The Cronin Group

Research in the Cronin Group is motivated by the fascination for complex chemical systems, and the desire to construct complex functional molecular architectures that are not based on biologically derived building blocks.


...
Cronin group automated validation of chemical synthesis literature published in Science

Cronin group research into the automated validation of chemical synthesis literature has been published in Science. In the paper, entitled “Digitization and validation of a chemical synthesis literature database in the ChemPU”, researchers generated a database of chemical reactions, including the XDL code required to run the reactions on robotic platforms. More than 50 of these entries were downloaded and run successfully on modular chemputers, and an open database was set up for the addition of new reactions. This work showcases a major step towards the digitization of chemistry.

The full paper can be found on the Science website

...
Prof. Leroy (Lee) Cronin

Prof Leroy (Lee) Cronin
Regius Chair of Chemistry
Advanced Research Centre (ARC)
Level 5, Digital Chemistry
University of Glasgow
11 Chapel Lane
Glasgow G11 6EW
Tel: +44 141 330 6650
Email: lee.cronin@glasgow.ac.uk

Latest Publications

...

502. Delocalized, asynchronous, closed-loop discovery of organic laser emitters

...

501. Investigating and Quantifying Molecular Complexity Using Assembly Theory and Spectroscopy

...

500. Electron density-based GPT for optimization and suggestion of host–guest binders

...

499. Evidence of Selection in Mineral Mediated Polymerization Reactions Executed in a Robotic Chemputer System

...

498. A programmable hybrid digital chemical information processor based on the Belousov-Zhabotinsky reaction

...

497. An integrated self-optimizing programmable chemical synthesis and reaction engine

...

496. Autonomous execution of highly reactive chemical transformations in the Schlenkputer

...

495. Universal chemical programming language for robotic synthesis repeatability

...

494. Bringing digital synthesis to Mars

...

493. An Autonomous Electrochemical Discovery Robot that Utilises Probabilistic Algorithms: Probing the Redox Behaviour of Inorganic Materials


Find us on

Copyright © 2005 - 2024 Prof Lee Cronin - The University of Glasgow
Joseph Black Building, University of Glasgow, Scotland, UK
Visitors: