 5f 

mgrd 40 maximum number of grids used to store scattering factors 
grd 0.05 Step size in sinθ/λ 

 
Related to these the following parameters are also in use: 
 
Name Value Description 

npop lmx * lmx + 2 * lmx + 2 maximum number of multipole populations 
nap 3 + ntx + npop maximum number of atomic parameters  
npp nap * nat + (lmx + 2) * nzz + nsc + 8 total number of parameters 

 

 

Table 4-2 : Variable names and order numbers 

 
Parameter Symbolic name Order number 
Fractional Coordinates X, Y, Z 1-3 
Displacement Tensor Components 
2nd order U ij U11, U22, U33, U12, U13, U23 4-9 
3rd order C ijk C111, C222, C333, C112, C122, C113, C133,   

C223,   C233,   C123 
10-19 

4th order D ijkl D1111, D2222, D3333, D1112, D1222, 
D1113, D1333, D2223, D2333, D1122, 
D1133,   D2233,    D1123,    D1223,   D1233 

19-34 

Multipole Populations 
Monopoles M1, M2 35-36 
Dipoles D1+, D1-, D0 37-39 
Quadrupoles Q0, Q1+, Q1-, Q2+, Q2- 40-44 
Octupoles O0, O1+, O1-, O2+, O2-, O3+, O3- 45-51 
Hexadecapoles H0, H1+, H1-, H2+, H2-, H3+, H3-, H4+, H4- 52-60 
Radial Screening 
κ,κ′ (l) KS, K0, K1, K2, K3, K4 61-66 
Isotropic and Anisotropic 
Extinction 

EX11,EX22,EX33,EX12,EX13, EX23, RHOEX 
(for isotropic case ISOEX ≡ EX11) 

67-73 

Overall U OVTHP 74 
Scale Factor SCALE 75 

 

IMPORTANT NOTE : Following normal conventions, the magnitudes of the Gram-
Charlier coefficients Cijk  and Dijkl, which are reported in XD_LSM.OUT and XD_LSM.CIF, 
are multiplied by 103 and 104 respectively. 



Chapter 4- XDLSM Least Squares Program for Multipole Refinement  

 52

Table 4-3 : The model limits 

 
m1 static scattering models 
-4 neutron 
-3 core 
-2 conventional, spherical-atom promolecule model with RHF scattering factors 

taken from the International Tables 
-1 neutral, spherical-atom model with HF scattering factors generated from Slater-

type wavefunctions [14] 
lmax aspherical-atom model: frozen-core, spherical valence, multipolar deformation 

density up to lmax in the expansion over spherical harmonics [1] 
m2 thermal motion models 
-1 overall-isotropic-harmonic 
0 static 
1 isotropic – harmonic 
2 anisotropic – harmonic 
tmax anharmonic model: Gram-Charlier expansion up to 4th order [24] 
m3 anomalous dispersion 
0 excluded 
1 included 
m4 extinction 
0 excluded 
1 included 

 

 

Table 4-4 : Density normalised Kubic harmonics Klj   

 
(a) as linear combinations of spherical harmonics 
 

mp 

Even l 
l    j 

 
0+ 

 
2+ 

 
4+ 

 
6+ 

0   1 1.0    
4   1 0.78245  0.57939  
6   1 0.37790  -0.91682  
6   2  0.83848  -0.5 

     Odd l 
l     j 

 
2- 

 
4- 

 
6- 

 
8- 

3   1 1.0    
7   1 0.73145  0.63290  

 
 
(b) site symmetry  
 
 

l   j 

23 
T 

m-3 
Th 

432 
O 

-43m 
Td 

m-3m 
Oh 

0  1 yes yes yes yes yes 
3  1 yes no no yes no 
4  1 yes yes yes yes yes 
6  1 yes yes yes yes yes 
6  2 yes yes no no no 
7  1 yes no no yes no 
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Table 4-5 : Index Picking Rules of Site-Symmetric Spherical Harmonics [25] 

 
 

Symmetry Choice of coordinate axes Indices of symmetric ylmp (λ, µ are integers) 
1 any all (l,m,±) 

1  any (2λ,m, ±) 

2 2 || z (l,2µ, ±) 
m m ⊥ z (l,l-2µ, ±) 
2/m 2 || z, m ⊥ z (2λ,2µ, ±) 

222 2 || z, 2 || y, (2 || x) (2λ,2µ,+), (2λ+1,2µ,–) 
mm2 2 || z, m ⊥ y, (m ⊥ x) (l,2µ,+) 
mmm m ⊥ z, m ⊥ y, m ⊥ x (2λ,2µ, +) 

4 4 || z (l,4µ,±) 

4  4  || z (2λ,4µ, ±), (2λ+1,4µ+2,±) 

4/m 4 || z, m ⊥ z (2λ,4µ, ±) 

422 4 || z, 2 || y, (2 || x) (2λ,4µ,+), (2λ+1,4µ,–) 
4mm 4 || z, m ⊥ y, (m ⊥ x) (l,4µ,+) 

42m 4  || z, 2 || x, ( xyˆm − → yx) 

m ⊥ y, ( )zyxxyz →−̂2  

(2λ,4µ,+),(2λ+1,4µ+2,–) 
(2λ,4µ,+),(2λ+1,4µ+2,+) 

4/mmm 4 || z, m ⊥ z, (m ⊥ x), ( xyˆm − → yx) (2λ,4µ,+) 

3 3 || z (l,3µ,±) 

3  3  || z (2λ,3µ,±) 

32 3 || z, 2 || y,  
 2 || x 

(2λ,3µ,+),(2λ+1,3µ,–)  
(3µ+2j,3µ,+),(3µ+2j+1,3µ,–) 

3m 3 || z, m ⊥ y 
 m ⊥ x 

(l,3µ,+) 
(l,6µ,+),(l,6µ+3,–) 

3m 3  || z, m ⊥ y 
 m ⊥ x 

(2λ,3µ,+) 
(2λ,6µ,+),(2λ,6µ+3,–) 

6 6 || z (l,6µ,±) 

6  6  || z = (3 || z, m ⊥ z) (2λ,6µ,±),(2λ+1,6µ+3,±) 

6/m 6 || z, m ⊥ y 2 || y, (2 || x) (2λ,6µ,±) 

622 
 
6 || z, 2 || y, (2 || x) (2λ,6µ,+),(2λ+1,6µ,–) 

6mm 6 || z, m ⊥ y, (m ⊥ x) (l,6µ,+) 

6m2 6  || z, m ⊥ y, (2 || x) 
 m ⊥ x, (2 || y) 

(2λ,6µ,+),(2λ+1,6µ+3,+) 
(2λ,6µ,+),(2λ+1,6µ+3,–) 

6/mmm 6 || z,  m ⊥ z, m ⊥ y, (m ⊥ x) (2λ,6µ,+) 
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Table 4-6 : Site Symmetry Table Giving the Key to Tables 4-7 to 4-9 (Hex  
indicates hexagonal axes).  
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Table 4-6 : (cont) 
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Table 4-6 : (cont) 
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Table 4-7 : Site symmetry restrictions on coefficients of the Uij tensor. 
 
 

Cross  Number  Symbols and coeffcient indices 
reference 

from 
Table 4-6 

of indep. 
variables 

A 
(1) 
(1) 

B 
(2) 
(2) 

C 
(3) 
(3) 

D 
(1) 
(2) 

E 
(1) 
(3) 

F 
(2) 
(3) 

B1 1 A A A 0 0 0 
B2 2 A A C 0 0 0 
B3 2 A B A 0 0 0 
B4 2 A B B 0 0 0 
B5 2 A A A D D D 
B6 2 A A A D -D -D 
B7 2 A A A D -D D 
B8 2 A A A D D -D 
B9 2 A A C A/2 0 0 
B10 3 A B C 0 0 0 
B11 3 A A C D 0 0 
B12 3 A B A 0 E 0 
B13 3 A B B 0 0 F 
B14 3 A B C B/2 0 0 
B15 3 A B C A/2 0 0 
B16 4 A B C D 0 0 
B17 4 A B C 0 E 0 
B18 4 A B C 0 0 F 
B19 4 A A C D E -E 
B20 4 A A C D E E 
B21 4 A B A D E -D 
B22 4 A B A D E D 
B23 4 A B B D -D F 
B24 4 A B B D D F 
B25 4 A B C B/2 F/2 F 
B26 4 A B C A/2 0 F 
B27 4 A B C B/2 E 0 
B28 4 A B C A/2 E E/2 
B29 6 A B C D E F 
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Table 4-8 : Site symmetry restrictions on third-order Gram-Charlier coefficients 
Cijk. 
 

Cross  Number  Symbols and coefficient indices 
reference 

from 
Table 4-6 

of indep. 
variables 

A 
(1) 
(1) 
(1) 

B 
(2) 
(2) 
(2) 

C 
(3) 
(3) 
(3) 

D 
(1) 
(1) 
(2) 

E 
(1) 
(2) 
(2) 

F 
(1) 
(1) 
(3) 

G 
(1) 
(3) 
(3) 

H 
(2) 
(2) 
(3) 

I 
(2) 
(3) 
(3) 

J 
(1) 
(2) 
(3) 

C0 0 0 0 0 0 0 0 0 0 0 0 
C1 1 0 0 0 0 0 0 0 0 0 J 
C2 1 0 0 0 0 0 F 0 -F 0 0 
C3 1 0 0 0 D 0 0 0 0 -D 0 
C4 1 0 0 0 0 E 0 -E 0 0 0 
C5 1 0 0 0 D -D -D D D -D 0 
C6 1 0 0 0 D -D D D -D -D 0 
C7 1 0 0 0 D D D -D -D -D 0 
C8 1 0 0 0 D D -D -D D -D 0 
C9 1 0 0 0 D D 0 0 0 0 0 
C10 1 A -A 0 A/2 -A/2 0 0 0 0 0 
C11 1 0 0 0 0 0 F 0 0 0 F 
C12 1 0 0 0 0 0 0 0 H 0 H 
C13 2 0 0 C 0 0 F 0 F 0 0 
C14 2 0 B 0 D 0 0 0 0 D 0 
C15 2 A 0 0 0 E 0 E 0 0 0 
C16 2 0 0 0 0 0 F 0 -F 0 J 
C17 2 0 0 0 D 0 0 0 0 -D J 
C18 2 0 0 0 0 E 0 -E 0 0 J 
C19 2 0 0 C 0 0 F 0 F 0 F/2 
C20 2 A -A 0 D D-A 0 0 0 0 0 
C21 3 0 0 C 0 0 F 0 H 0 0 
C22 3 0 0 C 0 0 F 0 F 0 J 
C23 3 0 B 0 D 0 0 0 0 I 0 
C24 3 0 B 0 D 0 0 0 0 D J 
C25 3 A 0 0 0 E 0 G 0 0 0 
C26 3 A 0 0 0 E 0 E 0 0 J 
C27 3 A A 0 D D 0 G 0 G 0 
C28 3 A -A 0 D -D 0 G 0 -G 0 
C29 3 A 0 A 0 E F F E 0 0 
C30 3 A 0 -A 0 E F -F -E 0 0 
C31 3 0 B B D 0 D 0 H H 0 
C32 3 0 B -B D 0 -D 0 H -H 0 
C33 3 A A A D D D D D D J 
C34 3 A A -A D D -D D -D D J 
C35 3 A -A A D -D -D -D -D D J 
C36 3 A -A -A D -D D -D D D J 
C37 3 A -A C A/2 -A/2 F 0 F 0 F/2 
C38 3 0 0 C D D F 0 F 0 F/2 
C39 3 0 0 C 0 0 F 0 H 0 F/2 
C40 3 0 0 C 0 0 F 0 H 0 H/2 
C41 3 A 0 0 D D 0 G 0 0 0 
C42 3 A B 0 A/2 A/6+2B/3 0 G 0 G/2 0 
C43 3 A B 0 B/6+2A/3 B/2 0 I/2 0 I 0 
C44 3 0 B 0 D D 0 0 0 I 0 
C45 4 0 0 C 0 0 F 0 H 0 J 
C46 4 0 B 0 D 0 0 0 0 I J 
C47 4 A 0 0 0 E 0 G 0 0 J 
C48 4 A A 0 D D F G -F G 0 
C49 4 A -A 0 D -D F G -F -G 0 
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Table 4-8 : (cont)  
 
 

Cross  Number  Symbols and coeffIcient indices 
reference 

from 
Table 4-6 

of indep. 
variables 

A 
(1) 
(1) 
(1) 

B 
(2) 
(2) 
(2) 

C 
(3) 
(3) 
(3) 

D 
(1) 
(1) 
(2) 

E 
(1) 
(2) 
(2) 

F 
(1) 
(1) 
(3) 

G 
(1) 
(3) 
(3) 

H 
(2) 
(2) 
(3) 

I 
(2) 
(3) 
(3) 

J 
(1) 
(2) 
(3) 

C50 4 A 0 A D E F F E -D 0 
C51 4 A 0 -A D E F -F -E -D 0 
C52 4 0 B B D E D -E H H 0 
C53 4 0 B -B D E -D -E H -H 0 
C54 4 A A A D E E D D E J 
C55 4 A A -A D E -E D -D E J 
C56 4 A -A A D E E -D -D -E J 
C57 4 A -A -A D E -E -D D -E J 
C58 4 A -A C D D-A F 0 F 0 F/2 
C59 4 A 0 0 D D F G 0 0 F 
C60 4 A B 0 A/2 A/6+2B/3 0 G H G/2 H 
C61 4 A B 0 B/6+2A/3 B/2 F I/2 0 I F 
C62 4 0 B 0 D D 0 0 H I H 
C63 6 A B 0 D E 0 G 0 I 0 
C64 6 A 0 C 0 E F G H 0 0 
C65 6 0 B C D 0 F 0 H I 0 
C66 6 A -A C D -D F G F -G J 
C67 6 A A C D D F G F G J 
C68 6 A B -A D E F -F -E D J 
C69 6 A B A D E F F E D J 
C70 6 A B -B D E -D E H -H J 
C71 6 A B B D E D E H H J 
C72 6 A B C B/6+2A/3 B/2 F I/2 H I H/2 
C73 6 0 B C D D F 0 H I F/2 
C74 6 A 0 C D D F G H 0 H/2 
C75 6 A B C A/2 A/6+2B/3 F G H G/2 F/2 
C76 10 A B C D E F G H I J 
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Table 4-9 : Site symmetry restrictions on fourth-order Gram-Charlier coefficients Dijkl. 
Cross  Number  Symbols and coefficient indices 

reference 
from 

Table 4-6 

of indep. 
variables 

A 
(1) 
(1) 
(1) 
(1) 

B 
(2) 
(2) 
(2) 
(2) 

C 
(3) 
(3) 
(3) 
(3) 

D 
(1) 
(1) 
(1) 
(2) 

E 
(1) 
(2) 
(2) 
(2) 

F 
(1) 
(1) 
(1) 
(3) 

G 
(1) 
(3) 
(3) 
(3) 

H 
(2) 
(2) 
(2) 
(3) 

I 
(2) 
(3) 
(3) 
(3) 

J 
(1) 
(1) 
(2) 
(2) 

K 
(1) 
(1) 
(3) 
(3) 

L 
(2) 
(2) 
(3) 
(3) 

M 
(1) 
(1) 
(2) 
(3) 

N 
(1) 
(2) 
(2) 
(3) 

P 
(1) 
(2) 
(3) 
(3) 

D1 2 A A A 0 0 0 0 0 0 J J J 0 0 0 
D2 3 A A C A/2 A/2 0 0 0 0 A/2 K K 0 0 K/2 
D3 3 A A C 0 0 0 0 0 0 J K K 0 0 0 
D4 4 A B A 0 0 0 0 0 0 J K J 0 0 0 
D5 4 A B B 0 0 0 0 0 0 J J L 0 0 0 
D6 4 A A A D D D D D D J J J M M M 
D7 4 A A A D D -D -D -D -D J J J M M -M 
D8 4 A A A D D -D -D D D J J J M -M M 
D9 4 A A A D D D D -D -D J J J M -M -M 
D10 4 A A C A/2 A/2 F 0 -F 0 A/2 K K F/2 -F/2 K/2 
D11 4 A A C A/2 A/2 0 0 0 0 A/2 K K M M K/2 
D12 5 A A C D -D 0 0 0 0 J K K 0 0 0 
D13 5 A B A 0 0 F -F 0 0 J K J 0 0 0 
D14 5 A B B 0 0 0 0 H -H J J L 0 0 0 
D15 5 A A A D E E D D E J J J M M M 
D16 5 A A A D E -E -D -D -E J J J M M -M 
D17 5 A A A D E -E -D D E J J J M -M M 
D18 5 A A A D E E D -D -E J J J M -M -M 
D19 5 A A C A/2 A/2 F 0 -F 0 A/2 K K M M-F K/2 
D20 6 A B C 0 0 0 0 0 0 J K L 0 0 0 
D21 6 A A C D D 0 0 0 0 J K K 0 0 P 
D22 6 A B A 0 0 F F 0 0 J K J 0 N 0 
D23 6 A B B 0 0 0 0 H H J J L M 0 0 
D24 6 A B C D B/2 0 0 0 0 B/6+2D/3 K L 0 0 L/2 
D25 6 A B C A/2 E 0 0 0 0 A/6+2E/3 K L 0 0 K/2 
D26 9 A B C D E 0 0 0 0 J K L 0 0 P 
D27 9 A B C 0 0 F G 0 0 J K L 0 N 0 
D28 9 A B C 0 0 0 0 H I J K L M 0 0 
D29 9 A A C D D F G -F -G J K K M -M P 
D30 9 A A C D D F G F G J K K M M P 
D31 9 A B A D E F F -E -D J K J M N -M 
D32 9 A B A D E F F E D J K J M N M 
D33 9 A B B D E -D -E H H J J L M N -N 
D34 9 A B B D E D E H H J J L M N N 
D35 9 A B C D B/2 F I/2 H I B/6+2D/3 K L H/6+2F/3 H/2 L/2 
D36 9 A B C A/2 E 0 0 H I A/6+2E/3 K L M M K/2 
D37 9 A B C D B/2 F G 0 0 B/6+2D/3 K L M M L/2 
D38 9 A B C A/2 E F G H G/2 A/6+2E/3 K L F/2 F/6+2H/3 K/2 
D39 15 A B C D E F G H I J K L M N P 
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