The Cronin Group

Research in the Cronin Group is motivated by the fascination for complex chemical systems, and the desire to construct complex functional molecular architectures that are not based on biologically derived building blocks.


...
Cronin Group take robotic steps towards “Artificial Chemical Evolution”

In a breakthrough published in Nature Communications, Prof Cronin and his group have described the robotically-facilitated evolution of oil droplets. The group used a custom built robot based on a RepRap 3D printer which generates the droplets, measures their fitness against a fitness function, and then uses a genetic algorithm to generate a new population. By demonstrating that these could be viable “chemical protocell models” as they can be evolved yet are based upon simple chemical ingredients, Prof Cronin hopes that we can start to answer some important questions about the origin of life.

Open Access paper in Nature Communicatsions

News item on University of Glasgow website

Article in Wired

Article at Phys.org

Article in Nature Chemistry News and Views

...
Prof. Leroy (Lee) Cronin

Prof Leroy (Lee) Cronin
Regius Chair of Chemistry
Cronin Laboratory
School of Chemistry
Joseph Black Building
University of Glasgow
Glasgow G12 8QQ
Tel: +44 141 330 6650
Email: lee.cronin@glasgow.ac.uk

Latest Publications

...

471. Formalising the pathways of life to using assembly spaces

...

470. Engineering Highly Reduced Molybdenum Polyoxometalates via the Incorporation of d and f Block Metal Ions

...

469. Effective Storage of Electrons in Water by the Formation of Highly Reduced Polyoxometalate Clusters

468. A Probabilistic Chemical Programmable Computer

...

467. Digitizing Chemical Synthesis in 3D Printed Reactionware

...

466. Hydrogen from water electrolysis

...

465. Investigating the autocatalytically driven formation of Keggin-based polyoxometalate clusters

...

464. Exploring the sequence space of unknown oligomers and polymers

...

463. Exploring the Hidden Constraints that Control the Self-Assembly of Nanomolecular Inorganic Clusters

...

462. Facile and Reproducible Electrochemical Synthesis of the Giant Polyoxomolybdates


Find us on

Copyright © 2005 - 2022 Prof Lee Cronin - The University of Glasgow
Joseph Black Building, University of Glasgow, Scotland, UK
Visitors: