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Chapter 4 
 
XDLSM - Least Squares Program for Multipole 
Refinement 
 
4.1 Overview 
 
XDLSM is a full-matrix least squares program based on the generalized scattering model 
detailed in the Introduction. Its present version includes multipole expansion up to l=4 and 
anharmonic treatment of the thermal motion up to 4th order of the Gram-Charlier 
expansion. XDLSM, being based on the Hansen-Coppens formalism [1], necessarily has 
many common elements with MOLLY, the algorithm of which has been rebuilt and extended 
to allow for further developments. XDLSM supports sophisticated density modelling,  and 
features of previous refinement programs have been incorporated (LSEXP [2]). Further 
important aspects of XDLSM provide methods to locate inadequacies in the model, to 
control the refinement and to monitor the results. 
 
4.1.1 The method of least squares 
 
In this chapter some aspects of the method of least squares are discussed, whose knowledge 
are necessary for the user to handle the input and output of XDLSM. This introduction is 
based on reference [3], to which the reader is referred for more details. 
 
Consider a given set of m observations yo{yo1,yo2,yo3,…yom} represented by the corresponding 
set of model functions yc{yc1,yc2,yc3,...ycm}=yc(x), where x is the n-component vector of the 
parameters x{x1,x2,x3,…xn}. The best unbiased estimates of x can be obtained by minimizing 
the square of the residual:   

 )()()()(2
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where W, the weight matrix, is to be chosen as the inverse of the variance-covariance matrix 
of the observations (in practice, it is taken to be diagonal), and Q is an upper triangular 
matrix, i.e.  Q'Q is the Cholesky decomposition of W. If yc can be expanded about xo in 
Taylor’s series retaining only the first order terms, then  

 )()( oocc xxDxyy −+=  (Eq. 4.2) 

with Dij=dyci/dxj being the design matrix. Eq.  (4.1) becomes:   

 ][][2 xZyxZy ∆−∆′∆−∆=R  (Eq. 4.3) 

where ( ))( oco xyyQy −=∆ , ∆x=x-xo and Z=QD. 
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 for i = 1,2,3...n (Eq. 4.4) 

lead to the system of normal equations  

 ΔyZxZZ ′=∆′  (Eq. 4.5 

whose solution vector is  
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 yZBxx ∆′+= −1
o  (Eq. 4.6) 

with B=Z'Z. 
 
An alternative solution of the least-squares problem is provided through the singular value 
decomposition of the standardized design matrix Z. Let  

 VUGZ ′=  (Eq. 4.7) 

where U is an m×n column orthogonal matrix, G is a diagonal matrix of the singular values 
and V is an n×n orthogonal matrix. 
 
A solution of the over-determined system of equations  

 yxZ ∆=∆  (Eq. 4.8) 

can be given as  

 yZx ∆=∆ −1  (Eq. 4.9) 

where  

 UVGZ ′= −− 11  (Eq. 4.10) 

 
This solution can be proved to be the best possible solution in the least-squares sense as ∆x 
is the vector which minimizes the residual:   

 yxZ ∆−∆=R  (Eq. 4.11) 

The solution of the least-squares problem through the system of normal equations (4.6) has 
the disadvantage that it fails if B is singular or ill-conditioned. A clear distinction should be 
made between ill-conditioning of an analytical and that of a numerical nature.  The former 
case is likely to occur for an over-parametrized model, when some combination of basis 
functions are irrelevant to the fit.  The normal equation matrix has zero or nearly zero 
eigenvalues and the inversion gives no or only a formal solution.  This problem manifests 
itself in undesirable correlations among the variables.  The method used for establishing 
hidden indeterminacies in the model is the singular value decomposition of the matrix of 
observation-equations (4.8). This procedure gives a diagnosis of the degeneracies and 
provides a solution minimizing the residual.  The matrix can be considered ill-conditioned if 
its inverse condition number, the ratio of the smallest to the largest eigenvalue, is 
comparable with the machine precision.  The components of the eigenvector (a row or 
column vector of V) corresponding to the smallest eigenvalue define a linear dependence 
among the variables (orthonormal basis for the null-space) which leads to the singularity.  
Zeroing an eigenvalue in the calculation of the inverse matrix (4.10) means introducing the 
constraint given by the corresponding eigenvector. The term numerical ill-conditioning refers 
here to an unbalanced least-squares matrix which is due to the fact that the model function 
is simply not equally sensitive to the changes of the different parameters, i.e. the 
components of the design matrix can differ by many orders of magnitude. A condition 
number of the order of 10 is typical for the multipole-model based structure factor least-
squares matrix. This number indicates that a small change (error) in an element of the 
design matrix (Z) can cause large changes in the elements of B-1. That is why the solution 
via the inversion of the normal equation matrix is susceptible, to a considerable extent, to 
roundoff errors and requires double precision arithmetic.  This problem can be overcome if 
the elements of the Z (or B) matrix are brought to a common scale. In XDLSM the normal 
equation matrix is analyzed and its conditioning is accomplished by a similarity 
transformation:   

 2/12/1 )(diag)( −−= BBBB diagc  (Eq. 4.12) 

Inversion, based on the Gauss-Jordan elimination method [4], is the default option to solve 
eq. (4.5). If the matrix inversion fails or if diagonalization has been selected as the method of 
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solution, the eigenvalues are calculated by the Householder reduction [4], and the 
singularities are reported and eliminated. The eigenvalue filtering is based on the inverse 
condition number. The lowest eigenvalues are rejected (zeroed) from the inverse calculation 
until the inverse condition number reaches a user specified limit. While this procedure gives 
a mathematically correct solution, its indiscriminate application does not necessarily reveal 
the physical meanings of the indeterminacies that made the least-squares equations 
singular or nearly singular in the first place. 
 
4.1.2 Model ambiguities 
 
The XD package will be available for a wide scientific community. This Section tries to help 
those who have not yet been involved in charge density research. In particular, it tries to 
help those users who have not yet had the uncomfortable feeling of getting stuck at a 
certain stage of the refinement. This happens when decisions need to be made as to which 
parametrization is preferable among several alternative ones which perform equally well in 
fitting the data. 
 
The scattering model described in the Introduction formally allows 66 parameters per atom 
(in the present implementation of XD) to be included in the refinement.  However, any 
interpretation of the data set using an "all-parameter" fit is hardly feasible, nor is it 
appropriate.  Even if one could afford it (i.e. even if enough data points were available) and 
even if convergence was reached with a satisfactory fit, the physical significance of the 
results would certainly be doubtful.  While the total dynamic ED obtained could account for 
the data very well, any property which is a function of a subset of the variables could well be 
meaningless.  As mentioned above, the reason for this is that many basis functions of the 
structure factor expansion have a similar dependence on the components of the scattering 
vector. Consequently the data cannot differentiate between them.  A typical example of this 
type of bias is that introduced into the static density deformations by the inadequate 
decomposition of the thermal smearing.  This is caused by the formal similarity between 
density basis functions and pdf’s of the nuclear displacements.  Strong correlations, as high 
as 80-90%, are likely to occur between quadrupole populations and second order 
displacement parameters.  The Gram-Charlier model has been shown to be as adequate as 
the multipole expansion in accounting for static density asphericities [5]. Such 
indeterminacies can appear especially pronounced for non-centrosymmetric structures. 
 
The flexibility of the model and the limited number of observations forces one to limit the 
optimization to a subset of parameters or to their combinations.  The variables are usually 
selected on the basis of simple chemical arguments or preconceptions.  The outcomes must 
be tested in order to judge their physical significances.  A careful study should not neglect 
an independent analysis of static and dynamic parameters. 
 
4.1.2.1 Testing the results 
 
The most important test to judge the success of the model and the quality of the fit is to 
evaluate the residual ED through a Fourier summation (Fobs - Fmodel). This provides a direct-
space representation of the extent to which the model accounts for the observations.  A 
featureless residual map is a necessary condition for the adequacy of a model, but is far 
from being a sufficient one for judging its physical significance. Another usual procedure is 
to compare the static deformation density obtained from X-ray data with that calculated 
theoretically.  Deformation peak-shapes and peak-heights are subject to specific conditions 
that are characteristic for the different methods to be compared.  The ab-initio ED depends 
on the level of the theory applied and on the quality of the basis sets. Both factors place 
severe limitations on any direct comparisons, especially for larger systems. However, 
without such comparisons, the interpretation of the results in terms of the deformation ED 
remains only of a qualitative nature. This is because of the arbitrariness in selecting the 
reference state and the sensitivity of the ED to the structural parameters. 
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We suggest that the experimental ED is tested through its local and global topological 
characteristics and by evaluating its integrated properties.  XDPROP makes it feasible to 
trace the refinement process almost "continuously" by inspecting the different stationary 
points of the total ED and related scalar properties.  In this respect the Laplacian of the ED, 
as a sensitive measure of charge concentrations, should play an important role.  A static ED 
which fails to reproduce the characteristic topological features of a typical covalent bond, 
e.g. (3,-1) CP's, bond charge concentrations shown by the Laplacian,  is likely to be suspect. 
 
One-electron properties are directly obtainable from the ED and their comparison with the 
outcomes of independent measurements and/or theoretical results are of great importance.  
The molecular dipole moment and the electrostatic potential are the quantities most 
frequently evaluated from the experimental ED. Such applications are being explored with a 
promising success. 
 
One way to gain information on the physical significance of the thermal parameters is to test 
them against the rigid-body motion model [6] which is based on the observation that in 
molecular crystals the external (lattice) vibrations make the major contribution to the atomic 
motion.  Satisfactory agreement between observed and calculated anisotropic displacement 
parameters may suggest that the molecule is rigid to a good approximation or the thermal 
parameters are uniformly affected by systematic errors. Significant residuals after the rigid-
body fit may indicate either the importance of soft internal modes or simply a bias in the 
atomic displacements. A directly applicable test for the correctness of the atomic 
displacement parameters is the rigid-bond test [7]. 
 

If 2
,BAz  denotes the mean square displacement amplitude of atom A in the direction of atom 

B, then for every covalently bonded pair of atoms A and B  

02
,

2
,, =−=∆ ABBABA zz  

Conversely, if in parts of the molecule this rigid bond postulate is not fulfilled, one may 
deduce that the structural model is insufficient.  Hirshfeld estimated that for atoms at least 
as heavy as carbon  ∆A,B should normally be smaller than 0.001 Å2. Verification of the model 
and the anisotropic displacement parameters by this test strengthens confidence in the 
experimentally determined ED. 
 
A very useful visualization of the atomic displacement parameters is provided by the 
computer-graphics program PEANUT [8], developed recently to analyze observed (fitted to 
diffraction data), calculated (as given by a model) or residual (observed- calculated) thermal 
parameters in terms of closed surfaces defined by the root-mean-squares displacements 
(u(n)1/2=(n'Un), where n is a unit vector in any direction). Applications are given in 
reference [9]. 
 
A plausible approach to reduce ambiguities in the model is to introduce constraints into the 
refinement.  It is desirable to replace external checks on one of the possible, mathematically 
equivalent solutions by internal constraints applicable to support the physically most 
relevant solution.  An advanced feature of XDLSM is to allow for general linear restrictions 
on any set of variables.  Efforts are being made to further develop this option in order to 
incorporate more 'physics' into the refinement model. 
 
4.1.2.2 Constraints in XDLSM 
 
The treatment of constraints in XDLSM is based on the technique of direct elimination. 
Consider a system of nc linear equations, each of which defines a constraint among nv 
variables:  

 )()(),( ncnvnvnc axC =∆  (Eq. 4.13) 

By decomposing the matrix C 
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with S being a diagonal matrix of nr non-zero singular values (nr ≤ nc), two sets of new 
variables can be introduced:  

 xRx ∆′=∆ 11 )(nr  xRx ∆′=−∆ 22 )( nrnv  (Eq. 4.15) 

where the first set can be eliminated by means of eq. (4.13) and (4.14):  

 aPSx ′=∆ −1
1  (Eq. 4.16) 

This leads to a decomposition of the unconstrained variables 

 2212211 xRaPSRxRxRxRx 1 ∆+′=∆+∆=∆=∆ −  (Eq. 4.17) 

The equations of observations 4.2 becomes 

 22
1 xDRaPSDRy 1 ∆=′−∆ −  (Eq. 4.18) 

and the system of normal equations is reduced to 

 2222 yZRxB ∆′′=∆  (Eq. 4.19) 

where  

 222 ZRZRB ′′=  and aPSDRyy ′−∆=∆ −1
12  (Eq. 4.20) 

The elimination through the singular-value decomposition of the constraints matrix has two 
advantages; 
1. the dimension of problem is reduced by the number of independent constraints 
2. the restrictions can be formulated in an automatic way as all accidental redundancies 

are easily filtered out.  
Some of the constraints mentioned below have already been implemented in a user-friendly 
way, others will be available in subsequent releases of XDLSM. 
 
 
4.1.2.3 Restrictions on the multipole populations 
 
Monopole population constraint.   The sum of the monopole populations, by definition, 
gives the number of valence electrons in the molecule (unit cell). This statement is part of 
the multipole expansion formalism which involves "atomic" partitioning and thus provides a 
particular assignment of the atomic charge to the corresponding monopole population.  The 
monopole population constraint (KEEP charge group1, previously referred to as the 
electroneutrality constraint, see section 4.6.5 below) exactly maintains the input charge on 
the ASU. If this charge is zero on input, it keeps the unit cell neutral.  In XDLSM it is 
possible to define any subset of atoms (i.e. any functional group) for which the total number 
of valence electrons is kept constant.  This option then precludes any charge transfer 
between the group(s) selected and the rest of the atoms in the unit cell. 
 
Local pseudo symmetry, "chemical" symmetry.   Preconceptions based on chemical 
intuition can also be applied to reduce the number of multipole populations to be refined.  
One can assume a simple hybridization scheme which corresponds to the actual geometrical 
arrangement of the atoms. This is usually achieved by imposing site symmetry in a properly 
chosen local Cartesian frame and using symmetry adapted angular functions.  The 
symmetry restrictions for real spherical harmonics are given in Table 4-5. Another feasible 
restraint is to keep the valence density of chemically equivalent or similar atoms to be the 
same during the refinement.  This is a widely accepted practical approach in studies on 
larger molecules.  The real question is how to judge the actual applicability and success of 
our chemical expectations implemented in such a way.  Static equivalences might be 
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hampered in an unconstrained refinement by dynamic non-equivalences of the atoms 
considered.  Another important aspect is that in crystals, the 'chemical symmetries' 
characteristic of the isolated molecules may not be preserved.  Any subsequent enforcement 
of static equivalencies may result in the effects of the crystal field becoming unobservable. 
 
4.1.2.4 Restrictions on the radial functions 
 
The shape of Rl’s are controlled by n(l) and al (see eq. 1.19), the latter being estimated from 
the Hartree-Fock-optimized single-ξ values.  In case of quadrupolar atoms (which have only 
ss, sp, and pp type orbital products) the selection of al for l > 2 is not straightforward.  The 
corresponding "virtual" density basis functions are shown to account for bond densities [10]. 
The usual practice is to keep al = a for all l and optimize κ' scaling of a. Even under this 
severe restriction κ' becomes highly correlated with the populations and convergence can be 
troublesome.  In this respect, κ' is by far the most critical parameter of the formalism. This 
may indicate that the constraint implemented is not adequate. Model studies on di-atomic 
molecules showed that a satisfactory fit of the HF ED with one-center multipole densities 
requires, in certain cases, highly structured radial functions while in other cases, depending 
on the level of expansion, simple Slater functions are sufficient [11]. The extent to which 
this statement applies to many-atom molecules remains to be examined.  A trivial choice for 
improving the situation is the use of radial functions corresponding to extended basis HF 
atomic orbitals.  In studies on transition metal complexes, the HF radial scattering factors 
were shown to be superior to those of single Slater functions [12]. 
 
4.1.2.5 Restrictions on the vibrational parameters 
 
Rigid-body or segmented-rigid-body models could be incorporated into the structure factor 
refinement.  Both approaches require a linear transformation of the design matrix leading to 
a reduction in the number of dynamic variables.  Severe indeterminacies, depending on the 
formalism, can be introduced. 
 
A more elegant alternative procedure applied in XDLSM is to define rigid molecules or 
segments by invoking rigid-bond and rigid-link constraints.  This is a very efficient way to 
define the degree of flexibility, but a full control requires a detailed knowledge of the 
intramolecular motion.  Normal coordinate analysis, if a suitable force-field is available, 
provides the MSDA matrix associated with any normal mode.  For molecules of first row 
elements, standard force fields are readily available and procedures are in general use to 
refine them against spectroscopic data.  Frequencies at the HF level are typically 10% larger 
than those of measured, and even semi-empirical methods can provide fair estimations. 
Incorporation of calculated ADP’s for hydrogen atoms into charge density refinements has 
been recently reported by a number of authors, using differing methodologies [30-33].  See 
Chapter 11.1 concerning the program XDVIB for inclusion of calculated ADPS's.  
 
An easy to handle approach is to apply constraints of  the rigid-bond (rigid-link) type to the 
shift of the ADP’s calculated from an intramolecular force field. Such shifts give only rigid-
body type contributions to the ADP’s and the procedure preserves atomic displacements due 
to intramolecular vibrations. The success of such applications depends on the extent to 
which the mean-field approximation is valid. Another difficulty is that the optimized 
molecular geometry needed to calculate the harmonic force field can considerably differ from 
that found in the crystal. Another approach is to start from a set of ADP’s predicted by the 
TLS model. These ADP’s satisfy the Hirshfeld condition for all internuclear separations. By 
invoking the rigid-body constraint to all covalent bonds between atoms of comparable mass 
the bias in the ADP’s can be reduced significantly. 
 
4.1.2.6 Restrictions on the reflection phases 
 
There are well established problems [28,29] which arise when refining a multipole model for 
a non-centrosymmetric crystal structure. These arise because of the phase ambiguity and 
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can result in poorly determinations of the odd-order multipole populations, which are 
invariant under certain crystal-class symmetry operations. In essence, some combinations 
of  odd-order multipoles may make very small contributions to the structure factor 
amplitudes, but have significant contributions to the phases. In such cases, great care 
needs to be taken to ensure that physically meaningful parameters are obtained from the 
least squares procedure. As has been shown [28,29], the eigenvalue filtering method (used 
by default in XLDSM for singular or near-singular normal matrices) greatly alleviates these 
problems, though sometimes a 'slack constraint' on the scale factor  (e.g. by including 
F(000) as an additional observation with unit weight) may also be necessary [29]  to obtain 
accurate parameters. 
 
An alternative solution is to use fixed phases, determined from, say, a fully periodic ab initio 
calculation. In XD2024, a phase-constrained refinement is implemented through a special 
format for the reflection file XD.HKL, see Table 2-2. The NDAT entry number must be 
specified as -7, and the phase angle (in radians) must be supplied as the seventh data item 
for each reflection. No extra instructions in the master file are required. This phase-
constrained strategy may be useful when refining against theoretical structure factors 
calculated on a non-centrosymmetric crystal structure. 
 
 

4.2  Refinement strategy 
 
A general rule, it is strongly advised that the complexity of the model should be increased in 
a stepwise manner.  Each stage of the refinement could provide a hypothesis for the next 
step. In this respect it is difficult to suggest a specific scheme, in advance, according to 
which one should proceed.  The spherical-atom refinement could serve as a reference for 
comparison during the whole fitting procedure.  This could be followed by a restricted 
multipole refinement in which all possible chemical constraints and atomic pseudo-
symmetries are applied.  As argued above, the extent to which these restrictions should be 
applied depends on many factors.  In most cases the number of observed intensity data 
limits the number of free variables.  The ratio of the number of reflections to the number of 
variables should not fall considerably below 10. Atoms with the same valence and first 
coordination sphere should always be considered chemically equivalent at this stage of the 
fit.  The spherical HF radial screening parameters ( κ ) can already be included.  These 
variables, in contrast to those scaling the Slater exponents ( κ' ), are much more stable and 
their changes should stay below 5-10%. If the resolution and accuracy of the observations 
allows, the different restrictions can be released in subsequent refinement cycles, in the 
hope of testing the adequacy of the assumed chemical equivalences.  In this way, ’second 
order effects’ (crystal field, conformation differences, second neighbours, etc.) on the valence 
density might become visible.  To decide if a new variable contributes significantly to the fit, 
the ratio of its value to its standard deviation and the change in the goodness of fit are to be 
checked.  More sophisticated statistical tests will be available in follow-up versions of 
XDLSM. 
 
Because of their low scattering power and intense thermal motion, hydrogen atoms should 
be treated with a special care.  A poor model for their static density manifests itself in 
unreliable dynamic parameters and conversely, no reasonable estimate of the charge 
transfer can be obtained without meaningful displacement parameters.  In organic 
molecules a considerable amount of the charge transfer occurs at the expense of charge on 
the hydrogen atoms.  Due to the electro-neutrality constraint these uncertainties can 
seriously affect the result.  To overcome this difficulty, the following strategies can be 
applied.  The position and thermal parameters of the hydrogen atoms should be fixed at the 
values obtained by neutron diffraction, when such data are available.  An overall scaling of 
the neutron displacement tensor components should be applied to account for the 
temperature difference (or rather the difference in the diffuse scattering) between the two 
data collections [26].  In the absence of neutron data, the parameters of the hydrogen atoms 
could be obtained from spherical-atom refinement using the contracted scattering factors of 
Stewart et al. [13]. The isotropic displacement parameters can then be fixed during the 
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multipole refinement.  The correctness of this estimation can be judged by the distance of 
the bonds to the corresponding hydrogen atoms and by their net charges obtained in such a 
way.  The ADP’s of the hydrogen atoms can also be estimated by fitting the rigid-body or 
segmented rigid-body model to the motion of the non-hydrogen atoms.  A simple riding 
model could also be feasible (U(H) = 1.5 * Ueq(non-H) ). Such a constraint can easily be 
incorporated.  The density asphericities of the hydrogen atoms can be represented by a 
bond-directed dipole.  For those involved in a strong hydrogen bond an additional 
quadrupole can also be introduced. The RESET BOND command (Section 4.6.5) is very 
useful here to constrain X-H distances to neutron determined standard values. 

 
4.3 Dimensioning 
 
The parameters in Table 4-1 are used in certain DIMENSION and COMMON statements. 
These are the current limits for XDLSM. Future versions will have full dynamic memory 
allocation. 
 
 
4.4 Variable names and order numbers 
 
See Table 4-2 for a list of symbols and code numbers to be used as variable identifications. 

 
 
4.5 Files used and created by XDLSM 
 
Input:  xd.mas, xd.inp, xd.hkl, xd.bnk_* 
Output:  xd_lsm.out, xd.res 
Optional output: xd.fou, xd.der, xd.mat, xd.cov 

 
 
4.6 Input instructions for XDLSM 
 
The next section describes those commands which are interpreted by the program. All of 
these instructions must be placed between the MODULE *XDLSM and the END XDLSM 
lines in the xd.mas file. 
 
4.6.1 Control instructions 
 
4.6.1.1 SELECT 
 
SELECT (*)model m1 m2 m3 m4  based_on (f|f^2)  (*)test  verbose verbose_level 
SELECT cycle cycles dampk dampk cmin cmin cmax cmax eigcut r  convcrit convcrit 
 
(*)model m1 m2 m3 m4    
This option provides a global control over certain parameters which characterize the 
structure factor formalism applied in the refinement. These parameters are shown in Table 
4-3 
 
The values given after the model option are applied for all atoms only as an upper limit. The 
option has only limited applications but can provide an easy way to reduce the complexity of 
the scattering formalism without having to modify all necessary parameters one by one. 
Note that certain combinations of the control parameters are meaningless, which might not 
be recognized by the program. If model is not starred, then it is assumed that m3 = 1, i.e. 
that the reflection data contain anomalous dispersion effects. If theoretical data (or 
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experimental data with anomalous dispersion removed) are being used, then  *model x x 0 x 
must be used. An alternative approach in this case (if a global model control is not desired) 
is to set all the values of f′ and f′′  in the SCAT table (see 6.4.2.7 below) to zero. 
 
based_on (f|f^2)   The refinement is based on structure factors or on their squares.  The 
data in the reflection file xd.hkl are transformed accordingly. 
 
(*)test   If flagged an input test is performed.  This includes calculation and printing of   

1. the scattering factor tables,  
2. the local coordinate systems,  
3. the variable-parameter list,  
4. the matrix of constraints, together with the result of its singular value 

decomposition  
5. a file xd_scat_atom.out is printed for each atom type read in scat table in order to 

check two different calculations of the scattering factors (from the analytical 
expansion and from the wave function databank selected)  

 
verbose verbose_level   Setting verbose_level greater than one switches on extra printout to 
the log files.  
 
cycle cycles [0]    

>0  The number of least squares cycles requested.  
=0  Structure factor calculation.  
<0  Scale factor refinement.  

 
dampk  dampk [1.0]. This is a damping parameter applied to refinement of kappa's. 
 
cmin cmin [0.6] cmax cmax [1.]   Lower and upper limit used as a criteria for printing the 
correlation matrix elements. 
 
eigcut r [1.e-10]   If the solution of the system of normal equations are obtained through 
diagonalization,  r is used as a cutoff limit for the singularity test. Eigenvalues are 
considered to be zero and omitted from the calculation of the inverse matrix until the 
inverse condition number is smaller than r:   

min(eigenvalue) / max(eigenvalue) < r 
This test is applied to the eigenvalues of the reduced matrix (derived from the constraints) 
and the conditioned matrix (see Introduction).  The same parameter is used as a criteria for 
eliminating linear dependencies among the constraints. This is singular value 
decomposition of the matrix of the constraints, also known as eigenvalue filtering. 
 
convcrit convcrit [0.0]  If the maximum shift/su in the current cycle of refinement is less 
than convcrit, the program immediately proceeds to the final cycle and finishes the 
requested XDLSM job. 
 
 
4.6.1.2 SAVE 
 
SAVE (*)deriv (*)lsqmat (*)cormat 
 
deriv   If starred, the structure factor derivatives for each reflection (design matrix) in the 
last cycle are saved in the binary file xd.der (see Section 2.7). 
 
lsqmat   If starred, the least squares matrix and vector in the last cycle are printed to the 
binary file xd.mat (see Section 2.8). 
 
cormat   If starred, the variance-covariance matrix is written to the binary file xd.cov. 
This file is needed for estimating the standard deviations of different properties. The 
structure and the content of the file is given in Table 2-4. 
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4.6.1.3 SOLVE 
 
SOLVE [*]inv (*)diag [*]cond 

 
The solution of the least squares normal equation can be obtained through inversion or 
diagonalization. 
 
inv   If starred, the Gauss-Jordan for inversion method is implemented.  The program will 
automatically switch to diagonalization if the matrix is found ill-conditioned (or singular) 
during the inversion in the first cycle. The matrix inversion is the default option. 
 
diag   If starred, the Householder reduction and QL algorithms are used for the calculation 
of the eigenvalues and eigenvectors. If an eigenvalue fails the test based on the condition 
number (see eigcut), the corresponding eigenvector is eliminated and printed. 
 
cond   If starred, the normal equation matrix is conditioned via the transformation 4.12, 
irrespective of the method of solution selected. 
 
 
4.6.1.4 SKIP 
 
SKIP (*)obs obsmin obsmax [*]sigobs sigmin sigmax (*)sinthl snlmin snlmax 

 
The SKIP instruction defines criteria for rejecting observations from the refinement (not from 
the structure factor calculation). It is important to note that the rejection criteria are always 
applied, starring these options merely allows the use to change the values of the default 
criteria.  If more than one are starred, the "AND" logic is applied.  The rejection criteria and 
default values are:  

 
obs [0.0, 1.0e10]  all observations for which obsmin > obs  or  obs > obsmax   
sigobs [3.0, 1.0e10] observations for which sigmin*sigobs > obs or  obs > sigmax*sigobs  
sinthl [0.0, 2.0] lower and upper limit in sinθ/λ 
 
IMPORTANT  The obs and sigobs cutoffs are applied to the data in the XD.HKL reflection 
file, after any conversion implied by the based_on criterion (Section 4.6.1.1). This action 
(which is more logical) is different from that previously applied in XDLSM, where the cutoffs 
were applied before conversion. 

 
4.6.1.5 PRINT 
 
PRINT (*)sinthl snlmin snlmax (*)obs obsmin obsmax (*)delta dmin dmax [*]del% min% 
max% (*)extcn extmin extmax (*)abssc 

 
The PRINT instruction defines criterion for printing observations. After the last cycle the 
following quantities can be printed:  

no h k l sinthl scgrp obs calc delta (del%|flag) extcn code 
where 

no the order number of a reflection 
h k l reciprocal-lattice components of the scattering vector 
sinthl sin(θ)/λ 
scgrp scale group number 
obs Fo or F2o 
calc Fс or F2с 
delta Fo – Fc or F2o or F2c 

flag a flag based on f = |100 * (obs – calc) / obs| It is a four character long string 
as follows: 
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 ’ ’  for 0 < f < 5 
 ’* ’  for 5 < f < 10 
 ’** ’  for 10 < f <15 
 ’*** ’  for 15 < f < 20 
 ’****’  for 20 < f < 25 
 ’????’  for 25 < f < 30 
del% f is printed instead of a flag 
extcn the extinction correction in percentage 
code 0  included in the refinement 
 -1 rejected based on criterion obs 
 -2 rejected based on criterion sigobs 
 -4 rejected based on criterion sinthl 
 -3 rejected based on criteria obs and sigobs 
 -5 rejected based on criteria obs and sinthl 
 -6 rejected based on criteria sigobs and sinthl 
 -7 rejected based on criteria obs and sigobs and sinthl 

The options, if flagged, serve as a lower and an upper limit applied for printing. Again, the 
'AND' logic applies. 
 
(*)sinthl snlmin snlmax [0 2]   
 
(*)obs obsmin obsmax [0 10]   
 
(*)delta dmin dmax [-50 50]   
 
(*)del% min% max% [80 100]   
 
(*)extcn extmin extmax [80 100]   
 
(*)abssc   if flagged the observations are printed on an absolute scale 
 
4.6.2 The SCAT table 
 
The SCAT table provides a compact format for defining different scattering factors or 
modifying the entries in the databank file xd.bnk_*.  In contrast with previous versions of 
the program, the SCAT table now includes all atomic orbitals. If an old xd.mas file is used, 
this table must be modified otherwise it will not be read correctly. The heading of the SCAT 
table is:  
 
SCAT core sphv defv 1s 2s 3s 4s 2p 3p 4p 3d 4d 4f 5s 5p 6s 6p 5d 7s 6d 5f ∆f ' ∆f '' nsctl 

 
core core scattering factor 
sphv spherical valence scattering factor 
defv scattering factors due to valence deformation functions 
1s 2s 3s … occupations of HF atomic orbitals 
∆f ' real part of anomalous dispersion correction 
∆f '' imaginary part of anomalous dispersion correction 
nsctl neutron scattering length 
 

This SCAT line has to be followed by as many input lines or subsegments as atom types are 
present in the unit cell. Each row should begin with the element name that must be 
identical to one of the atom types stored in xd.bnk_* (see element naming convention in 
section 2.5). If the element name is the only string in the input line, the data on the 
corresponding segment of the databank file will be used to create the scattering factors. The 
databank file can be extended by introducing new segments assigned to dummy atom 
names.  In this way considerable freedom is provided for designing scattering factors from 
atomic wavefunctions expanded over Slater-type basis functions. All the entries indicated 
above have default assignements. To change the default assignement of a particular entry 
all preceding entries in the list have to be given. For example, to change the default values 
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for the anomalous dispersion corrections ( ∆f' and  ∆f " ) all three types of scattering factors 
as well as the occupations have to be input. 
For the scattering factors the following options are available: 
 
core [chfw] rdtb 
sphv [chfw] rdtb rhft 
defv chfw rdtb [cszd] rdsd 
 
 
4.6.2.1 chfw - Clementi’s Hartree-Fock Wavefunction 
 
This is the default option for the core and sphv scattering factors and it means that the 
Slater-type atomic orbitals stored on the xd.bnk_* file are used.  The user has the 
freedom to decide what to consider core and what valence density.  This is done by 
specifying the orbital occupations, which have to be positive or negative integers for core or 
valence orbitals respectively. If they are omitted, the default configuration in xd.bnk_* is 
taken. The order of the orbitals is given in the heading of the SCAT table.  For example, the 
default configuration of the ground state carbon atom is (1s2), (2s2,2p2) and the 
corresponding line in the input table is:  

 
C    chfw chfw cszd   2 -2  0  0 -2 

 
In this case 2j0(1s1s) and (2j0(2s2s) + 2j02p2p))/4 is calculated, respectively, for the core 
and the spherical valence scattering factors. Note, that the sphv scattering factor is 
normalized, but not the core. 
 
A 'frozen' spherical atom (only core or spherical atom scattering) could be defined as 

 
C    chfw chfw cszd   2  2  0  0  2 

 
while that of with radial screening (only valence or spherical atom scattering) 

 
C    chfw chfw cszd  -2 -2  0  0 -2 

Another application of the orbital occupations is to form spherical valence scattering factors 
corresponding to an assumed hybridization.  For example, one can 'generate' an sp3 type 
carbon atom with the following input 

 
C    chfw chfw cszd   2 -1  0  0 -3 

which assigns (j0(2s2s) + 3j0(2p2p))/4 to the spherical valence scattering factors. Since 
more than one sets of scattering factors can be generated from the same wavefunction, the 
multiple use of an element name is allowed. 
 
4.6.2.2 rdtb - Read table 
 
This option is available for all three types of scattering factors. It indicates that the 
corresponding scattering factor table is to be read from the master file. For an unknown 
element (not stored in the xd.bnk_* databank file) the rdtb option must be specified. The 
input should consist of ngrd values (8 entries/lines) of the function taken at an equidistant 
grid of sinθ/λ with a step size of grd. ngrd and grd are parameters with default values of 40 
and of 0.05, respectively, in the present version of XDLSM (See  Table 4.1). The first grid 
point must be zero.  The default setup requires the table to be given up to 1.95 in sinθ/λ. 
The parameters ngrd and grd should be adjusted to the wavelength of the radiation used for 
the data collection. The scattering factor at an arbitrary scattering angle is interpolated and 
the derivatives with respect to the expansion-contraction parameters are numerically 
obtained.  Accurate evaluation require a considerably fine grid size (not exceeding 0.06 Å-1). 
 
Example:  
 
C    RDTB RDTB CSZD 
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  2.00000   1.99642   1.98575   1.96816   1.94394   1.91349   1.87726   1.83581 
  1.78973   1.73965   1.68621   1.63006   1.57183   1.51212   1.45148   1.39046 
  1.32950   1.26904   1.20944   1.15100   1.09400   1.03863   0.98506   0.93343 
  0.88381   0.83628   0.79085   0.74754   0.70632   0.66717   0.63004   0.59488 
  0.56163   0.53021   0.50055   0.47258   0.44621   0.42137   0.39798   0.37597 
 
  1.00000   0.93697   0.77692   0.58120   0.40061   0.25845   0.15714   0.08962 
  0.04686   0.02103   0.00626  -0.00155  -0.00512  -0.00622  -0.00596  -0.00502 
 -0.00381  -0.00256  -0.00140  -0.00037   0.00048   0.00118   0.00173   0.00216 
  0.00247   0.00269   0.00283   0.00291   0.00294   0.00294   0.00291   0.00285 
  0.00278   0.00269   0.00260   0.00250   0.00240   0.00230   0.00220   0.00210 
 
4.6.2.3 cszd, rdsd - Single-zeta density parameters for defv 
 
By default, the radial functions of the valence deformation density are of single Slater-type 
(cszd). The parameters of the radial functions (n(l), ξ(l)) are obtained from the corresponding 
single-ξ wavefunctions of Clementi & Roetti [14] stored also in xd.bnk_* files. In previous 
versions of XD, the option cszd in the SCAT table computed the exponents for the radial 
deformation functions by simply averaging the valence exponents of the "best" single-ξ 
orbitals (Clementi and Raimondi [15]) of the default configuration. The new version of the 
program now computes ξ’s by weighting the orbitals by their occupation. For noble gases 
and closed shell ions, ξ is computed thus :  
 
• from the (weighted) exponents of the outermost shell of the core for noble gases and 

anions (e.g. the 2s and 2p orbitals for F-, Ne etc.) 
• from the exponents of the first empty orbital(s) for closed-shell cations (3s for Na+, Mg2+ 

etc.; 3s and 3p for Al3+, Si4+ etc.; 4s for K+, Ca2+; 3d for Sc3+, Ti4+ etc.).  
 
The closed-shell configurations recognized are those of the noble gases (thus, 2, 10, 18, 36, 
54 electrons), and those of some cations of the 4th and 5th row (like Cu+, Ga3+, Sb5+), which 
may have 28 or 46 electrons (single-ξ exponents considered are those of 3d and 4d orbitals, 
respectively). All other configurations missing the valence electrons are not recognized by 
the program, which then stops. 
The orbitals used to compute the average are directly linked to the SCAT table configuration. 
Thus, if the user modifies the number or the type of valence electrons (at his own risk!) in 
the SCAT table, then Z will change. Note that in the previous versions of XD, the SCAT table 
was intended to modify just the SPHV monopole, evaluated by the multi-exponent HF wave 
functions of Clementi and Roetti [14].  
 
Warning messages will appear in the output if the configuration chosen is unusual or 
dangerous and severe stops are applied if the requested orbitals are not stored for a given 
atom. 
 
The default values can be modified by using the option rdsd which makes it possible to 
input all n(l) and ξ (l) in atomic units:  
 
C    chfw chfw rdsd 
n(0) zeta(0) n(1) zeta(1) n(2) zeta(2) n(3) zeta(3) n(4) zeta(4) 
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4.6.2.4 The chfw option for defv 
 
An advanced feature of XDLSM is to allow for the use of HF radial functions for the 
deformation density. Such application needs each Jl to be attributed to a proper 
combination of orbital products. The Table given in the Introduction (Section 1.9) 
summarizes the different order of Fourier-Bessel transforms that occur for the different 
orbital products. An orbital product is given by the names of the comprising orbitals in 
brackets:  (2s2s), (2p2p), (3d3d), etc. If more than one product contributes to Jl they 
should be connected by the plus "+" sign.  The character string composed in such a way 
must contain no embedded blanks :  (2s2s)+(2p2p) ... etc. A product or a sum of products 
contributing to Jl has to be specified for each l. Note that not all radial densities can be 
constructed from a given wavefunction. To satisfy Poisson's equation [27], 2(n-1) must be ≥ 
l,  so for example a 2s orbital cannot be used to construct octupole or hexadecapole radials 
parts. To make a complete set, all options available for defv can be combined, as explained 
below.  If neither cszd nor rdsd is specified for sphv the program expects additional input 
lines with one of the following contents:  
 
l [cszd] 
l chfw conf 
l rdsd n(l) zeta(l) 
l rdtb 
NOTE : The chfw option in XD means that the radial part (and only the radial part) of the 
specified orbital product will be used to construct a density function. The XD program 
allows such a radial function to be associated with any multipole, so that a chfw directive 
such as "1 chfw <3d3d>"  is permissible, depite having limited physical meaning. 
 
For each l, an option can be selected which determines any further input. If no line is given 
for certain l values the default (cszd) applies. For chfw the configuration (conf) is to be given 
in terms of orbital products or their sum. For rdsd the parameters of the radial functions 
are needed. After rdtb a scattering factor table is to be read as described above. 
 
Example:  
 
 
C    chfw chfw chfw   2 -2  0  0 -2 
0 chfw  (2s2s)+(2p2p) 
1 chfw  (2s2p) 
2 chfw  (2p2p) 
3 rdsd  3 3.71 
4 rdtb 
 0.00000   5.99918   4.95113   3.64245   2.42954   1.49816   0.87092   0.48586 
 0.26409   0.14158   0.07557   0.04045   0.02182   0.01190   0.00658   0.00370 
 0.00211   0.00122   0.00072   0.00043   0.00026   0.00016   0.00010   0.00006 
 0.00004   0.00003   0.00002   0.00001   0.00001   0.00001   0.00000   0.00000 
 0.00000   0.00000   0.00000   0.00000   0.00000   0.00000   0.00000   0.00000 
In the above example J0 is the sum of the 0-th order transforms of ss and pp type radial 
functions and irrespective of the normalization it is equivalent to sphv. The J1 and J2 
functions are related to sp and pp type orbital products, respectively. The scattering factor 
for octupoles is created from single-ζ radial functions while that for hexadecapoles is read 
in. 
 
 
4.6.2.5 rhft - Relativistic Hartree-Fock scattering factors for sphv 
 
If a spherical atom model is selected, the RHF scattering factors, as given in the 
International Tables [16] or in references [17,18] in the form of an expansion over Gaussian 
functions, can also be used. The rhft option for hydrogen selects the contracted scattering 
factors of Stewart, Davidson & Simpson [13]. 
 
4.6.2.6 Current Limitations 
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The calculation of the static electron density and of electronic properties requires the 
evaluation of the radial functions within an accuracy that can hardly be reached by 
numerical inverse Fourier transform of the scattering factors. The default choice, the use of 
Slater-type HF wavefunctions (chfw, cszd or rdsd), means analytical representation of both 
direct and reciprocal space functions. For a refinement to be consistent with the property 
calculation, it must be based on the wavefunctions stored in xd.bnk_*. The corresponding 
scattering factors are certainly not the best available ones and can slightly differ from those 
found in the International Tables.  Relativistic effects are important only for heavier elements 
- this can be seen by comparing the total chfw spherical scattering factors with those based 
on relativistic numerical wavefunctions. Efforts are being made to eliminate this limitation. 
 
4.6.2.7 Anomalous scattering 
 
delf’ delf” 
The defaults correspond to Mo radiation.  XDINI now computes the correct values for any 
arbitrary X-ray wavelength. 
 
4.6.2.8 Neutron Scattering Length 
 
nsctl 

The last entry of a SCAT line is the neutron scattering length. NOTE Compounds containing 
elements with very large absorption cross-sections (B, Cd, In, Sm Eu, Gd, Dy), have an 
imaginary component of the scattering length, and cannot be dealt with in the current 
version of XDLSM. The current databases have an entry for deuterium (element D) which is 
identical to H except for the neutron scattering length and atomic weight. NOTE In previous 
versions of XD, the values of the neutron scattering lengths listed in the master file were in 
units of 10-14 m, but are now given in the more usual Fermi units of 10-15 m. 

 
4.6.3 The ATOM table 
 
For each atom included in the structure factor calculation the following entries are to be 
given:  
ATOM atom0 ax1 atom1 atom2 ax2 r/l tp tbl kap lmx sitesym chemcon 
 
4.6.3.1 Atom name conventions 
 
The atom name is a continuous string of up to 8 characters, starting with a correct, case 
sensitive chemical symbol (e.g. ‘Na’ and not ‘NA’) used in the SCAT table and followed by 
further characters enclosed in parentheses (). Legal atom names are:  
 
Cu(3)  Ti3+(1a) 
 
4.6.3.2 The local coordinate system 
 
The entries in the first seven columns define the local coordinate systems. atom, atom0, 
atom1 and atom2 are atom names from the ATOM table list.  ax1 and ax2 stand for different 
axis assignments, each being either x or y or z. The first axis (ax1) is given by the 
internuclear vector from atom to atom0 (v1). This together with the second vector from 
atom1 to atom2 (v2) define the (ax1,ax2) plane. The third vector (v3) is taken perpendicular 
to this plane. 
 
v1 = (r0 – r) v2 = (r2 – r1) v3 = v1 × v2 
 
Finally, an orthonormal vector triplet (eax1, eax2, eax3) is formed which can be chosen to be 
either right (R) or left (L) handed 
eax1 = v1/|v1| eax2 = (v3 × v1)/|(v3 × v1)| eax3 = v3/|v3| 
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where r, r0, r1 and r2 are the position vectors of atom, atom0, atom1 and atom2, respectively 
(MOLLY). 
 
4.6.3.3 tp - the Order of the Atomic Displacement Tensor 
 
0 no thermal parameter is applied (static scattering model) 
1 isotropic U 
[2] anisotropic Uij 
3 anharmonic 3rd order Gram-Charlier expansion Cijk 
4 anharmonic 4th order Gram-Charlier expansion Dijkl 
If this value differs from that in the input file the thermal displacement parameters will be 
converted:  
 
xd.mas xd.inp 
1  2  from anisotropic to isotropic 
2  1  from isotropic to anisotropic  
 
4.6.3.4 tbl - The Core Scattering Table 
 
Refers to the core scattering table.  It is the order number of the corresponding element 
given in the SCAT table. 
 
 
4.6.3.5 kap - the Kappa Set 
 
Defines the kappa set applied to the valence radial functions. If a new set is introduced or 
the previous arrangement is redefined, the corresponding changes must also be made in the 

parameter file xd.inp and/or to the KEY table.  If the values in the parameter file are not 
changed the refinement will start from the default value (1.0) for all kappa sets. 
 
4.6.3.6 lmx  - the maximal level of multipole expansion 
 
0 Monopoles (sphv and defv) 
1 Dipoles (default for hydrogen atoms) 
2 Quadrupoles 
3 Octupoles 
4 Hexadecapoles (default for non-hydrogen atoms) 
 
4.6.3.7 sitesym [1] 
 
The point group symbol of the atomic site symmetry. These symbols initialised by XDINI are 
for information only and are not used by any XD program. The ISYM codes in the parameter 
file refer to the crystallographic site symmetries of atoms in special positions (codes 1-77) 
and the user imposed model pseudo-symmetries based on the 32 crystallographic point 
groups (codes 80-112). See tables 3-1 & 3-2 in the Appendix for further details. 
 
4.6.3.8 chemcon 
 
Refers to the atom to which the valence deformation density of the atom considered is 
constrained. Atoms with different site occupancies cannot be linked by chemcon 
constraints. If it is desired to link the multipole populations of atoms having different site 
occupancies, this must be done using an explicit set of CON instructions (see Section 
4.6.10), ensuring that the different occupancies are properly taken into account. If the same 
set of multipole populations are to be shared by two or more atoms, the definition of the local 
coordinate systems of the corresponding atoms must be consistent. 
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4.6.3.9 Dummy Atoms 
 
To enable one to define a local system of arbitrary orientation, dummy atoms can be used.  
These are to be specified after the atom list but within the atom table by giving a name, 
composed of the string "DUM" and a number, followed by the three coordinates (free format) 
in the crystal system. 
Example:  
 
ATOM     atom0    ax1 atom1    atom2   ax2 r/l tp tbl kap lmx sitesym  chemcon 
O(1)     O(2)      X  O(1)     DUM0     Y   R   2  1   1   4  NO 
O(2)     O(1)      X  O(1)     DUM1     Y   R   2  1   1   4  NO       O(1) 
  . 
  . 
  . 
DUM0     0. 0. 0. 
DUM1     -0.4800  0.5335  0.0973 
END ATOM 
 

4.6.4 GROUPn 
 
GROUPn atom(1)… with n > 1 
 
The GROUP command selects a set of atoms to be considered as a unit for special 
applications.  Such applications available presently are the electroneutrality and rigid-body, 
rigid-link type constraints see (KEEP instruction). The first group (GROUP1) is, by definition 
composed of the atoms in the asymmetric unit. An atom is allowed to be part of more than 
one group. The atom list defining a group can be on more than one input line, but each line 
must start with the same GROUPn command. 
 
 
4.6.5 KEEP 
 
The KEEP instruction simplifies the application of certain constraints. 

 
KEEP kappa set(1) … 
For each set defined κ'l, the expansion-contraction parameter of defv, is kept the same for all 
l. This is a default constraint that is suggested to apply, at least in the initial stages of a 
refinement. 
 

IMPORTANT  The fit is always very sensitive to κ', even if a single parameter is refined for 
all l values.  The results of κ' refinement should always be critically examined and 
compared to those obtained with κ' = 1.0. For HF radial functions, the chance of obtaining 
convergence with reliable estimates of different κ'l parameters is expected to be better than 
for single Slater orbitals.  A separate κ'l refinement is worth trying for transition metals.  
 
KEEP charge [group1] groupn … 
 
Each group defined by the GROUP command can be treated as a closed unit for which the 
total charge is kept fixed during the refinement. The total charge of the group is given by the 
sum of the starting monopole populations of the comprising atoms.  The user is free to 
define any subset of atoms (even having common elements) which are excluded from charge 
transfer. Each group fixed in this way adds one new equation to the system of constraints. A 
zero singular value of the matrix of constraints means inadequate grouping and the 
redundancy found will be rejected. The KEEP charge group1 directive implements the 
monopole population constraint, and in normal situations this constraint should always be 
present. 
 
KEEP rigid [group1] groupn … 
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Each group defined by the GROUP command is kept rigid in the sense that the shifts in the 
ADP’s of the atoms comprising the group are constrained to satisfy Hirshfeld’s rigidity 
postulate. To make such a restriction work, all ADP’s of all atoms in the group must be 
refined. The equation of constraint is set for all internuclear connections in the group and 
the linearly dependent equations are eliminated leading to the necessary reduction in the 
number of restrictions. 
 
RESET BOND  atom H-atom distance (Å) 
The distance between  an H-atom and its bonded atom is reset to the designated (usually 
neutron determined) distance at the end of each cycle. The H-atom must be listed second, 
and its coordinates should not be refined. 
 
RESET KAPPA (*)all (*)onlykp 1 1.0  2 1.0  3 1.0  …. 
The kappa values used in XDLSM may be reset prior to refinement using this new directive 
to avoid manually editing the xd.inp file. This is especially useful when the kappas have 
refined to unrealistic values, perhaps because of inappropriate refinement strategies or 
applied constraints. It is a global command which resets all the kappa’s in the specified 
kappa set kset to the specified value val. The instruction has pairs of numbers, the first in 
the pair (kset) is an integer referring to the kappa set, the second (val) to its desired value. 
Either specific kappa sets may be modified, or if the all directive is selected (starred) then all 
kappa values will be reset to the value specified in the first kset/val pair or if that is missing 
then the default value of 1.0 will be used. If the onlykp directive is activated (starred), then 
only the deformation kappa’s K0-K4 are affected by this directive. Unlike the RESET BOND 
directive, it is only sensible to use this directive in an initial xdlsm refinement and then 
switch it off (i.e. comment it out) for subsequent refinements. 
 
 
4.6.6 The Weighting Scheme 
 
WEIGHT a b c d e f 
 
a [0.0] b [0.0] c [0.0] d [0.0] e [0.0] f [1/3] 
 
For refinement on F2, the weighting scheme as implemented in SHELXL is used:  
 

w2 = q / [s22 + (ap)2 + bp + d  + e × sin(θ)] 
where 

s2 = σ(Fo2) 
p = f × Fo2 + (1-f) × Fc2 
q = 1.0    if c = 0 
or q = exp[c × (sinθ/λ)2]  if c > 0 
or q = 1.0 - exp[c × (sinθ/λ)2]  if c < 0 

 
For refinement on F, the weight (w1)  is calculated as follows:  

w1 = [ Fo × sqrt(w2)  + α ]2 
where 

α = 0.0 if  β < 0.0 ;   α = sqrt(β)  if β > 0.0 
β = (Fo2 × w2) + sqrt(w2)  where w2 is calculated as above. 
 

IMPORTANT  This general weighting scheme has been developed for refinement based on a 
conventional, spherical atom model and thus may not be adequate for multipole refinement. 
 
There are two special weighting schemes ; when a = -1.0 and when a < -1.0. These two 
schemes are applied regardless of the input values of the other weighting parameters b - f. 
For a multipole refinement on F, it is suggested to set a < -1.0, when statistical weights [i.e.  
w2=1/σ2(Fo2) and w1 =1/σ2(Fo)] will be applied. The default xd.mas written by XDINI has a = 
-2.0, which sets this condition for refinement on either F or F2. Note that the values of zero 
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for the parameters a - e given above also imply statistical weights for refinement on F2, but 
NOT for refinement on F ! 
 
To apply units weights, set a = -1.0. The parameters of the weighting form cannot be 
refined. Two goodness of fit parameters are printed in xd_lsm.out, one (GOFw) based on 
the weighting scheme used in refinement, and one (GOF) based on statistical weights w = 
1/s2.  
 
4.6.7 DMSDA 
 
DMSDA rmin rmax 
rmin [1.1] rmax [1.8] 
The difference of the projections of the mean square amplitude tensors of two atoms to the 
corresponding internuclear vector are calculated if the interatomic distance falls in the 
range given by rmin and rmax. As discussed in the Introduction, Hirshfeld’s rigid-bond test 
[7] can help to reveal model inadequacies and should always be a part of a careful analysis.  
The positional coordinates and the anisotropic displacement parameters in an orthogonal 
system are also printed. 
 
 
4.6.8 Extinction refinement 
 
The following instruction line for extinction correction appears in xd.mas: 
EXTCN (*)iso (*)aniso (*)type_1 (*)type_2 (*)type_3 (*)distr_g (*)distr_1 (*)msc_0 (*)msc_1 
 
For any extinction refinement, the absorption weighted path length (tbar) should be stored 
in the reflection file xd.hkl. For an anisotropic extinction refinement, an additional six 
data items (the direction cosines - see Table 2-2) for each observation are also required. If 
tbar is missing from xd.hkl, then for an isotropic extinction only, an identical value of 0.5 
mm is assumed for all reflections. This assumption will, in general, lead to incorrectly scaled 
extinction parameters, but this is not often of major concern. For anisotropic extinction 
refinement, tbar values in the reflection file are mandatory. 
 
By default the EXTCN command appears as a comment in xd.mas. To get it activated the 
exclamation mark (!) has to be removed. The extinction correction is based on the models 
proposed by Becker and Coppens [19-21], which can be summarized as follows: 
 
 
4.6.8.1 Isotropic extinction (*iso, default): 

 
extinction type: 
• type 1 (*type_1, default):  mosaic spread, the g' coefficient is refined (variable EXT11); 
• type 2 (*type_2):  particle size, the ρ coefficient is refined (variable EXT11); 
• type 3 (*type_3, *type_g is also accepted): generalized type, mosaic spread and particle 

size (g' and ρ) are simultaneously refined (variables EXT11 and EXT22, respectively); 
 
 

mosaic spread distribution (active only for type_1 and type_3): 
• Gaussian (*distr_g): a Gaussian distribution is assumed; 
• Lorentzian (*distr_l, default) : a Lorentzian distribution is assumed; 

 
 

4.6.8.2 Anisotropic extinction (*aniso): 
 

extinction type: 
• type 1 (*type_1, default): mosaic spread, the Z tensor is refined (variables EXT11-

EXT23) (g(D)=(DtZD)1/2; D is a unit vector perpendicular to the diffraction plane); 
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• type 2 (*type_2):  particle size, the W tensor is refined (variables EXT11-EXT23)  
(ρ(N)= λ(NtWN)-1/2; N is a unit vector in the diffraction plane, perpendicular to the 
incident beam); 

• type 3 (*type_3, *type_g is also accepted): generalized type (mosaic spread and particle 
size), Z tensor and ρ simultaneously refined (variables EXT11-EXT23 for Z; variable 
RHOEX for ρ); 
 
 

mosaic spread distribution (active only for type_1 and type_3): 
• Gaussian (*distr_g): a Gaussian distribution is assumed; 
• Lorentzian (*distr_l, default) : a Lorentzian distribution is assumed; 
 
 
mosaic orientation (active only for type_1 and type_3): 
• Coppens and Hamilton (*msc_0): the distribution proposed by Coppens and Hamilton 

[22]; 
• Thorney and Nelmes (*msc_1, default): the distribution proposed by Thorney and Nelmes 

[23]. In this case the Y tensor is refined instead of Z (g(D)=(DtYD)-1/2). 
 

Given the expression for tensors W, Y, and Z, a switch from isotropic to anisotropic 
correction requires the following variables in xd.inp:  

(1) g' to   Z: 
EXT11 = EXT22 = EXT33 = (g'iso)2 
EXT12 = EXT13 = EXT23 = 0.0 
(2) g' to   Y: 
EXT11 = EXT22 = EXT33 = 1/(g'iso)2 

EXT12 = EXT13 = EXT23 = 0.0 
(3) ρ to W: 
EXT11 = EXT22 = EXT33 = 1/( ρ iso)2 

EXT12 = EXT13 = EXT23 = 0.0 
 
When a non-positive definite tensor (W, Y or Z) is obtained, the program stops if the 
automatic resetting of the tensor fails. 
 
In the output file xd_lsm.out, the following parameters are reported: 
 
• for isotropic extinction: the mosaic spread, η (η is proportional to 1/g', units in seconds) 

and the domain size r (r = g'λ10-4, units in centimeters) are given, as derived from the 
refined g' and/or ρ. 

• for anisotropic extinction: The principal axes of mosaic spread η(D) (if *type_1 or *type_3) 
or domain size r(N) (*type_2) distribution are given; the corresponding 'equivalent' η and 
r scalars are computed (or the refined r is printed if *type_3 is applied). 

 
 
4.6.9 FOUR - Structure factor calculation 
 
FOUR fmod1 m1.1 m1.2 m1.3 m1.4 fmod2 m2.1 m2.2 m2.3 m2.4 
 
The FOUR command ensures that a Fourier file xd.fou is written after the last cycle. 
Structure factors based on two models but on the same set of parameters are calculated and 
saved together with Fobs and the phases. The latter quantities may have the effects of 
anomalous dispersion removed [34] as follows. 
 

)( 00
calccalc

calc

calcobs
obs AA

F

AF
A −−=  
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20200 )()( obsobsobs BAF +=  

 
where A and B are the real and imaginary parts of the structure factor F and a zero 
superscript (0) designate terms without anomalous dispersion. The standard deviation of 
Fobs0 is estimated as 

 

( ) ( ) ( ) ( )
calcobs

calcobscalcobs
obsobs FF

BBAA
FF

0

2020
0 +

= σσ  

 
The phases are based on the model applied in the refinement (see instruction MODEL).  
 
Each of the structure factor models (fmod1, fmod2) is specified with four integers, in the 
same way as described above. The combination of fobs, fmod1 and fmod2 makes it possible 
to generate six different Fourier maps (see XDFOUR & XDFFT). By default, the FOUR 
command appears as a comment line in xd.mas. In the example below, a Fourier file is 
created with two calculated structure factors.  The first one based on a multipole model 
(lmax=4), the second one on a neutral spherical atom model (lmax=-1). Both are free of 
anomalous dispersion and extinction.  
 
FOUR  fmod1 4 2 0 0  fmod2 -1 2 0 0 
 
 

IMPORTANT  In contrast to earlier versions of the program, it is the values of m1.3 and 
m1.4 for fmod1 which determine the treatment of Fobs. Anomalous dispersion effects will 
only be removed from Fobs if m1.3 is given as zero. Likewise, Fobs will only be corrected for 
extinction effects (if any) when m1.4 is given as zero. Since it is normally desired that 
Fourier syntheses should represent the electron density, and be independent of the 
wavelength used for the experiment, the effects of anomalous dispersion must be removed 
from experimental Fobs [34,35]. The values of m1.3 and m1.4 must therefore be given as zero, 
as in the above example. 
 
Another new feature in version 5.3 is the addition (at the end of the xd.fou file) of an entry 
for reflection F(000). The inclusion of F(000) in Fourier summations ensures a correct 
absolute scale for the electron density. 
 
Only those reflections used in the refinement will be written to the XD.FOU file. 

 
 
4.6.10 CON - General linear constraint 
 
CON a1 var1 a2 var2 a3 var3 … = c 
 
The CON instruction defines a linear combination among a set of variables used as a 
constraint.  A list of the coefficients (a1,a2,a3,…) and variable-symbols (var1, var2, var3,…) 
are to be given terminated by the equal sign ("="), which is followed by the last entry (c) to 
define the right side of the equation.  The coefficients and the variable names are read as 
numeric and character fields, respectively.  A variable name is composed from the 
corresponding symbol described before (Table 4.2) and from a number (if needed) referring 
to the atom (kappa set or scale group) to which the variable is assigned. The two 
components of the name are divided by the slash ("/"). The resulting character string must 
not contain blanks. The following are correct variable names:  
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X/1, U12/12, C333/1, M1/2, H4+/11, KS/3, K2/2, SCALE/1, EX12 
 
The list of coefficients and variable names must be terminated by the equal sign.  More than 
one line can be input with the same CON command. A new line is read until the equal sign 
is found. Note, that here, what is meant by the term "variable" is actually the shift in that 
variable and not the variable itself. 
Applications of great practical importance are the constraints due to crystallographic site 
symmetries. The correct constraints applicable to those atoms in special positions are now 

given in the xd.mas file written by the updated XDINI. These should never be modified 
unless you know what you are doing !  The violation of a symmetry restriction leads to 
singular least squares matrix.  If the solution is obtained via diagonalization, the singularity 
can be eliminated (the corresponding constraint is introduced). Although this procedure 
might work in most cases, it is not advisable to let a numerical procedure handle the 
symmetry.  After several cycles, round-off errors are likely to break the symmetry in the 
shifts. Symmetry restrictions can easily be formulated.  Either the variable itself or the 
combination of two variables are fixed.  The former does not need extra CON card since the 
corresponding variable is simply not refined (see KEY table). 
 
Example: Formula KHF2, space group I 4/mcm (No. 140). The three atoms in the 
asymmetric unit occupy the following special positions:  

 
No. atom Wyckoff letter x y z 
1 K a  0 0 1/4 
2 F h  x x+1/2 0 
3 H d  0 1/2 0 
 
 
The corresponding CON cards are:  
 
CON  1 X/2 -1 Y/2 = -0.5 
CON  1 U11/1 -1 U22/1 = 0 
CON  1 U11/2 -1 U22/2 = 0 
CON  1 U11/3 -1 U22/3 = 0 
 
Another example of practical importance is in the use of Kubic harmonics. Table 4-4 shows  
the density normalized Kubic harmonics as linear combinations of density normalized 
spherical harmonics, and also indicates which Kubic harmonics are symmetric with respect 
to the cubic site symmetries (and hence are allowed). Suppose that atom 1 is at a symmetry 
site of -43m in a cubic space group.  Table 4-4 shows that the only symmetry-allowed Kubic 
harmonics (of relevance to the current version of XD) are  K0,1 K3,1 and K4,1. The first two 
simply correspond to M1,M2 and O2- (y00 and y3,-2) while K4,1 is a linear combination of the 
hexadecapoles H0 and H4+ (0.78245 H0 + 0.57939 H4+). The corresponding constraint is 
thus 
 
CON  0.57939 H0/1 -0.78245  H4+/1 = 0 
 
or more simply  
 
CON 1 H4+/1 -0.74048 H0/1 = 0 

 
IMPORTANT  If three parameters are involved in a cyclic constraint, e.g. if U11=U22=U33 (a 
common occurrence in cubic space groups), the user should note that all three constraints 
are always explicitly listed in the master file written by XDINI. Their linear dependency is 
noticed and removed by the SVDCMP routine, but the user should be aware that this 
routine is not infallible, as rounding errors may affect the logic. If the SVDCMP routine fails 
to determine the correct number of non-redundant constraints, the user is advised to 
remove the redundant constraints by commenting them out in the master file. This 
procedure normally solves any issues. If such a cyclic constraint is being applied in a non-
mandatory situation, e.g. to impose some desired pseudo-symmetry, then only the two non-
redundant constraints need normally be given. 
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The mandatory site symmetry restrictions are now handled automatically in XDINI. Tables 
4-5 – 4-9, previously in this manual are now given in the Appendix. Site symmetry 
restrictions on spherical harmonics are given in Table 4-5 [25]. Tables 4-6 to 4-9 (simplified 
versions of Tables 5.5A - 5.5D from reference 24) are reproduced with kind permission of 
the IUCr. These Tables provide the site symmetry restrictions on the Uiij anisotropic thermal 
motions tensors and on the Gram-Charlier anharmonic coefficients Cijk and Dijkl. The order 
of indices for Cijk and Dijkl in these Tables follows the order of symbolic names used by XD 
(see Table 4-2). Table 4-6 should be consulted first, to obtain the appropriate cross reference 
key for the crystallographic site symmetry in question.  
 
4.6.11 The KEY table 
 
KEY xyz -U2- ----U3---- ------U4------- M- -D- -Q- -O- ----H---- 
 
This input segment is to specify which parameter is to be refined and which is not.  It is 
done by giving the KEY-integer array with values 0 or 1 for a fixed or for a refined 
parameter, respectively.  The order of the parameters is as defined before in Table 4-2. First 
the atomic parameters (x,y,z, Uij, Cijk, Dijkl, Plm) have to be given for all of the atoms included 
in the structure model. These are followed by the "shared" (κ, κ’l) and by the "global" 
parameters (extinction, overall thermal parameter, scale factors). The heading of the KEY 
table helps in keeping account of the variables. The different abbreviations are as follows:  
 
xyz 3 positional coordinates 
Un,Cn,Dn nth order displacement tensor components.  There are 6, 10 and 15 

components for n=2,3 and 4, respectively 
M 2 monopole populations; the first for sphv and the second for defv 
D 3 dipole 
Q 5 quadrupole 
O 7 octupole 
H 9 hexadecapole populations 
KAPPA 1 for sphv and 5 for defv (κ’l, l=0,lmx). It should be given for each KAPPA set 

defined in the ATOM table 
EXTCN 1, 6 or 7 extinction parameters 
OVTHP 1 overall thermal parameter 
SCALE NQ scale factors  
 
As many atom entries are to be given as in the atom table. The atom names used here have 
to be identical to those in the atom table otherwise the program terminates with error 
message. Similarly, the number of kappa entries must be equal to the maximal number 
used in the atom table to refer to kappa sets (see 4.6.3.5) If the command KEEP kappa is 
applied to a set then all but the first kappa-integers for the corresponding devf (κ’l, l=1,4) 
should be zero. The number of key integers for the scale factors should be less than or equal 
to the number given in xd.inp (NQ). The key integers are interpreted according to the 
maximal level of the thermal motion and multipole expansion defined in the atom table for 
each atom by the parameters tp and lmx, respectively. 

 
Important!  The multipole populations of the atoms involved in "chemical constraints" (those 
which are constrained) may either be fixed or free in the KEY table. On the other hand, 
parameters involved in any other constraint must be made variables (i.e. set to "1" in the 
KEY table). The program will issue a notice and ignore the constraint if this is not the case. 
An example is : 
 
KEY     xyz --U2-- ----U3---- ------U4------- M- -D- --Q-- ---O--- ----H---- 
O(1)    111 111111 0000000000 000000000000000 10 110 10011 0110011 100110011 
. 
KAPPA   110000 
EXTCN   0000000 
OVTHP   0 
SCALE   111 
    END KEY ---------- 
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4.7  Appendix 
 
4.7.1 Treatment of the reflection data by XDLSM 
 
Regardless of the format of Yobs (i.e Fobs or F2obs) supplied in the reflection file XD.HKL, all the 
values Fobs, σ(Fobs),  F2obs and  σ(F2obs) are calculated. The standard interconversions, given 
below, are used. The refinement procedure minimises either w(∆F) or w(∆F2), depending on 
the based_on record in xd.mas, but R-indices for both F and F2 are always reported. Since 
a zero or negative value for σ(Yobs) leads to physically meaningless weights in a least-squares 
refinement, any record in XD.HKL which has a zero or negative σ(Yobs) is ignored (i.e. it is 
immediately skipped and not counted). A warning message is issued on the console, and 
such reflections should be removed from XD.HKL 
 
The expressions for deriving the quantities Fobs, σ(Fobs),  F2obs and  σ(F2obs)  from each other 
are : 
 
If Fobs and σ(Fobs) are supplied in XD.HKL then 

F2obs  = (Fobs)2  but  F2obs retains the sign of Fobs (see note 1) 
σ(F2obs)  = 2×σ(Fobs) ×|Fobs| for the case where |Fobs| > 0 
σ(F2obs)  = 2×σ(Fobs) for the case where Fobs = 0  (see note 2) 
 

If F2
obs and σ(F2

obs) are supplied in XD.HKL then 

|| 2
obsobs FF =  but  Fobs retains the sign of F2obs 
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σσ ×=  for the case where |Fobs| > 0 (see note 2) 

σ(Fobs)  = 0.5×σ(F2obs) for the case where Fobs = 0 
 
These conventions ensure that σ(Fobs) and σ(F2obs) are always > 0, but Fobs or F2obs may be 
either negative, zero or positive. 
 
 
4.7.2 Definitions of the Residual indices used in XDLSM 
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The scale factors k1/k2 place Yobs and Ycalc on the same scale. The moduli signs (||) are only 
used here to indicate the absolute value of the appropriate quantity and not the commonly 
used alternative meaning of |F| as the phaseless modulus of a structure factor. This 
distinction is important in summations where Yobs may have a negative value (see note 3). 
The indices R(F), R(F2), wR(F) and wR(F2), reported in the file XD_LSM.OUT, are computed 
only for those reflections used in the refinement (i.e. those passing the rejection criteria on 
the SKIP directive). The indices Rall(F)  and Rall(F2) have the same definition as R(F), R(F2), but 
also include those reflections rejected by the rejection criteria - this will mean all reflections 
in XD.HKL, except any ignored because of zero or negative σ(Yobs). 
 
 
4.7.2 Definitions of the Goodness of Fit indices used in XDLSM 
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The Goodness of Fit (GOF) indices are defined thus : 
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where Nref is the number of observations and Nvar the number of independent variables in 
the least-squares refinement. The definitions of ∆f and ∆fs depend of whether refinement 
was based on F or F2, and unlike the R-indices, the GOF indices are only reported for the 
actual refinement mode. 
 
For refinement on F 
∆f = (Fobs - k1Fcalc)   and ∆fs = (Fobs - k1Fcalc)/σ(Fobs)   
 
 
For refinement on F2 
∆f = (F2obs - k2F2calc)   and ∆fs = (F2obs - k2F2calc)/σ(F2obs)   
 
GOFw  uses the reflection weights w as defined on the WEIGHT directive in the XDLSM 
section of xd.mas (see Section 4.6.6). GOF is the Goodness of Fit using statistical weights 
i.e. 1/σ2(Yobs), so the two GOF indices will be identical if this weighting scheme is used (i.e. if 
the a parameter on the WEIGHT directive has a value less than -1.0). Note that the default 
values of zero given for parameters a - e in Section 4.6.6 will also imply statistical weighting 
if refinement is based on F2, but NOT if refinement is based on F ! 
 
If the general form of the XD weighting scheme is used, the definitions of the weighted R 
indices given above have the unfortunate property of being dependent on the overall scale of 
the data being summed.  The weighting scheme used for refinement on F2 (which is the 
same scheme as used in SHELXL), in its most commonly used simple form, where only the a 
and b parameters are non-zero, is given by : 
 

w  = 1/(σ2(F2obs) + a2P2 + bP) 
 
where P = (2F2calc + F2obs)/3 for the default value of parameter f.  
 
If the observations used to accumulate the R-indices are on some arbitary scale compared 
with the absolute scale, then F2obs, F2calc and σ(F2obs) are all effectively multiplied by a 
constant s, so we are dealing with sF2obs, sF2calc and sσ(F2obs). The expression for wR(F2) 
becomes 
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If unit weights are used, then clearly the wR indices are independent of s. The same pertains 
if statistical weights are used.  In this case w = 1/s2σ2(F2obs)  and the constant s2 is eliminated. 
However if the general form of the weighting scheme given above is used, the weight is now 
given by 
 

w  = 1/(s2σ2(F2obs) + s2a2P2 + sbP) 
 
and a dependence on s remains. Since the current version of XDLSM accumulates the 
summations on the observational scale, while the structure factors in XD.FCO are on an 
absolute scale, it is impossible to correctly compute the weighted R-indices if a general form 
of the weighting function is used. It would be more logical to accumulate the indices in 
XDLSM on an absolute scale. 
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4.7.3 NOTES 
 
Some minor changes in the above definitions in XD for version 6.02 may result in small 
changes to reported R values, compared with earlier versions. 
 
1. Previously F2obs was simply taken as (Fobs)2, but this has been changed to distinguish 

between positive and negative Fobs. Since the majority of data reduction programs will 
never report negative Fobs, this change is unlikely to have any consequences. 

 
2. For this case σ(F2obs) or σ(Fobs) were previously either undefined, or arbitarily set to the 

value of the input σ(Yobs). For refinements which use any type of sigma cut-off, this 
change will not have any consequences. 

 

3. Previously, the denominator for R(F2) was simply Σ F2obs, while that for R(F) was Σ|Fobs|. 
For consistency, both summations now use the absolute value of the summand, as 
indicated above. In cases where data sets contain negative F2obs, this change may means 
small differences in Rall (F2) and possibly in R (F2), compared with previous versions. 

 
 
 

4.8 XDBLOCK - A Shell Program for Blocked Least-Squares 
Refinement using XDLSM 
 
A common problem in least-squares refinement is high parameter correlations, which may 
lead to slow convergence or even unstable refinement. One way round this issue is to refine 
those parameters which are highly correlated in separate blocks, the so-called block 
refinement. A new utility in XD called XDBLOCK implements this approach. 
 
XDBLOCK is a shell program which launches XDLSM using four specially created master 
files called xd_1.mas, xd_2.mas etc. These are a set of edited versions of xd.mas 
where only a selected subset of the parameters are flagged to be refined. If these special 
master files are not present, then default versions are created. It is more sensible to create 
these by using the command line xdblock –create (or corresponding GUI option in Windows) 
since this option just creates the files and then halts, allowing them to be examined and 
possibly edited. The default versions of these files are : 
 

• xd_1.mas - where only the positional & thermal parameters are set to refine 
• xd_2.mas - where only the multipole parameters are set to refine 
• xd_3.mas - where only the kappa parameters are set to refine 
• xd_4.mas - where as many as possible of the parameters are set to refine 

 
The blocked refinement is useful in the preliminary stages of refinement and in cases where 
there are severe correlations between parameters. The user may of course edit these special 
master files and choose other subsets to be refined in each block. The only limitation at 
present is that only four such master files can be created and used.  
 
When XDBLOCK is invoked, xd_1.mas file is copied to xd.mas and a copy of this file is 
kept. The XDLSM program is launched and at the termination of this program, the xd.res 
file is copied to xd.inp and a second round of blocked refinement commences when 
xd_2.mas is copied to xd.mas. The whole process is repeated for four cycles.  
 
After each block cycle the stability of the refinement is carefully assessed. All the R values 
are examined and the refinement is only deemed to be stable (or converging) if the majority 
of R values are decreasing or remaining steady. If the majority of R values are rising, or if 
there is a more pathological behaviour (for example if the resultant xd.res file becomes 
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unreadable because of fields of *****) then the refinement is deemed unstable, the xd.res 
file is not copied and the whole process is halted. The results of the refinements are kept in 
the files xd_lsm-1.out  etc and so may be examined. 

 

 

 

Table 4-1 : Dimensioning of XDLSM 

 
Name Values Description 

nat 2000 maximum number of atoms in the asymmetric unit 
ntx 31 maximum number of displacement tensor components: 

6 Uij + 10 Cijk + 15 Dijkl = 31 
lmx 4 maximum level of multipole expansion 
nzz 30 maximum number of kappa sets 
nto 1 currently not used 
nsc 99 maximum number of scale factors 
ntb 20 maximum number of core, valence scattering factor tables 
nov 2500 maximum number of variables allowed 
ncst 200 maximum number of constraints 
nao 18 maximum number of atomic orbitals allowed in the wavefunction input for 

the scattering factors: 1s, 2s, 3s, 4s, 2p, 3p, 4p, 3d, 4d, 4f, 5s, 5p, 6s, 6p, 
5d, 7s, 6d, 5f 

mgrd 40 maximum number of grids used to store scattering factors 
grd 0.05 Step size in sinθ/λ 
Related to these the following parameters are also in use: 
 
Name Value Description 

npop lmx * lmx + 2 * lmx + 2 maximum number of multipole populations 
nap 3 + ntx + npop maximum number of atomic parameters  
npp nap * nat + (lmx + 2) * nzz + nsc + 8 total number of parameters 

Note – some of these dimensions (nat, nzz, nov, ncst) are determined dynamically. 
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Table 4-2 : Variable names and order numbers 

 
Parameter Symbolic name Order number 
Fractional Coordinates X, Y, Z 1-3 
Displacement Tensor Components 
2nd order U ij U11, U22, U33, U12, U13, U23 4-9 
3rd order C ijk C111, C222, C333, C112, C122, C113, C133,   

C223,   C233,   C123 
10-19 

4th order D ijkl D1111, D2222, D3333, D1112, D1222, 
D1113, D1333, D2223, D2333, D1122, 
D1133,   D2233,    D1123,    D1223,   D1233 

19-34 

Multipole Populations 
Monopoles M1, M2 35-36 
Dipoles D1+, D1-, D0 37-39 
Quadrupoles Q0, Q1+, Q1-, Q2+, Q2- 40-44 
Octupoles O0, O1+, O1-, O2+, O2-, O3+, O3- 45-51 
Hexadecapoles H0, H1+, H1-, H2+, H2-, H3+, H3-, H4+, H4- 52-60 
Radial Screening 
κ,κ′ (l) KS, K0, K1, K2, K3, K4 61-66 
Isotropic and Anisotropic 
Extinction 

EX11,EX22,EX33,EX12,EX13, EX23, RHOEX 
(for isotropic case ISOEX ≡ EX11) 

67-73 

Overall U OVTHP 74 
Scale Factor SCALE(I),I=1,MAXSCAL 75- 
 
IMPORTANT NOTE : Following normal conventions, the magnitudes of the Gram-Charlier 
coefficients Cijk  and Dijkl, which are reported in XD_LSM.OUT and XD_LSM.CIF, are 
multiplied by 103 and 104 respectively. 

 

 

Table 4-3 : The model limits 

 
m1 static scattering models 
-4 neutron 
-3 core 
-2 conventional, spherical-atom promolecule model with RHF scattering factors 

taken from the International Tables 
-1 neutral, spherical-atom model with HF scattering factors generated from Slater-

type wavefunctions [14] 
lmax aspherical-atom model: frozen-core, spherical valence, multipolar deformation 

density up to lmax in the expansion over spherical harmonics [1] 
m2 thermal motion models 
-1 overall-isotropic-harmonic 
0 static 
1 isotropic – harmonic 
2 anisotropic – harmonic 
tmax anharmonic model: Gram-Charlier expansion up to 4th order [24] 
m3 anomalous dispersion 
0 excluded 
1 included 
m4 extinction 
0 excluded 
1 included 
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Table 4-4 : Density normalised Kubic harmonics Klj   

 
(a) as linear combinations of spherical harmonics 
 

mp 

Even l 
l    j 

 
0+ 

 
2+ 

 
4+ 

 
6+ 

0   1 1.0    
4   1 0.78245  0.57939  
6   1 0.37790  -0.91682  
6   2  0.83848  -0.5 

     Odd l 
l     j 

 
2- 

 
4- 

 
6- 

 
8- 

3   1 1.0    
7   1 0.73145  0.63290  

 
 
(b) site symmetry  
 
 

l   j 

23 
T 

m-3 
Th 

432 
O 

-43m 
Td 

m-3m 
Oh 

0  1 yes yes yes yes yes 
3  1 yes no no yes no 
4  1 yes yes yes yes yes 
6  1 yes yes yes yes yes 
6  2 yes yes no no no 
7  1 yes no no yes no 

 
 
Tables 4-5 – 4-9 which are needed to ascertain the necessary site-symmetry restrictions on 
the positional, thermal and multipole parameters and which were previously at this point in 
the manual are now in the Appendix. The new version of XDINI automatically determines 
these restrictions, so that a manual inspection of tables 4-5 to 4-9 will normally no longer 
be necessary. They are retained in the XD manual for archival purposes. 
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