Chapter 4 XDLSM Least Squares Program for Multipole Refinement

Chapter 4

XDLSM - Least Squares Program for Multipole
Refinement

4.1 Overview

XDLSM is a full-matrix least squares program based on the generalized scattering model
detailed in the Introduction. Its present version includes multipole expansion up to =4 and
anharmonic treatment of the thermal motion up to 4th order of the Gram-Charlier
expansion. XDLSM, being based on the Hansen-Coppens formalism [1], necessarily has
many common elements with MOLLY, the algorithm of which has been rebuilt and extended
to allow for further developments. XDLSM supports sophisticated density modelling, and
features of previous refinement programs have been incorporated (LSEXP [2]). Further
important aspects of XDLSM provide methods to locate inadequacies in the model, to
control the refinement and to monitor the results.

4.1.1 The method of least squares

In this chapter some aspects of the method of least squares are discussed, whose knowledge
are necessary for the user to handle the input and output of XDLSM. This introduction is
based on reference [3], to which the reader is referred for more details.

Consider a given set of m observations yo{yo1,Yoz,Yos, ... Yyom} represented by the corresponding
set of model functions yc{yci,Yyc2,Ycs,...Yyem=y(X), where x is the n-component vector of the
parameters x{xi,x2,x3,...Xs}. The best unbiased estimates of x can be obtained by minimizing
the square of the residual:

R = (Yo Y IW(Y, —Y:) = (Yo ~Y)QQY, —Y.)  (Eq. 4.1)

where W, the weight matrix, is to be chosen as the inverse of the variance-covariance matrix
of the observations (in practice, it is taken to be diagonal), and Q is an upper triangular
matrix, i.e. Q'Q is the Cholesky decomposition of W. If y. can be expanded about x, in
Taylor’s series retaining only the first order terms, then

Ye =Ye(Xp) ¥ D(X=X,) (Eq. 4.2)
with Di=dy.i/ dxj being the design matrix. Eq. (4.1) becomes:
R? =[Ay - ZAX]'[Ay — ZAX] (Eq. 4.3)

where Ay = Q(y0 - yc(Xo)), Ax=x-x, and Z=QD.

The n conditions

dR? ,
=0 fori=1,2,3..n (Eq. 4.4)
dax, ) _

X =Xoi
lead to the system of normal equations

Z'ZAx =Z'Ay (Eq. 4.5

whose solution vector is
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x=x,+B™Z'Ay (Eq. 4.6)
with B=2'Z.

An alternative solution of the least-squares problem is provided through the singular value
decomposition of the standardized design matrix Z. Let

Z =UGV' (Eq. 4.7)

where U is an mxn column orthogonal matrix, G is a diagonal matrix of the singular values
and V is an nxn orthogonal matrix.

A solution of the over-determined system of equations

ZAX = Ay (Eq. 4.8)
can be given as

Ax=Z7'Ay (Eq. 4.9)
where

Z'=VvG'U (Eq. 4.10)

This solution can be proved to be the best possible solution in the least-squares sense as Ax
is the vector which minimizes the residual:

R=[ZAx - Ay (Eq. 4.11)

The solution of the least-squares problem through the system of normal equations (4.6) has
the disadvantage that it fails if B is singular or ill-conditioned. A clear distinction should be
made between ill-conditioning of an analytical and that of a numerical nature. The former
case is likely to occur for an over-parametrized model, when some combination of basis
functions are irrelevant to the fit. The normal equation matrix has zero or nearly zero
eigenvalues and the inversion gives no or only a formal solution. This problem manifests
itself in undesirable correlations among the variables. The method used for establishing
hidden indeterminacies in the model is the singular value decomposition of the matrix of
observation-equations (4.8). This procedure gives a diagnosis of the degeneracies and
provides a solution minimizing the residual. The matrix can be considered ill-conditioned if
its inverse condition number, the ratio of the smallest to the largest eigenvalue, is
comparable with the machine precision. The components of the eigenvector (a row or
column vector of V) corresponding to the smallest eigenvalue define a linear dependence
among the variables (orthonormal basis for the null-space) which leads to the singularity.
Zeroing an eigenvalue in the calculation of the inverse matrix (4.10) means introducing the
constraint given by the corresponding eigenvector. The term numerical ill-conditioning refers
here to an unbalanced least-squares matrix which is due to the fact that the model function
is simply not equally sensitive to the changes of the different parameters, ie. the
components of the design matrix can differ by many orders of magnitude. A condition
number of the order of 10 is typical for the multipole-model based structure factor least-
squares matrix. This number indicates that a small change (error) in an element of the
design matrix (Z) can cause large changes in the elements of B-l. That is why the solution
via the inversion of the normal equation matrix is susceptible, to a considerable extent, to
roundoff errors and requires double precision arithmetic. This problem can be overcome if
the elements of the Z (or B) matrix are brought to a common scale. In XDLSM the normal
equation matrix is analyzed and its conditioning is accomplished by a similarity
transformation:

B, =diag(B) "'*Bdiag(B) "'? (Eq. 4.12)

Inversion, based on the Gauss-Jordan elimination method [4], is the default option to solve
eq. (4.5). If the matrix inversion fails or if diagonalization has been selected as the method of
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solution, the eigenvalues are calculated by the Householder reduction [4], and the
singularities are reported and eliminated. The eigenvalue filtering is based on the inverse
condition number. The lowest eigenvalues are rejected (zeroed) from the inverse calculation
until the inverse condition number reaches a user specified limit. While this procedure gives
a mathematically correct solution, its indiscriminate application does not necessarily reveal
the physical meanings of the indeterminacies that made the least-squares equations
singular or nearly singular in the first place.

4.1.2 Model ambiguities

The XD package will be available for a wide scientific community. This Section tries to help
those who have not yet been involved in charge density research. In particular, it tries to
help those users who have not yet had the uncomfortable feeling of getting stuck at a
certain stage of the refinement. This happens when decisions need to be made as to which
parametrization is preferable among several alternative ones which perform equally well in
fitting the data.

The scattering model described in the Introduction formally allows 66 parameters per atom
(in the present implementation of XD) to be included in the refinement. However, any
interpretation of the data set using an "all-parameter" fit is hardly feasible, nor is it
appropriate. Even if one could afford it (i.e. even if enough data points were available) and
even if convergence was reached with a satisfactory fit, the physical significance of the
results would certainly be doubtful. While the total dynamic ED obtained could account for
the data very well, any property which is a function of a subset of the variables could well be
meaningless. As mentioned above, the reason for this is that many basis functions of the
structure factor expansion have a similar dependence on the components of the scattering
vector. Consequently the data cannot differentiate between them. A typical example of this
type of bias is that introduced into the static density deformations by the inadequate
decomposition of the thermal smearing. This is caused by the formal similarity between
density basis functions and pdf’s of the nuclear displacements. Strong correlations, as high
as 80-90%, are likely to occur between quadrupole populations and second order
displacement parameters. The Gram-Charlier model has been shown to be as adequate as
the multipole expansion in accounting for static density asphericities [5]. Such
indeterminacies can appear especially pronounced for non-centrosymmetric structures.

The flexibility of the model and the limited number of observations forces one to limit the
optimization to a subset of parameters or to their combinations. The variables are usually
selected on the basis of simple chemical arguments or preconceptions. The outcomes must
be tested in order to judge their physical significances. A careful study should not neglect
an independent analysis of static and dynamic parameters.

4.1.2.1 Testing the results

The most important test to judge the success of the model and the quality of the fit is to
evaluate the residual ED through a Fourier summation (Fobs - Fmodel). This provides a direct-
space representation of the extent to which the model accounts for the observations. A
featureless residual map is a necessary condition for the adequacy of a model, but is far
from being a sufficient one for judging its physical significance. Another usual procedure is
to compare the static deformation density obtained from X-ray data with that calculated
theoretically. Deformation peak-shapes and peak-heights are subject to specific conditions
that are characteristic for the different methods to be compared. The ab-initio ED depends
on the level of the theory applied and on the quality of the basis sets. Both factors place
severe limitations on any direct comparisons, especially for larger systems. However,
without such comparisons, the interpretation of the results in terms of the deformation ED
remains only of a qualitative nature. This is because of the arbitrariness in selecting the
reference state and the sensitivity of the ED to the structural parameters.
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We suggest that the experimental ED is tested through its local and global topological
characteristics and by evaluating its integrated properties. XDPROP makes it feasible to
trace the refinement process almost "continuously” by inspecting the different stationary
points of the total ED and related scalar properties. In this respect the Laplacian of the ED,
as a sensitive measure of charge concentrations, should play an important role. A static ED
which fails to reproduce the characteristic topological features of a typical covalent bond,
e.g. (3,-1) CP's, bond charge concentrations shown by the Laplacian, is likely to be suspect.

One-electron properties are directly obtainable from the ED and their comparison with the
outcomes of independent measurements and/or theoretical results are of great importance.
The molecular dipole moment and the electrostatic potential are the quantities most
frequently evaluated from the experimental ED. Such applications are being explored with a
promising success.

One way to gain information on the physical significance of the thermal parameters is to test
them against the rigid-body motion model [6] which is based on the observation that in
molecular crystals the external (lattice) vibrations make the major contribution to the atomic
motion. Satisfactory agreement between observed and calculated anisotropic displacement
parameters may suggest that the molecule is rigid to a good approximation or the thermal
parameters are uniformly affected by systematic errors. Significant residuals after the rigid-
body fit may indicate either the importance of soft internal modes or simply a bias in the
atomic displacements. A directly applicable test for the correctness of the atomic
displacement parameters is the rigid-bond test [7].

If 2/2\,3 denotes the mean square displacement amplitude of atom A in the direction of atom
B, then for every covalently bonded pair of atoms A and B

Ang = Zi,B - Zé,A =0
Conversely, if in parts of the molecule this rigid bond postulate is not fulfilled, one may
deduce that the structural model is insufficient. Hirshfeld estimated that for atoms at least
as heavy as carbon Aa s should normally be smaller than 0.001 A2. Verification of the model

and the anisotropic displacement parameters by this test strengthens confidence in the
experimentally determined ED.

A very useful visualization of the atomic displacement parameters is provided by the
computer-graphics program PEANUT [8], developed recently to analyze observed (fitted to
diffraction data), calculated (as given by a model) or residual (observed- calculated) thermal
parameters in terms of closed surfaces defined by the root-mean-squares displacements
(u(n))!/2=(n'Un), where n is a unit vector in any direction). Applications are given in
reference [9].

A plausible approach to reduce ambiguities in the model is to introduce constraints into the
refinement. It is desirable to replace external checks on one of the possible, mathematically
equivalent solutions by internal constraints applicable to support the physically most
relevant solution. An advanced feature of XDLSM is to allow for general linear restrictions
on any set of variables. Efforts are being made to further develop this option in order to
incorporate more 'physics' into the refinement model.

4.1.2.2 Constraints in XDLSM

The treatment of constraints in XDLSM is based on the technique of direct elimination.
Consider a system of nc linear equations, each of which defines a constraint among nv
variables:

C(nc, nv)Ax(nv) = a(nc) (Eq. 4.13)

By decomposing the matrix C
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C = PSR’ = P(nc, nv)(s(m’”r) 0}( Ry (nr.nv)

(Eq. 4.14)
0 O\ R, (nv—nr.nv)

with 8 being a diagonal matrix of nr non-zero singular values (nr < nc), two sets of new
variables can be introduced:

Axi(nr) = RIAX Axz(nv-nr) = R,AX (Eq. 4.15)

where the first set can be eliminated by means of eq. (4.13) and (4.14):

Ax: =S'P'a (Eq. 4.16)
This leads to a decomposition of the unconstrained variables

Ax = RAX = R,Ax: + R,Ax2 =R,S™P'a+R,Ax: (Eq. 4.17)
The equations of observations 4.2 becomes

Ay - DR,S™P'a=DR,Ax (Eq. 4.18)
and the system of normal equations is reduced to

B,Ax: = R,Z'Ay, (Eq. 4.19)
where

B, =R,Z'ZR, and Ay, = Ay - DRlS_lF"a (Eq. 4.20)

The elimination through the singular-value decomposition of the constraints matrix has two

advantages;

1. the dimension of problem is reduced by the number of independent constraints

2. the restrictions can be formulated in an automatic way as all accidental redundancies
are easily filtered out.

Some of the constraints mentioned below have already been implemented in a user-friendly

way, others will be available in subsequent releases of XDLSM.

4.1.2.3 Restrictions on the multipole populations

Monopole population constraint. The sum of the monopole populations, by definition,
gives the number of valence electrons in the molecule (unit cell). This statement is part of
the multipole expansion formalism which involves "atomic" partitioning and thus provides a
particular assignment of the atomic charge to the corresponding monopole population. The
monopole population constraint (KEEP charge groupl, previously referred to as the
electroneutrality constraint, see section 4.6.5 below) exactly maintains the input charge on
the ASU. If this charge is zero on input, it keeps the unit cell neutral. In XDLSM it is
possible to define any subset of atoms (i.e. any functional group) for which the total number
of valence electrons is kept constant. This option then precludes any charge transfer
between the group(s) selected and the rest of the atoms in the unit cell.

Local pseudo symmetry, "chemical" symmetry. Preconceptions based on chemical
intuition can also be applied to reduce the number of multipole populations to be refined.
One can assume a simple hybridization scheme which corresponds to the actual geometrical
arrangement of the atoms. This is usually achieved by imposing site symmetry in a properly
chosen local Cartesian frame and using symmetry adapted angular functions. The
symmetry restrictions for real spherical harmonics are given in Table 4-5. Another feasible
restraint is to keep the valence density of chemically equivalent or similar atoms to be the
same during the refinement. This is a widely accepted practical approach in studies on
larger molecules. The real question is how to judge the actual applicability and success of
our chemical expectations implemented in such a way. Static equivalences might be
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hampered in an unconstrained refinement by dynamic non-equivalences of the atoms
considered. Another important aspect is that in crystals, the 'chemical symmetries'
characteristic of the isolated molecules may not be preserved. Any subsequent enforcement
of static equivalencies may result in the effects of the crystal field becoming unobservable.

4.1.2.4 Restrictions on the radial functions

The shape of Rl’s are controlled by n(l) and a: (see eq. 1.19), the latter being estimated from
the Hartree-Fock-optimized single-¢ values. In case of quadrupolar atoms (which have only
ss, sp, and pp type orbital products) the selection of a; for [ > 2 is not straightforward. The
corresponding "virtual" density basis functions are shown to account for bond densities [10].
The usual practice is to keep ai= a for all [ and optimize &' scaling of a. Even under this
severe restriction «' becomes highly correlated with the populations and convergence can be
troublesome. In this respect, «'is by far the most critical parameter of the formalism. This
may indicate that the constraint implemented is not adequate. Model studies on di-atomic
molecules showed that a satisfactory fit of the HF ED with one-center multipole densities
requires, in certain cases, highly structured radial functions while in other cases, depending
on the level of expansion, simple Slater functions are sufficient [11]. The extent to which
this statement applies to many-atom molecules remains to be examined. A trivial choice for
improving the situation is the use of radial functions corresponding to extended basis HF
atomic orbitals. In studies on transition metal complexes, the HF radial scattering factors
were shown to be superior to those of single Slater functions [12].

4.1.2.5 Restrictions on the vibrational parameters

Rigid-body or segmented-rigid-body models could be incorporated into the structure factor
refinement. Both approaches require a linear transformation of the design matrix leading to
a reduction in the number of dynamic variables. Severe indeterminacies, depending on the
formalism, can be introduced.

A more elegant alternative procedure applied in XDLSM is to define rigid molecules or
segments by invoking rigid-bond and rigid-link constraints. This is a very efficient way to
define the degree of flexibility, but a full control requires a detailed knowledge of the
intramolecular motion. Normal coordinate analysis, if a suitable force-field is available,
provides the MSDA matrix associated with any normal mode. For molecules of first row
elements, standard force fields are readily available and procedures are in general use to
refine them against spectroscopic data. Frequencies at the HF level are typically 10% larger
than those of measured, and even semi-empirical methods can provide fair estimations.
Incorporation of calculated ADP’s for hydrogen atoms into charge density refinements has
been recently reported by a number of authors, using differing methodologies [30-33]. See
Chapter 11.1 concerning the program XDVIB for inclusion of calculated ADPS's.

An easy to handle approach is to apply constraints of the rigid-bond (rigid-link) type to the
shift of the ADP’s calculated from an intramolecular force field. Such shifts give only rigid-
body type contributions to the ADP’s and the procedure preserves atomic displacements due
to intramolecular vibrations. The success of such applications depends on the extent to
which the mean-field approximation is valid. Another difficulty is that the optimized
molecular geometry needed to calculate the harmonic force field can considerably differ from
that found in the crystal. Another approach is to start from a set of ADP’s predicted by the
TLS model. These ADP’s satisfy the Hirshfeld condition for all internuclear separations. By
invoking the rigid-body constraint to all covalent bonds between atoms of comparable mass
the bias in the ADP’s can be reduced significantly.

4.1.2.6 Restrictions on the reflection phases

There are well established problems [28,29] which arise when refining a multipole model for
a non-centrosymmetric crystal structure. These arise because of the phase ambiguity and
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can result in poorly determinations of the odd-order multipole populations, which are
invariant under certain crystal-class symmetry operations. In essence, some combinations
of odd-order multipoles may make very small contributions to the structure factor
amplitudes, but have significant contributions to the phases. In such cases, great care
needs to be taken to ensure that physically meaningful parameters are obtained from the
least squares procedure. As has been shown [28,29], the eigenvalue filtering method (used
by default in XLDSM for singular or near-singular normal matrices) greatly alleviates these
problems, though sometimes a 'slack constraint' on the scale factor (e.g. by including
F(000) as an additional observation with unit weight) may also be necessary [29] to obtain
accurate parameters.

An alternative solution is to use fixed phases, determined from, say, a fully periodic ab initio
calculation. In XD2024, a phase-constrained refinement is implemented through a special
format for the reflection file XD.HKL, see Table 2-2. The NDAT entry number must be
specified as -7, and the phase angle (in radians) must be supplied as the seventh data item
for each reflection. No extra instructions in the master file are required. This phase-
constrained strategy may be useful when refining against theoretical structure factors
calculated on a non-centrosymmetric crystal structure.

4.2 Refinement strategy

A general rule, it is strongly advised that the complexity of the model should be increased in
a stepwise manner. Each stage of the refinement could provide a hypothesis for the next
step. In this respect it is difficult to suggest a specific scheme, in advance, according to
which one should proceed. The spherical-atom refinement could serve as a reference for
comparison during the whole fitting procedure. This could be followed by a restricted
multipole refinement in which all possible chemical constraints and atomic pseudo-
symmetries are applied. As argued above, the extent to which these restrictions should be
applied depends on many factors. In most cases the number of observed intensity data
limits the number of free variables. The ratio of the number of reflections to the number of
variables should not fall considerably below 10. Atoms with the same valence and first
coordination sphere should always be considered chemically equivalent at this stage of the
fit. The spherical HF radial screening parameters ( « ) can already be included. These
variables, in contrast to those scaling the Slater exponents ( '), are much more stable and
their changes should stay below 5-10%. If the resolution and accuracy of the observations
allows, the different restrictions can be released in subsequent refinement cycles, in the
hope of testing the adequacy of the assumed chemical equivalences. In this way, second
order effects’ (crystal field, conformation differences, second neighbours, etc.) on the valence
density might become visible. To decide if a new variable contributes significantly to the fit,
the ratio of its value to its standard deviation and the change in the goodness of fit are to be
checked. More sophisticated statistical tests will be available in follow-up versions of
XDLSM.

Because of their low scattering power and intense thermal motion, hydrogen atoms should
be treated with a special care. A poor model for their static density manifests itself in
unreliable dynamic parameters and conversely, no reasonable estimate of the charge
transfer can be obtained without meaningful displacement parameters. In organic
molecules a considerable amount of the charge transfer occurs at the expense of charge on
the hydrogen atoms. Due to the electro-neutrality constraint these uncertainties can
seriously affect the result. To overcome this difficulty, the following strategies can be
applied. The position and thermal parameters of the hydrogen atoms should be fixed at the
values obtained by neutron diffraction, when such data are available. An overall scaling of
the neutron displacement tensor components should be applied to account for the
temperature difference (or rather the difference in the diffuse scattering) between the two
data collections [26]. In the absence of neutron data, the parameters of the hydrogen atoms
could be obtained from spherical-atom refinement using the contracted scattering factors of
Stewart et al. [13]. The isotropic displacement parameters can then be fixed during the
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multipole refinement. The correctness of this estimation can be judged by the distance of
the bonds to the corresponding hydrogen atoms and by their net charges obtained in such a
way. The ADP’s of the hydrogen atoms can also be estimated by fitting the rigid-body or
segmented rigid-body model to the motion of the non-hydrogen atoms. A simple riding
model could also be feasible (UH) = 1.5 * Ueg(non-H) ). Such a constraint can easily be
incorporated. The density asphericities of the hydrogen atoms can be represented by a
bond-directed dipole. For those involved in a strong hydrogen bond an additional
quadrupole can also be introduced. The RESET BOND command (Section 4.6.5) is very
useful here to constrain X-H distances to neutron determined standard values.

4.3 Dimensioning

The parameters in Table 4-1 are used in certain DIMENSION and COMMON statements.
These are the current limits for XDLSM. Future versions will have full dynamic memory
allocation.

4.4 Variable names and order numbers

See Table 4-2 for a list of symbols and code numbers to be used as variable identifications.

4.5 Files used and created by XDLSM

Input: xd. mas, xd.inp, xd.hkl, xd.bnk *
Output: xd Ismout, xd.res
Optional output: xd. fou, xd.der, xd.mat, xd.cov

4.6 Input instructions for XDLSM

The next section describes those commands which are interpreted by the program. All of
these instructions must be placed between the MODULE *XDLSM and the END XDLSM
lines in the Xd. mas file.

4.6.1 Control instructions
4.6.1.1 SELECT

SELECT (*)model mI m2 m3 m4 based_on (f|f*2) (*)test verbose verbose_level
SELECT cycle cycles dampk dampk cmin cmin cmax cmax eigcut r convcerit conuvcrit

(*)model mI m2 m3 m4

This option provides a global control over certain parameters which characterize the
structure factor formalism applied in the refinement. These parameters are shown in Table
4-3

The values given after the model option are applied for all atoms only as an upper limit. The
option has only limited applications but can provide an easy way to reduce the complexity of
the scattering formalism without having to modify all necessary parameters one by one.
Note that certain combinations of the control parameters are meaningless, which might not
be recognized by the program. If model is not starred, then it is assumed that m3 = 1, i.e.
that the reflection data contain anomalous dispersion effects. If theoretical data (or
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experimental data with anomalous dispersion removed) are being used, then *model x x O x
must be used. An alternative approach in this case (if a global model control is not desired)
is to set all the values of f"and f in the SCAT table (see 6.4.2.7 below) to zero.

based_on (f|fA2) The refinement is based on structure factors or on their squares. The
data in the reflection file Xd. hkl are transformed accordingly.

(*)test If flagged an input test is performed. This includes calculation and printing of

1. the scattering factor tables,

2. the local coordinate systems,

3. the variable-parameter list,

4. the matrix of constraints, together with the result of its singular value
decomposition

5. a file xd_scat_atom.out is printed for each atom type read in scat table in order to
check two different calculations of the scattering factors (from the analytical
expansion and from the wave function databank selected)

verbose verbose_level Setting verbose_level greater than one switches on extra printout to
the log files.

cycle cycles [0]

>0 The number of least squares cycles requested.
=0 Structure factor calculation.
<0 Scale factor refinement.

dampk dampk [1.0]. This is a damping parameter applied to refinement of kappa's.

cmin cmin [0.6] cmax cmax [1.] Lower and upper limit used as a criteria for printing the
correlation matrix elements.

eigcut r [1l.e-10] If the solution of the system of normal equations are obtained through
diagonalization, r is used as a cutoff limit for the singularity test. Eigenvalues are
considered to be zero and omitted from the calculation of the inverse matrix until the
inverse condition number is smaller than r:
min(eigenvalue) /| max(eigenvalue) < r

This test is applied to the eigenvalues of the reduced matrix (derived from the constraints)
and the conditioned matrix (see Introduction). The same parameter is used as a criteria for
eliminating linear dependencies among the constraints. This is singular value
decomposition of the matrix of the constraints, also known as eigenvalue filtering.

convcerit convcrit [0.0] If the maximum shift/su in the current cycle of refinement is less

than convcrit, the program immediately proceeds to the final cycle and finishes the
requested XDLSM job.

4.6.1.2 SAVE

SAVE (*)deriv (*)lsgmat (*)cormat

deriv If starred, the structure factor derivatives for each reflection (design matrix) in the
last cycle are saved in the binary file Xd. der (see Section 2.7).

Isgmat If starred, the least squares matrix and vector in the last cycle are printed to the
binary file Xd. mat (see Section 2.8).

cormat If starred, the variance-covariance matrix is written to the binary file Xd. COV.
This file is needed for estimating the standard deviations of different properties. The
structure and the content of the file is given in Table 2-4.
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4.6.1.3 SOLVE
SOLVE [*]inv (*)diag [*]cond

The solution of the least squares normal equation can be obtained through inversion or
diagonalization.

inv If starred, the Gauss-Jordan for inversion method is implemented. The program will
automatically switch to diagonalization if the matrix is found ill-conditioned (or singular)
during the inversion in the first cycle. The matrix inversion is the default option.

diag If starred, the Householder reduction and QL algorithms are used for the calculation
of the eigenvalues and eigenvectors. If an eigenvalue fails the test based on the condition
number (see eigcut), the corresponding eigenvector is eliminated and printed.

cond If starred, the normal equation matrix is conditioned via the transformation 4.12,
irrespective of the method of solution selected.

4.6.1.4 SKIP

SKIP (*)obs obsmin obsmax [*]sigobs sigmin sigmax (*)sinthl snlmin snlmax

The SKIP instruction defines criteria for rejecting observations from the refinement (not from
the structure factor calculation). It is important to note that the rejection criteria are always
applied, starring these options merely allows the use to change the values of the default
criteria. If more than one are starred, the "AND" logic is applied. The rejection criteria and
default values are:

obs [0.0, 1.0e10] all observations for which obsmin > obs or obs > obsmax
sigobs [3.0, 1.0e10] observations for which sigmin*sigobs > obs or obs > sigmax*sigobs
sinthl [0.0, 2.0] lower and upper limit in sin@A

IMPORTANT The obs and sigobs cutoffs are applied to the data in the XD.HKL reflection
file, after any conversion implied by the based_on criterion (Section 4.6.1.1). This action
(which is more logical) is different from that previously applied in XDLSM, where the cutoffs
were applied before conversion.

4.6.1.5 PRINT

PRINT (*)sinthl snimin snimax (*)obs obsmin obsmax (*)delta dmin dmax [*]del% min%
max% (*)extcn extmin extmax (*)abssc

The PRINT instruction defines criterion for printing observations. After the last cycle the
following quantities can be printed:
no h k I sinthl scgrp obs calc delta (del% |flag) extcn code

where
no the order number of a reflection
hkl reciprocal-lattice components of the scattering vector
sinthl sin(g)/ A
scgrp scale group number
obs Fo or F%
cale Fcor F2.
delta Fo — Feor F2, or F2
flag a flag based on f = | 100 * (obs — calc) / obs| It is a four character long string

as follows:
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’ ’ forO<f<5

w7 for 5<f< 10

Hx for 10 < f <15

k2 for 15<f<20

ExE for 20 < f< 25

PP’ for 25 <f< 30
del% f1is printed instead of a flag
extcn the extinction correction in percentage
code 0 included in the refinement

-1 rejected based on criterion obs

-2 rejected based on criterion sigobs

-4 rejected based on criterion sinthl

-3 rejected based on criteria obs and sigobs

-5 rejected based on criteria obs and sinthl

-6 rejected based on criteria sigobs and sinthl

-7 rejected based on criteria obs and sigobs and sinthl
The options, if flagged, serve as a lower and an upper limit applied for printing. Again, the
'AND' logic applies.

(*)sinthl snimin snlmax [0 2]
(*)Jobs obsmin obsmax [0 10]
(*)delta dmin dmax [-50 50]
(*)del% min% max% [80 100]
(*)exten extmin extmax [80 100]

(*)abssc if flagged the observations are printed on an absolute scale

4.6.2 The SCAT table

The SCAT table provides a compact format for defining different scattering factors or
modifying the entries in the databank file Xd. bnk_*. In contrast with previous versions of
the program, the SCAT table now includes all atomic orbitals. If an old Xd. mas file is used,
this table must be modified otherwise it will not be read correctly. The heading of the SCAT
table is:

SCAT core sphv defv 1s 2s 3s 4s 2p 3p 4p 3d 4d 4f Ss Sp 6s 6p 5d 7s 6d SfAf' Af " nsctl

core core scattering factor

sphv spherical valence scattering factor

defv scattering factors due to valence deformation functions
1s 2s 3s ... occupations of HF atomic orbitals

Af' real part of anomalous dispersion correction

Af" imaginary part of anomalous dispersion correction
nsctl neutron scattering length

This SCAT line has to be followed by as many input lines or subsegments as atom types are
present in the unit cell. Each row should begin with the element name that must be
identical to one of the atom types stored in Xd. bnk_* (see element naming convention in
section 2.5). If the element name is the only string in the input line, the data on the
corresponding segment of the databank file will be used to create the scattering factors. The
databank file can be extended by introducing new segments assigned to dummy atom
names. In this way considerable freedom is provided for designing scattering factors from
atomic wavefunctions expanded over Slater-type basis functions. All the entries indicated
above have default assignements. To change the default assignement of a particular entry
all preceding entries in the list have to be given. For example, to change the default values
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for the anomalous dispersion corrections ( Af and Af ") all three types of scattering factors
as well as the occupations have to be input.
For the scattering factors the following options are available:

core [chfw] rdtb
sphv [chfw] rdtb rhft
defv chfw rdtb [cszd| rdsd

4.6.2.1 chfw - Clementi’s Hartree-Fock Wavefunction

This is the default option for the core and sphv scattering factors and it means that the
Slater-type atomic orbitals stored on the Xd. bnk * file are used. The user has the
freedom to decide what to consider core and what valence density. This is done by
specifying the orbital occupations, which have to be positive or negative integers for core or
valence orbitals respectively. If they are omitted, the default configuration in Xd. bnk_* is
taken. The order of the orbitals is given in the heading of the SCAT table. For example, the
default configuration of the ground state carbon atom is (1s?), (2s2,2p?) and the
corresponding line in the input table is:

C chfw chfw cszd 2-2 0 0-2

In this case 2(jo)(1s1s) and (2(jo)(2s2s) + 2(jo)2p2p))/4 is calculated, respectively, for the core
and the spherical valence scattering factors. Note, that the sphv scattering factor is
normalized, but not the core.

A 'frozen' spherical atom (only core or spherical atom scattering) could be defined as

C chfw chfw cszd 2 2 0 0 2

while that of with radial screening (only valence or spherical atom scattering)

c chfw chfwcszd -2 -2 0 0 -2
Another application of the orbital occupations is to form spherical valence scattering factors
corresponding to an assumed hybridization. For example, one can 'generate' an sp3 type
carbon atom with the following input

C chfwchfweszd 2 -1 0 0 -3
which assigns ((o)(2s2s) + 3(jo)(2p2p))/4 to the spherical valence scattering factors. Since
more than one sets of scattering factors can be generated from the same wavefunction, the
multiple use of an element name is allowed.

4.6.2.2 rdtb - Read table

This option is available for all three types of scattering factors. It indicates that the
corresponding scattering factor table is to be read from the master file. For an unknown
element (not stored in the Xd. bnk_* databank file) the rdtb option must be specified. The
input should consist of ngrd values (8 entries/lines) of the function taken at an equidistant
grid of sing/A with a step size of grd. ngrd and grd are parameters with default values of 40
and of 0.05, respectively, in the present version of XDLSM (See Table 4.1). The first grid
point must be zero. The default setup requires the table to be given up to 1.95 in sing/A.
The parameters ngrd and grd should be adjusted to the wavelength of the radiation used for
the data collection. The scattering factor at an arbitrary scattering angle is interpolated and
the derivatives with respect to the expansion-contraction parameters are numerically
obtained. Accurate evaluation require a considerably fine grid size (not exceeding 0.06 A1).

Example:
C RDTB RDTB CSZD
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2. 00000 1.99642 1. 98575 1.96816 1. 94394 1.91349 1.87726 1.83581
1.78973 1. 73965 1. 68621 1. 63006 1.57183 1.51212 1.45148 1. 39046
1. 32950 1.26904 1.20944 1.15100 1. 09400 1. 03863 0. 98506 0. 93343
0. 88381 0. 83628 0. 79085 0. 74754 0. 70632 0.66717 0. 63004 0. 59488
0.56163 0.53021 0. 50055 0.47258 0. 44621 0.42137 0. 39798 0. 37597
1. 00000 0. 93697 0. 77692 0.58120 0. 40061 0. 25845 0.15714 0. 08962
0. 04686 0. 02103 0.00626 -0.00155 -0.00512 -0.00622 -0.00596 -0.00502
-0.00381 -0.00256 -0.00140 -0.00037 0. 00048 0. 00118 0. 00173 0. 00216
0. 00247 0. 00269 0. 00283 0. 00291 0. 00294 0. 00294 0. 00291 0. 00285
0. 00278 0. 00269 0. 00260 0. 00250 0. 00240 0. 00230 0. 00220 0. 00210

4.6.2.3 cszd, rdsd - Single-zeta density parameters for defv

By default, the radial functions of the valence deformation density are of single Slater-type
(cszd). The parameters of the radial functions (n(l), &())) are obtained from the corresponding
single-& wavefunctions of Clementi & Roetti [14] stored also in Xd. bnk_* files. In previous
versions of XD, the option eszd in the SCAT table computed the exponents for the radial
deformation functions by simply averaging the valence exponents of the "best" single-§
orbitals (Clementi and Raimondi [15]) of the default configuration. The new version of the
program now computes §’s by weighting the orbitals by their occupation. For noble gases
and closed shell ions, § is computed thus :

 from the (weighted) exponents of the outermost shell of the core for noble gases and
anions (e.g. the 2s and 2p orbitals for F-, Ne etc.)

* from the exponents of the first empty orbital(s) for closed-shell cations (3s for Na*, Mg2*
etc.; 3s and 3p for Al3*, Si** etc.; 4s for K*, Ca?*; 3d for Sc3*, Ti** etc.).

The closed-shell configurations recognized are those of the noble gases (thus, 2, 10, 18, 36,
54 electrons), and those of some cations of the 4t and 5t row (like Cu*, Ga3*, Sb5*), which
may have 28 or 46 electrons (single-§ exponents considered are those of 3d and 4d orbitals,
respectively). All other configurations missing the valence electrons are not recognized by
the program, which then stops.

The orbitals used to compute the average are directly linked to the SCAT table configuration.
Thus, if the user modifies the number or the type of valence electrons (at his own risk!) in
the SCAT table, then Z will change. Note that in the previous versions of XD, the SCAT table
was intended to modify just the SPHV monopole, evaluated by the multi-exponent HF wave
functions of Clementi and Roetti [14].

Warning messages will appear in the output if the configuration chosen is unusual or
dangerous and severe stops are applied if the requested orbitals are not stored for a given
atom.

The default values can be modified by using the option rdsd which makes it possible to
input all n()) and & (J) in atomic units:

C chfw chfw rdsd
n(0) zeta(0) n(l1l) zeta(l) n(2) zeta(2) n(3) zeta(3) n(4) zeta(4)
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4.6.2.4 The chfw option for defv

An advanced feature of XDLSM is to allow for the use of HF radial functions for the
deformation density. Such application needs each (J) to be attributed to a proper
combination of orbital products. The Table given in the Introduction (Section 1.9)
summarizes the different order of Fourier-Bessel transforms that occur for the different
orbital products. An orbital product is given by the names of the comprising orbitals in
brackets: (2s2s), (2p2p), (3d3d), etc. If more than one product contributes to (J) they
should be connected by the plus "+" sign. The character string composed in such a way
must contain no embedded blanks : (2s2s)+(2p2p) ... etc. A product or a sum of products
contributing to (J) has to be specified for each I. Note that not all radial densities can be
constructed from a given wavefunction. To satisfy Poisson's equation [27], 2(n-1) must be 2
I, so for example a 2s orbital cannot be used to construct octupole or hexadecapole radials
parts. To make a complete set, all options available for defv can be combined, as explained
below. If neither cszd nor rdsd is specified for sphv the program expects additional input
lines with one of the following contents:

[ [cszd]

[ chfw conf

[ rdsd n(l) zeta(l)

[ rdtb

NOTE : The chfw option in XD means that the radial part (and only the radial part) of the
specified orbital product will be used to construct a density function. The XD program
allows such a radial function to be associated with any multipole, so that a chfw directive
such as "1 chfw <3d3d>" is permissible, depite having limited physical meaning.

For each [, an option can be selected which determines any further input. If no line is given
for certain [ values the default (cszd) applies. For chfw the configuration (cony) is to be given
in terms of orbital products or their sum. For rdsd the parameters of the radial functions
are needed. After rdtb a scattering factor table is to be read as described above.

Example:

chfw chfwchfw 2 -2 0 0 -2
chfw (2s2s) +(2p2p)
chfw (2s2p)
chfw (2p2p)
rdsd 3 3.71
rdtb
0. 00000 5.99918 4.95113
0.26409 0.14158 0. 07557
0. 00211 0. 00122 0. 00072

AwNROQO

. 64245 2.42954 1.49816 0. 87092 0. 48586
. 04045 0.02182 0.01190 0. 00658 0. 00370
. 00043 0. 00026 0. 00016 0. 00010 0. 00006
0. 00004 0.00003 0. 00002 . 00001 0. 00001 0. 00001 0. 00000 0. 00000
0. 00000 0. 00000 0. 00000 . 00000 0. 00000 0. 00000 0. 00000 0. 00000

In the above example (Jo) is the sum of the O-th order transforms of ss and pp type radial
functions and irrespective of the normalization it is equivalent to sphv. The (Ji) and (J)
functions are related to sp and pp type orbital products, respectively. The scattering factor
for octupoles is created from single-{ radial functions while that for hexadecapoles is read
in.

OoOooOoow

4.6.2.5 rhft - Relativistic Hartree-Fock scattering factors for sphv

If a spherical atom model is selected, the RHF scattering factors, as given in the
International Tables [16] or in references [17,18] in the form of an expansion over Gaussian
functions, can also be used. The rhft option for hydrogen selects the contracted scattering
factors of Stewart, Davidson & Simpson [13].

4.6.2.6 Current Limitations
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The calculation of the static electron density and of electronic properties requires the
evaluation of the radial functions within an accuracy that can hardly be reached by
numerical inverse Fourier transform of the scattering factors. The default choice, the use of
Slater-type HF wavefunctions (chfw, cszd or rdsd), means analytical representation of both
direct and reciprocal space functions. For a refinement to be consistent with the property
calculation, it must be based on the wavefunctions stored in Xd. bnk_*. The corresponding
scattering factors are certainly not the best available ones and can slightly differ from those
found in the International Tables. Relativistic effects are important only for heavier elements
- this can be seen by comparing the total chfw spherical scattering factors with those based
on relativistic numerical wavefunctions. Efforts are being made to eliminate this limitation.

4.6.2.7 Anomalous scattering

delf’ delf”
The defaults correspond to Mo radiation. XDINI now computes the correct values for any
arbitrary X-ray wavelength.

4.6.2.8 Neutron Scattering Length

nsctl

The last entry of a SCAT line is the neutron scattering length. NOTE Compounds containing
elements with very large absorption cross-sections (B, Cd, In, Sm Eu, Gd, Dy), have an
imaginary component of the scattering length, and cannot be dealt with in the current
version of XDLSM. The current databases have an entry for deuterium (element D) which is
identical to H except for the neutron scattering length and atomic weight. NOTE In previous
versions of XD, the values of the neutron scattering lengths listed in the master file were in
units of 10-14 m, but are now given in the more usual Fermi units of 10-15 m.

4.6.3 The ATOM table

For each atom included in the structure factor calculation the following entries are to be
given:
ATOM atomO ax1 atom1 atom?2 ax2 r/l tp tbl kap Imx sitesym chemcon

4.6.3.1 Atom name conventions

The atom name is a continuous string of up to 8 characters, starting with a correct, case
sensitive chemical symbol (e.g. ‘Na’ and not ‘NA’) used in the SCAT table and followed by
further characters enclosed in parentheses (). Legal atom names are:

Cu(3) Ti3+(1la)
4.6.3.2 The local coordinate system

The entries in the first seven columns define the local coordinate systems. atom, atomO,
atom] and atom?2 are atom names from the ATOM table list. axl and ax2 stand for different
axis assignments, each being either x or y or z. The first axis (axI) is given by the
internuclear vector from atom to atomO (wv;). This together with the second vector from
atom] to atom?2 (vy) define the (axl,ax2) plane. The third vector (v3) is taken perpendicular
to this plane.

v = (to — 1) Vo = (2 — I1) V3 =V XV
Finally, an orthonormal vector triplet (€axi, €ax2, €ax3) is formed which can be chosen to be

either right (R) or left (L) handed
€ux1 = Vi/ | V1| €ax2 = (V3 X V1) /| (V3 X V1) | €ax3 = V3/ | V3|
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where r, 1o, r1 and r; are the position vectors of atom, atomO, atom1 and atom2, respectively
(MOLLY).

4.6.3.3 tp - the Order of the Atomic Displacement Tensor

0 no thermal parameter is applied (static scattering model)
1 isotropic U

[2] anisotropic U¥

3 anharmonic 3t order Gram-Charlier expansion Cik

4 anharmonic 4t order Gram-Charlier expansion Dkl

If this value differs from that in the input file the thermal displacement parameters will be
converted:

xd. mas xd. i np
1 2 from anisotropic to isotropic
2 1 from isotropic to anisotropic

4.6.3.4 tbl - The Core Scattering Table

Refers to the core scattering table. It is the order number of the corresponding element
given in the SCAT table.

4.6.3.5 kap - the Kappa Set

Defines the kappa set applied to the valence radial functions. If a new set is introduced or
the previous arrangement is redefined, the corresponding changes must also be made in the
parameter file Xd. | NP and/or to the KEY table. If the values in the parameter file are not
changed the refinement will start from the default value (1.0) for all kappa sets.

4.6.3.6 Imx - the maximal level of multipole expansion

0 Monopoles (sphv and defv)

1 Dipoles (default for hydrogen atoms)
2 Quadrupoles

3 Octupoles

4

Hexadecapoles (default for non-hydrogen atoms)
4.6.3.7 sitesym [1]

The point group symbol of the atomic site symmetry. These symbols initialised by XDINI are
for information only and are not used by any XD program. The ISYM codes in the parameter
file refer to the crystallographic site symmetries of atoms in special positions (codes 1-77)
and the user imposed model pseudo-symmetries based on the 32 crystallographic point
groups (codes 80-112). See tables 3-1 & 3-2 in the Appendix for further details.

4.6.3.8 chemcon

Refers to the atom to which the valence deformation density of the atom considered is
constrained. Atoms with different site occupancies cannot be linked by chemcon
constraints. If it is desired to link the multipole populations of atoms having different site
occupancies, this must be done using an explicit set of CON instructions (see Section
4.6.10), ensuring that the different occupancies are properly taken into account. If the same
set of multipole populations are to be shared by two or more atoms, the definition of the local
coordinate systems of the corresponding atoms must be consistent.
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4.6.3.9 Dummy Atoms

To enable one to define a local system of arbitrary orientation, dummy atoms can be used.
These are to be specified after the atom list but within the atom table by giving a name,
composed of the string "DUM" and a number, followed by the three coordinates (free format)
in the crystal system.

Example:

ATOM at onD axl atoml at on2 ax2 r/l tp thl kap I nx sitesym chenton
a'1) q2) X 1) DUMD Y R 2 1 1 4 NO

a2) 1) X 1) DUML Y R 2 1 1 4 NO Q1)
DUMD 0. 0. 0.

DuML -0.4800 0.5335 0.0973

END ATOM

4.6.4 GROUPn

GROUPn atom(1)... withn>1

The GROUP command selects a set of atoms to be considered as a unit for special
applications. Such applications available presently are the electroneutrality and rigid-body,
rigid-link type constraints see (KEEP instruction). The first group (GROUP1) is, by definition
composed of the atoms in the asymmetric unit. An atom is allowed to be part of more than
one group. The atom list defining a group can be on more than one input line, but each line
must start with the same GROUPn command.

4.6.5 KEEP

The KEEP instruction simplifies the application of certain constraints.

KEEP kappa set(l) ...

For each set defined k', the expansion-contraction parameter of defv, is kept the same for all
. This is a default constraint that is suggested to apply, at least in the initial stages of a
refinement.

IMPORTANT The fit is always very sensitive to K', even if a single parameter is refined for
all [ values. The results of k' refinement should always be critically examined and
compared to those obtained with k'= 1.0. For HF radial functions, the chance of obtaining
convergence with reliable estimates of different K7 parameters is expected to be better than
for single Slater orbitals. A separate K refinement is worth trying for transition metals.

KEEP charge [groupl| groupn ...

Each group defined by the GROUP command can be treated as a closed unit for which the
total charge is kept fixed during the refinement. The total charge of the group is given by the
sum of the starting monopole populations of the comprising atoms. The user is free to
define any subset of atoms (even having common elements) which are excluded from charge
transfer. Each group fixed in this way adds one new equation to the system of constraints. A
zero singular value of the matrix of constraints means inadequate grouping and the
redundancy found will be rejected. The KEEP charge groupl directive implements the
monopole population constraint, and in normal situations this constraint should always be
present.

KEEP rigid [groupl]| groupn ...
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Each group defined by the GROUP command is kept rigid in the sense that the shifts in the
ADP’s of the atoms comprising the group are constrained to satisfy Hirshfeld’s rigidity
postulate. To make such a restriction work, all ADP’s of all atoms in the group must be
refined. The equation of constraint is set for all internuclear connections in the group and
the linearly dependent equations are eliminated leading to the necessary reduction in the
number of restrictions.

RESET BOND atom H-atom distance (A)

The distance between an H-atom and its bonded atom is reset to the designated (usually
neutron determined) distance at the end of each cycle. The H-atom must be listed second,
and its coordinates should not be refined.

RESET KAPPA (*)all (*)onlykp 1 1.0 2 1.0 3 1.0 ....

The kappa values used in XDLSM may be reset prior to refinement using this new directive
to avoid manually editing the xd.inp file. This is especially useful when the kappas have
refined to unrealistic values, perhaps because of inappropriate refinement strategies or
applied constraints. It is a global command which resets all the kappa’s in the specified
kappa set kset to the specified value val. The instruction has pairs of numbers, the first in
the pair (kset) is an integer referring to the kappa set, the second (val) to its desired value.
Either specific kappa sets may be modified, or if the all directive is selected (starred) then all
kappa values will be reset to the value specified in the first kset/val pair or if that is missing
then the default value of 1.0 will be used. If the onlykp directive is activated (starred), then
only the deformation kappa’s KO-K4 are affected by this directive. Unlike the RESET BOND
directive, it is only sensible to use this directive in an initial xdlsm refinement and then
switch it off (i.e. comment it out) for subsequent refinements.

4.6.6 The Weighting Scheme

WEIGHT abcdef

a [0.0] b [0.0] ¢[0.0] d[0.0] e [0.0] f[1/3]

For refinement on F2, the weighting scheme as implemented in SHELXL is used:

w2 =q/ [s2?+ (ap)* + bp + d + e x sin(6)]

where
So = O(Fs?)
p=fxF?+ (1-f) x F2
g=1.0 ife=0
or g = exp|c x (sinB/A)?| ife>0

or g= 1.0 - exp|c x (sinB/A)?] if c< O

For refinement on F, the weight (w1) is calculated as follows:
wr = [ Fo x sqrt(un) + a2
where
a=0.0if B<0.0; a=sqrtP) ifpB>0.0
B = (Fo? x wn) + sqrt(we) where ws is calculated as above.

IMPORTANT This general weighting scheme has been developed for refinement based on a
conventional, spherical atom model and thus may not be adequate for multipole refinement.

There are two special weighting schemes ; when a = -1.0 and when a < -1.0. These two
schemes are applied regardless of the input values of the other weighting parameters b - f.
For a multipole refinement on F, it is suggested to set a < -1.0, when statistical weights [i.e.
un=1/02(F,?) and w; =1/02(F,)] will be applied. The default Xd. MAS written by XDINI has a =
-2.0, which sets this condition for refinement on either F or F2. Note that the values of zero
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for the parameters a - e given above also imply statistical weights for refinement on F2, but
NOT for refinement on F'!

To apply units weights, set a = -1.0. The parameters of the weighting form cannot be
refined. Two goodness of fit parameters are printed in Xd_| Sm out , one (GOFw) based on
the weighting scheme used in refinement, and one (GOF) based on statistical weights w =
1/s2.

4.6.7 DMSDA

DMSDA rmin rmax

rmin [1.1] rmax [1.8]

The difference of the projections of the mean square amplitude tensors of two atoms to the
corresponding internuclear vector are calculated if the interatomic distance falls in the
range given by rmin and rmax. As discussed in the Introduction, Hirshfeld’s rigid-bond test
[7] can help to reveal model inadequacies and should always be a part of a careful analysis.
The positional coordinates and the anisotropic displacement parameters in an orthogonal
system are also printed.

4.6.8 Extinction refinement

The following instruction line for extinction correction appears in Xd. nas:
EXTCN (*)iso (*)aniso (*)type_1 (*)type_2 (*)type_3 (*)distr_g (*)distr_1 (*)msc_O (*)msc_1

For any extinction refinement, the absorption weighted path length (tbar) should be stored
in the reflection file Xd. hK| . For an anisotropic extinction refinement, an additional six
data items (the direction cosines - see Table 2-2) for each observation are also required. If
tbar is missing from Xd. hKl| , then for an isotropic extinction only, an identical value of 0.5
mm is assumed for all reflections. This assumption will, in general, lead to incorrectly scaled
extinction parameters, but this is not often of major concern. For anisotropic extinction
refinement, tbar values in the reflection file are mandatory.

By default the EXTCN command appears as a comment in Xd. MAS. To get it activated the
exclamation mark (!) has to be removed. The extinction correction is based on the models
proposed by Becker and Coppens [19-21], which can be summarized as follows:

4.6.8.1 Isotropic extinction (*iso, default):

extinction type:

* type 1 (*type_1, default): mosaic spread, the g' coefficient is refined (variable EXT11);

* type 2 (*type_2): particle size, the p coefficient is refined (variable EXT11);

* type 3 (*type_3, *type_g is also accepted): generalized type, mosaic spread and particle
size (g' and p) are simultaneously refined (variables EXT11 and EXT22, respectively);

mosaic spread distribution (active only for type_1 and type_3):
* Gaussian (*distr_g): a Gaussian distribution is assumed;
¢ Lorentzian (*distr_l, default) : a Lorentzian distribution is assumed;

4.6.8.2 Anisotropic extinction (*aniso):
extinction type:

« type 1 (*type_l, default): mosaic spread, the Z tensor is refined (variables EXT11-
EXT23) (g(D)=(DtZD)!/2; D is a unit vector perpendicular to the diffraction plane);
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* type 2 (*type_2): particle size, the W tensor is refined (variables EXT11-EXT23)
(p(N)= A(NtWN)-1/2; N is a unit vector in the diffraction plane, perpendicular to the
incident beam);

* type 3 (*type_3, *type_g is also accepted): generalized type (mosaic spread and particle
size), Z tensor and p simultaneously refined (variables EXT11-EXT23 for Z; variable
RHOEX for p);

mosaic spread distribution (active only for type_1 and type_3):
¢ Gaussian (*distr_g): a Gaussian distribution is assumed,;
e Lorentzian (*distr_l, default) : a Lorentzian distribution is assumed,;

mosaic orientation (active only for type_1 and type_3):

* Coppens and Hamilton (*msc_0): the distribution proposed by Coppens and Hamilton
[22];

¢ Thorney and Nelmes (*msc_1, default): the distribution proposed by Thorney and Nelmes
[23]. In this case the Y tensor is refined instead of Z (g(D)=(DtYD)-1/2).

Given the expression for tensors W, Y, and Z, a switch from isotropic to anisotropic
correction requires the following variables in Xd. i np:

(1) g'to Z:

EXT11 = EXT22 = EXT33 = (g'is0)?

EXT12 = EXT13 = EXT23 = 0.0

(2)g'to Y:

EXT11 = EXT22 = EXT33 = 1/(g'iso)?

EXT12 = EXT13 = EXT23 = 0.0

(3) p to W:

EXT11 = EXT22 = EXT33 = 1/( Piso)?

EXT12 = EXT13 = EXT23 = 0.0

When a non-positive definite tensor (W, Y or Z) is obtained, the program stops if the
automatic resetting of the tensor fails.

In the output file Xd_| sm out , the following parameters are reported:

« for isotropic extinction: the mosaic spread, n (n is proportional to 1/g', units in seconds)
and the domain size r (r = g'’A10-4, units in centimeters) are given, as derived from the
refined g' and/or p.

« for anisotropic extinction: The principal axes of mosaic spread n(D) (if *type_1 or *type_3)
or domain size r(N) (*type_2) distribution are given; the corresponding 'equivalent' n and
r scalars are computed (or the refined ris printed if *type_3 is applied).

4.6.9 FOUR - Structure factor calculation

FOUR fmodl mi1.1 m1.2 m1.3 ml1.4 fmod2 m2.1 m2.2 m2.3 m2.4

The FOUR command ensures that a Fourier file Xd. f OU is written after the last cycle.
Structure factors based on two models but on the same set of parameters are calculated and
saved together with F,,s and the phases. The latter quantities may have the effects of
anomalous dispersion removed [34] as follows.

A\(J)bs = % - (A;alc - A.E,)alc)
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BO — FobsBcalc _(B BO

obs — calc
Fcal c

)

F2 =/(A%)? +(BS,)?

where A and B are the real and imaginary parts of the structure factor F and a zero
superscript (°) designate terms without anomalous dispersion. The standard deviation of
Fops¥ is estimated as

) |\ \/ Aabs A;alc ( Boos Bealc )2
FOF

obs' calc

olFs.

The phases are based on the model applied in the refinement (see instruction MODEL).

Each of the structure factor models (fmodl, fmod2) is specified with four integers, in the
same way as described above. The combination of fobs, fmod1l and fmod2 makes it possible
to generate six different Fourier maps (see XDFOUR & XDFFT). By default, the FOUR
command appears as a comment line in Xd. MAS. In the example below, a Fourier file is
created with two calculated structure factors. The first one based on a multipole model
(Imax=4), the second one on a neutral spherical atom model (Imax=-1). Both are free of
anomalous dispersion and extinction.

FOUR frmpdl 4 2 00 frmod2 -1 200

IMPORTANT In contrast to earlier versions of the program, it is the values of m1.3 and
ml1.4 for fmodl which determine the treatment of Fons. Anomalous dispersion effects will
only be removed from Fops if m1.3 is given as zero. Likewise, Fops Will only be corrected for
extinction effects (if any) when m1I.4 is given as zero. Since it is normally desired that
Fourier syntheses should represent the electron density, and be independent of the
wavelength used for the experiment, the effects of anomalous dispersion must be removed
from experimental Fobs [34,35]. The values of m1.3 and m1.4 must therefore be given as zero,
as in the above example.

Another new feature in version 5.3 is the addition (at the end of the Xd. f OU file) of an entry
for reflection F(000). The inclusion of F(000) in Fourier summations ensures a correct

absolute scale for the electron density.

Only those reflections used in the refinement will be written to the XD.FOU file.

4.6.10 CON - General linear constraint

CON al varl a2 var2 a3 var3 ... =

The CON instruction defines a linear combination among a set of variables used as a
constraint. A list of the coefficients (al,a2,a3,...) and variable-symbols (varl, var2, var3,...)
are to be given terminated by the equal sign ("="), which is followed by the last entry (c) to
define the right side of the equation. The coefficients and the variable names are read as
numeric and character fields, respectively. A variable name is composed from the
corresponding symbol described before (Table 4.2) and from a number (if needed) referring
to the atom (kappa set or scale group) to which the variable is assigned. The two
components of the name are divided by the slash ("/"). The resulting character string must
not contain blanks. The following are correct variable names:
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X1, U12/12, C333/1, ML/2, H4+/ 11, KS/3, K2/2, SCALE/ 1, EX12

The list of coefficients and variable names must be terminated by the equal sign. More than
one line can be input with the same CON command. A new line is read until the equal sign
is found. Note, that here, what is meant by the term "variable" is actually the shift in that
variable and not the variable itself.

Applications of great practical importance are the constraints due to crystallographic site
symmetries. The correct constraints applicable to those atoms in special positions are now
given in the Xd. Mas file written by the updated XDINIL These should never be modified
unless you know what you are doing ! The violation of a symmetry restriction leads to
singular least squares matrix. If the solution is obtained via diagonalization, the singularity
can be eliminated (the corresponding constraint is introduced). Although this procedure
might work in most cases, it is not advisable to let a numerical procedure handle the
symmetry. After several cycles, round-off errors are likely to break the symmetry in the
shifts. Symmetry restrictions can easily be formulated. Either the variable itself or the
combination of two variables are fixed. The former does not need extra CON card since the
corresponding variable is simply not refined (see KEY table).

Example: Formula KHF;, space group I 4/mcm (No. 140). The three atoms in the
asymmetric unit occupy the following special positions:

No. atom Wckoff letter X y z
1 K a 0 0 1/ 4
2 F h X x+1/2 0
3 H d 0 /72 0

The corresponding CON cards are:

CON 1 X2 -1Y2=-0.5
CON 1 Ul1/1 -1 U22/1
CON 1 Ull1l/2 -1 W22/2
CON 1 U11/3 -1 W22/3

o
[eloNe]

Another example of practical importance is in the use of Kubic harmonics. Table 4-4 shows
the density normalized Kubic harmonics as linear combinations of density normalized
spherical harmonics, and also indicates which Kubic harmonics are symmetric with respect
to the cubic site symmetries (and hence are allowed). Suppose that atom 1 is at a symmetry
site of -43m in a cubic space group. Table 4-4 shows that the only symmetry-allowed Kubic
harmonics (of relevance to the current version of XD) are Ko,1 K31 and Ki:. The first two
simply correspond to M1,M2 and O2- (yoo and ys,-2) while K4 is a linear combination of the
hexadecapoles HO and H4+ (0.78245 HO + 0.57939 H4+). The corresponding constraint is
thus

CON 0.57939 HO/1 -0.78245 HA+/1 =0
or more simply

CON 1 H4+/1 -0.74048 HO/1 = 0

IMPORTANT If three parameters are involved in a cyclic constraint, e.g. if U11=U22=U33 (a
common occurrence in cubic space groups), the user should note that all three constraints
are always explicitly listed in the master file written by XDINI. Their linear dependency is
noticed and removed by the SVDCMP routine, but the user should be aware that this
routine is not infallible, as rounding errors may affect the logic. If the SVDCMP routine fails
to determine the correct number of non-redundant constraints, the user is advised to
remove the redundant constraints by commenting them out in the master file. This
procedure normally solves any issues. If such a cyclic constraint is being applied in a non-
mandatory situation, e.g. to impose some desired pseudo-symmetry, then only the two non-
redundant constraints need normally be given.
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The mandatory site symmetry restrictions are now handled automatically in XDINI. Tables
4-5 - 4-9, previously in this manual are now given in the Appendix. Site symmetry
restrictions on spherical harmonics are given in Table 4-5 [25]. Tables 4-6 to 4-9 (simplified
versions of Tables 5.5A - 5.5D from reference 24) are reproduced with kind permission of
the IUCr. These Tables provide the site symmetry restrictions on the Ul anisotropic thermal
motions tensors and on the Gram-Charlier anharmonic coefficients Cik and Dik. The order
of indices for Cik and DX in these Tables follows the order of symbolic names used by XD
(see Table 4-2). Table 4-6 should be consulted first, to obtain the appropriate cross reference
key for the crystallographic site symmetry in question.

4.6.11 The KEY table

KEY xyz -U2- ----U3---« =----- Wdemmmm - M -D -Q -O ----H---

This input segment is to specify which parameter is to be refined and which is not. It is
done by giving the KEY-integer array with values O or 1 for a fixed or for a refined
parameter, respectively. The order of the parameters is as defined before in Table 4-2. First
the atomic parameters (x,y,z, U¥, Cik, Dikl, Py) have to be given for all of the atoms included
in the structure model. These are followed by the "shared" («, 7)) and by the "global"
parameters (extinction, overall thermal parameter, scale factors). The heading of the KEY
table helps in keeping account of the variables. The different abbreviations are as follows:

XyZ 3 positional coordinates
Un,Cn,Dn nth order displacement tensor components. There are 6, 10 and 15
components for n=2,3 and 4, respectively

M 2 monopole populations; the first for sphv and the second for defv

D 3 dipole

Q 5 quadrupole

0] 7 octupole

H 9 hexadecapole populations

KAPPA 1 for sphv and 5 for defv («7, =0,lmx). It should be given for each KAPPA set
defined in the ATOM table

EXTCN 1, 6 or 7 extinction parameters

OVTHP 1 overall thermal parameter

SCALE NQ scale factors

As many atom entries are to be given as in the atom table. The atom names used here have
to be identical to those in the atom table otherwise the program terminates with error
message. Similarly, the number of kappa entries must be equal to the maximal number
used in the atom table to refer to kappa sets (see 4.6.3.5) If the command KEEP kappa is
applied to a set then all but the first kappa-integers for the corresponding devf («x7, [=1,4)
should be zero. The number of key integers for the scale factors should be less than or equal
to the number given in Xd. i Np (NQ). The key integers are interpreted according to the
maximal level of the thermal motion and multipole expansion defined in the atom table for
each atom by the parameters tp and Imx, respectively.

Important! The multipole populations of the atoms involved in "chemical constraints" (those
which are constrained) may either be fixed or free in the KEY table. On the other hand,
parameters involved in any other constraint must be made variables (i.e. set to "1" in the
KEY table). The program will issue a notice and ignore the constraint if this is not the case.
An example is :

KEY Xyz --U2-- ---- US---- ---n-- (U7 M -D --Q- ---O-- ---- H - - -
(1) 111 111111 0000000000 000000000000000 10 110 10011 0110011 100110011

KAPPA 110000
EXTCN 0000000

OVTHP O
SCALE 111
END KEY ----------
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4.7 Appendix
4.7.1 Treatment of the reflection data by XDLSM

Regardless of the format of Yous (i.e Fobs or F2ps) supplied in the reflection file XD. HKL, all the
values Fobs, O(Fobs), FZ%bs and 0(F2ps) are calculated. The standard interconversions, given
below, are used. The refinement procedure minimises either w(AF) or w(AF?), depending on
the based_on record in Xd. MAS, but R-indices for both F and F? are always reported. Since
a zero or negative value for o(Yoss) leads to physically meaningless weights in a least-squares
refinement, any record in XD.HKL which has a zero or negative o(Yors) is ignored (i.e. it is
immediately skipped and not counted). A warning message is issued on the console, and
such reflections should be removed from XD.HKL

The expressions for deriving the quantities Fobs, O(Fobs), FZobs and 0(F2ps) from each other
are :

If Fors and O(Fops) are supplied in XD.HKL then
F2ops = (Fobs)?2 but F2ops retains the sign of Fobs (see note 1)
O0(F2ops) = 2%0(Fobs) % | Fobs| for the case where | Fops| > 0
O(F2ops) = 2x0(Fops) for the case where Fops = 0 (see note 2)

If F2,5s and O(F2,5s) are supplied in XD.HKL then
Foc =+/|Fi | but Fous retains the sign of Fobs
0.5xa(F.,

| I:obs |
O(Fobs) = 0.5%0(F20ps) for the case where Fops = 0

J( Fobs) =

for the case where | Fops| > O (see note 2)

These conventions ensure that o(Foss) and 0(F2ps) are always > 0, but Fops or F2ops may be
either negative, zero or positive.

4.7.2 Definitions of the Residual indices used in XDLSM

Fans —KiF, Fi —kF2
R(F):zl obs kl caJcl R(FZ)ZZ| obs 2 caJcl

Z|Fobs| Z|Fois|

ZW(Fobs _k:LFcalc)2 ZW(Fois _kchillc)2
D wFg, > W(F)*

The scale factors ki/ ko place Yosrs and Yeac on the same scale. The moduli signs (| |) are only
used here to indicate the absolute value of the appropriate quantity and not the commonly
used alternative meaning of |F| as the phaseless modulus of a structure factor. This
distinction is important in summations where Yo»s may have a negative value (see note 3).
The indices R(F), R(F?), wR(F) and wR(F?), reported in the file XD _LSM.OUT, are computed
only for those reflections used in the refinement (i.e. those passing the rejection criteria on
the SKIP directive). The indices Rai(F) and Rai(F?) have the same definition as R(F), R(F?), but
also include those reflections rejected by the rejection criteria - this will mean all reflections
in XD.HKL, except any ignored because of zero or negative 0(Yobs).

WR(F) = WR(F?) =

4.7.2 Definitions of the Goodness of Fit indices used in XDLSM
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The Goodness of Fit (GOF) indices are defined thus :

GOF = GOFw =

where Nrr is the number of observations and Nar the number of independent variables in
the least-squares refinement. The definitions of Af and Afs depend of whether refinement
was based on F or F?, and unlike the R-indices, the GOF indices are only reported for the
actual refinement mode.

For refinement on F
Af= (Fobs - lecalc) and AfS = (Fobs - lecalc)/O(Fobs)

For refinement on F2
Af= (FQObS - kQFQcalc) and AfS = (F‘Qobs - kQFZCalc)/O'(.FQobS)

GOFw wuses the reflection weights w as defined on the WEIGHT directive in the XDLSM
section of Xd. MAS (see Section 4.6.6). GOF is the Goodness of Fit using statistical weights
i.e. 1/02%(Yons), so the two GOF indices will be identical if this weighting scheme is used (i.e. if
the a parameter on the WEIGHT directive has a value less than -1.0). Note that the default
values of zero given for parameters a - e in Section 4.6.6 will also imply statistical weighting
if refinement is based on F2, but NOT if refinement is based on F'!

If the general form of the XD weighting scheme is used, the definitions of the weighted R
indices given above have the unfortunate property of being dependent on the overall scale of
the data being summed. The weighting scheme used for refinement on F2 (which is the
same scheme as used in SHELXL), in its most commonly used simple form, where only the a
and b parameters are non-zero, is given by :

w = 1/(0%(FZbs) + a?P? + bP)
where P = (2F2caic + F20ps) /3 for the default value of parameter f.

If the observations used to accumulate the R-indices are on some arbitary scale compared
with the absolute scale, then FZps, F2caic and o(F2ops) are all effectively multiplied by a
constant s, so we are dealing with sFZops, SF2cac and so(FZops). The expression for wR(F?)
becomes

ZWSZ(Fois - k2 I:cii.lc)z

R T S we (FLy

If unit weights are used, then clearly the wR indices are independent of s. The same pertains
if statistical weights are used. In this case w= 1/S°02(F%»s) and the constant s? is eliminated.
However if the general form of the weighting scheme given above is used, the weight is now
given by

w = 1/(s202(F2bs) + s2a2P2 + sbP)

and a dependence on s remains. Since the current version of XDLSM accumulates the
summations on the observational scale, while the structure factors in XD.FCO are on an
absolute scale, it is impossible to correctly compute the weighted R-indices if a general form
of the weighting function is used. It would be more logical to accumulate the indices in
XDLSM on an absolute scale.
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4.7.3 NOTES

Some minor changes in the above definitions in XD for version 6.02 may result in small
changes to reported R values, compared with earlier versions.

1. Previously F2os was simply taken as (Fobs)?, but this has been changed to distinguish
between positive and negative Fops. Since the majority of data reduction programs will
never report negative Fops, this change is unlikely to have any consequences.

2. For this case 0(F2ops) or 0(Fobs) were previously either undefined, or arbitarily set to the
value of the input o(Yoss). For refinements which use any type of sigma cut-off, this
change will not have any consequences.

3. Previously, the denominator for R(F?) was simply 2 F2os, while that for R(F) was 2 | Fobs| .
For consistency, both summations now use the absolute value of the summand, as
indicated above. In cases where data sets contain negative F2s, this change may means
small differences in Rau(F?) and possibly in R (F?), compared with previous versions.

4.8 XDBLOCK - A Shell Program for Blocked Least-Squares
Refinement using XDLSM

A common problem in least-squares refinement is high parameter correlations, which may
lead to slow convergence or even unstable refinement. One way round this issue is to refine
those parameters which are highly correlated in separate blocks, the so-called block
refinement. A new utility in XD called XDBLOCK implements this approach.

XDBLOCK is a shell program which launches XDLSM using four specially created master
files called Xd_1. mas, Xxd_2. naS etc. These are a set of edited versions of Xd. mMas
where only a selected subset of the parameters are flagged to be refined. If these special
master files are not present, then default versions are created. It is more sensible to create
these by using the command line xdblock —create (or corresponding GUI option in Windows)
since this option just creates the files and then halts, allowing them to be examined and
possibly edited. The default versions of these files are :

« Xd_1. mas - where only the positional & thermal parameters are set to refine
« Xd_2. mas - where only the multipole parameters are set to refine

+ Xd_3. mas - where only the kappa parameters are set to refine

« Xd_4. mas - where as many as possible of the parameters are set to refine

The blocked refinement is useful in the preliminary stages of refinement and in cases where
there are severe correlations between parameters. The user may of course edit these special
master files and choose other subsets to be refined in each block. The only limitation at
present is that only four such master files can be created and used.

When XDBLOCK is invoked, Xd_1. mas file is copied to Xd. MAS and a copy of this file is
kept. The XDLSM program is launched and at the termination of this program, the Xd. r es
file is copied to Xd. i NP and a second round of blocked refinement commences when
Xd_2. mas is copied to Xd. MAS. The whole process is repeated for four cycles.

After each block cycle the stability of the refinement is carefully assessed. All the R values
are examined and the refinement is only deemed to be stable (or converging) if the majority
of R values are decreasing or remaining steady. If the majority of R values are rising, or if
there is a more pathological behaviour (for example if the resultant Xd. r €S file becomes

58



Chapter 4 XDLSM Least Squares Program for Multipole Refinement

unreadable because of fields of *****) then the refinement is deemed unstable, the Xd. r €s
file is not copied and the whole process is halted. The results of the refinements are kept in
the files Xd_| sm 1. out etc and so may be examined.

Table 4-1 : Dimensioning of XDLSM

Name Values Description

nat 2000 maximum number of atoms in the asymmetric unit

ntx 31 maximum number of displacement tensor components:
6 Ui+ 10 Cik + 15 Dikl = 31

Imx 4 maximum level of multipole expansion

nzz 30 maximum number of kappa sets

nto 1 currently not used

nsc 99 maximum number of scale factors

ntb 20 maximum number of core, valence scattering factor tables

nov 2500 maximum number of variables allowed

nest 200 maximum number of constraints

nao 18 maximum number of atomic orbitals allowed in the wavefunction input for
the scattering factors: 1s, 2s, 3s, 4s, 2p, 3p, 4p, 3d, 4d, 4f, 5s, 5p, 6s, 6D,
5d, 7s, 6d, 5f

mgrd 40 maximum number of grids used to store scattering factors

grd 0.05 Step size in sinf/A

Related to these the following parameters are also in use:

Name Value Description

npop Imx *Imx + 2 *lmx + 2 | maximum number of multipole populations

nap 3 + ntx + npop | maximum number of atomic parameters

npp nap * nat + (Imx + 2) * nzz + nsc + 8 | total number of parameters

Note - some of these dimensions (nat, nzz, nov, ncst) are determined dynamically.
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Table 4-2 : Variable names and order numbers

Parameter Symbolic name Order number
Fractional Coordinates X, Y, Z 1-3
Displacement Tensor Components
2nd order U¥ U11, U22, U33, U12, U13, U23 4-9
3rd order C ik Cl111, C222, C333, C112, C122, C113, C133, | 10-19

C223, C233, Cl123
4th order D ikl D1111, D2222, D3333, D1112, D1222,| 19-34

D1113, D1333, D2223, D2333, D1122,
D1133, D2233, D1123, D1223, D1233

Multipole Populations

Monopoles M1, M2 35-36
Dipoles D1+, D1-, DO 37-39
Quadrupoles QO0, Q1+, Q1-, Q2+, Q2- 40-44
Octupoles 00, 01+, O1-, 02+, O2-, O3+, 03- 45-51
Hexadecapoles HO, H1+, H1-, H2+, H2-, H3+, H3-, H4+, H4- 52-60
Radial Screening

KK (1) KS, KO, K1, K2, K3, K4 61-66
Isotropic and Anisotropic | EX11,EX22,EX33,EX12,EX13, EX23, RHOEX | 67-73
Extinction (for isotropic case ISOEX = EX11)

Overall U OVTHP 74
Scale Factor SCALE(]),I=1,MAXSCAL 75-

IMPORTANT NOTE : Following normal conventions, the magnitudes of the Gram-Charlier
coefficients Cik and Dikl, which are reported in XD_LSM.OUT and XD_LSM.CIF, are
multiplied by 103 and 10% respectively.

Table 4-3 : The model limits

ml static scattering models

-4 neutron

-3 core

-2 conventional, spherical-atom promolecule model with RHF scattering factors
taken from the International Tables

-1 neutral, spherical-atom model with HF scattering factors generated from Slater-
type wavefunctions [14]

Imax aspherical-atom model: frozen-core, spherical valence, multipolar deformation

density up to Imax in the expansion over spherical harmonics [1]

m2 thermal motion models

-1 overall-isotropic-harmonic
0 static

1 isotropic — harmonic

2 anisotropic — harmonic
tmax anharmonic model: Gram-Charlier expansion up to 4th order [24]
m3 anomalous dispersion

0 excluded

1 included

m4 extinction

0 excluded

1 included
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Table 4-4 : Density normalised Kubic harmonics Kj;

(a) as linear combinations of spherical harmonics

mp

Even [

l J 0+ 2+ 4+ 6+
01 1.0

4 1 0.78245 0.57939

6 1 0.37790 -0.91682

6 2 0.83848 -0.5
Odd !

I J 2- 4- 6- 8-
31 1.0

7 1 0.73145 0.63290

(b) site symmetry
23 m-3 432 -43m m-3m

lj T Th @) Ta On
01 yes yes yes yes yes
31 yes no no yes no
4 1 yes yes yes yes yes
6 1 yes yes yes yes yes
6 2 yes yes no no no
71 yes no no yes no

Tables 4-5 — 4-9 which are needed to ascertain the necessary site-symmetry restrictions on
the positional, thermal and multipole parameters and which were previously at this point in
the manual are now in the Appendix. The new version of XDINI automatically determines
these restrictions, so that a manual inspection of tables 4-5 to 4-9 will normally no longer
be necessary. They are retained in the XD manual for archival purposes.
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