The Cronin Group

Research in the Digital Chemistry group is motivated by the fascination for complex chemical systems, and the desire to construct complex functional molecular architectures that are not based on biologically derived building blocks.


Latest News

...
May 2024: AI and Chemputation Drive Discovery of Organic Laser Emitters in Global Collaboration published in Science

Researchers from a global collaboration, including the Digital Chemistry group at the University of Glasgow, have developed a ground-breaking decentralized workflow for discovering organic laser emitters, leveraging AI, chemputation, and the programming language for chemistry, XDL. This innovative approach integrates experimental infrastructures across multiple locations using a central cloud hub for data transfer, AI-guided experiment design, and logistics management. Chemputation automates the chemical synthesis processes, ensuring precision and repeatability, while XDL facilitates the …

See More
...
April 2024: A New Approach to Measuring Molecular Complexity using IR, NMS and MS

Researchers from the Digital Chemistry group at the University of Glasgow have developed a new approach to investigate and quantify molecular complexity using assembly theory and spectroscopy. ​ By analysing the number of absorbances in infrared (IR) spectra, carbon resonances in nuclear magnetic resonance (NMR), or molecular fragments in tandem mass spectrometry (MS/MS), the researchers estimated the molecular assembly index (MA) of an unknown molecules. ​ The study also demonstrated the use of 13C diffusion-ordered spectroscopy (DOSY) to analyse mixtures of compounds and determine the MA of …

See More
...
March 2024: Daniel Hervitz wins runner up prize in RSC poster competition

Congratulations to Daniel Hervitz for winning the runner up prize in the annual RSC online poster conference, in the #RSCDigital category. The poster, entitled “Digital robotics for discovery, synthesis, and reaction monitoring of CuO/Au bimetallic nanohybrid”, describes Daniel and his collaborator’s work in using a chemical synthesis robotic platform for the exploration and optimisation of composite nanomaterials.

See More
...
February 2024: Digital Chemistry breakthrough with two landmark papers on Chemputer-based Optimisation and Inert atmosphere manipulations

The Schlenkputer, published in Nature Chemical Engineering , is a fully automated system for conducting highly reactive chemical reactions in an inert atmosphere. The system combines a programmable Schlenk line for inertization of glassware with a liquid handling backbone, allowing for the synthesis and manipulation of air and moisture-sensitive compounds. ​ The researchers demonstrated the system’s capabilities by synthesizing four highly reactive compounds, including a colorimetric indicator and a hygroscopic Lewis acid. ​ The Schlenkputer provides a safe and efficient platform for …

See More
...
January 2024: Cronin Group Researchers Tackle Reproducibility and Standardisation in Collaborative Synthesis Using a Universal Programming Language

In a new publication featured in Nature Synthesis, Cronin Group researchers have unveiled a pioneering approach to collaborative synthesis projects, emphasizing the critical role of repeatability and standardization in scientific research.

In the paper, titled “Universal Chemical Programming Language for Robotic Synthesis Repeatability,” researchers showcase the advantages of the recently introduced universal programming language, χDL to encode and execute synthesis, illustrating how standardized synthesis protocols can seamlessly traverse different robotic platforms, laboratories, …

See More
...
December 2023: Lee Cronin Features on Lex Fridman Podcast

Lee Cronin has featured in episode 404 of the widely acclaimed Lex Fridman podcast. In a conversation spanning over 3 hours, Cronin and Fridman delved into recent work on Assembly Theory, exploring its profound connection to the evolution of life on Earth, before moving on to other topics such as Cellular Automata, Artificial General Intelligence and Nuclear Weapons.

The full podcast can be viewed on YouTube.

...
December 2023: Congratulations to Jim McIver

Congratulations to our lead technician Jim McIver, who has received an award from the university in recognition of his sustained contribution in his role. Jim has supported the Cronin group since it first came to Glasgow in 2002, including managing the recent transition to our new location in the Advanced Research Centre. This year also marks Jim’s 40th year with the University, which was recognised with a long service award. Well done Jim!

...
November 2023: Lee Cronin takes part in Beyond Centre workshop on the origins of mathematics

Lee Cronin has taken part in a workshop entitled “Mathematics: Evolved or Eternal”, which took place at the Arizona State University Beyond Centre in November 2023. The focus of the workshop was exploring the relationship between mathematics and reality, and discussing fundamental questions such as how mathematics relates to the physical world and to evolution.

A full list of workshops from the Beyond Centre can be found on their website.

...
October 2023: New "Assembly Theory" Unifies Physics and Biology to Explain Evolution and Complexity

An international team of researchers has developed a new theoretical framework that bridges physics and biology to provide a unified approach for understanding how complexity and evolution emerge in nature. This new work on “Assembly Theory,” published today in Nature, represents a major advance in our fundamental comprehension of biological evolution and how it is governed by the physical laws of the universe.

This research builds on the team’s previous work developing Assembly Theory as an empirically validated approach to life detection, with implications for the search …

See More
...
September 2023: Lee Cronin gives plenary at GDCh conference

Prof. Lee Cronin has given a plenary talk at the German Chemical Society (GDCh) conference in Leipzig, Germany. In his talk, Prof Cronin explained why ‘Chemputation’ is a universal approach to exploring chemical reactivity, discovering new reactions and molecules, and programming chemical synthesis using a chemical programming language that can run the processes on a chemputer.

Information on the talks that took place at the event can be found at https://gdch.app/article/wifo-2023-der-dienstag (in German).

See More
...
August 2023: Chemify raises £33M to digitize chemistry

University of Glasgow spin-out company Chemify has raised more than £33M in funding as part of their aim to digitize chemistry. The company, founded by Prof Lee Cronin, aims to digitally explore chemical space and has expanded to over 35 full-time employees since it first spun out in February 2022.

The successful funding round has been featured on the BBC News Website as well as other news outlets.

...
July 2023: Assembly Theory paper receives International Society for Artificial Life award

The paper “Formalising the Pathways to Life Using Assembly Spaces”, published in Entropy in 2022, has been named “Outstanding Publication of 2022” by the International Society for Artificial Life. The paper describes the mathematical foundations of assembly theory, in terms of assembly spaces and the assembly index, which can be used to define a complexity threshold for biological influence. The award was made at the 2023 ALife conference in Sapporo, Japan.

...
Prof. Leroy (Lee) Cronin

Prof Leroy (Lee) Cronin
Regius Chair of Chemistry
Advanced Research Centre (ARC)
Level 5, Digital Chemistry
University of Glasgow
11 Chapel Lane
Glasgow G11 6EW
Tel: +44 141 330 6650
Email: lee.cronin@glasgow.ac.uk

Latest Publications

...

502. Delocalized, asynchronous, closed-loop discovery of organic laser emitters

...

501. Investigating and Quantifying Molecular Complexity Using Assembly Theory and Spectroscopy

...

500. Electron density-based GPT for optimization and suggestion of host–guest binders

...

499. Evidence of Selection in Mineral Mediated Polymerization Reactions Executed in a Robotic Chemputer System

...

498. A programmable hybrid digital chemical information processor based on the Belousov-Zhabotinsky reaction

...

497. An integrated self-optimizing programmable chemical synthesis and reaction engine

...

496. Autonomous execution of highly reactive chemical transformations in the Schlenkputer

...

495. Universal chemical programming language for robotic synthesis repeatability

...

494. Bringing digital synthesis to Mars

...

493. An Autonomous Electrochemical Discovery Robot that Utilises Probabilistic Algorithms: Probing the Redox Behaviour of Inorganic Materials

Group Funders

...
...
...
...
...
...
...
...

Find us on

Copyright © 2005 - 2024 Prof Lee Cronin - The University of Glasgow
Joseph Black Building, University of Glasgow, Scotland, UK
Visitors: