The Cronin Group

Research in the Cronin Group is motivated by the fascination for complex chemical systems, and the desire to construct complex functional molecular architectures that are not based on biologically derived building blocks.


...
Cronin group researchers discover spontaneously assembled organic-inorganic “DNA”

Genetic material in the form of DNA and RNA is essential for life and evolution, but how did it first arise? This is a big mystery and poses a classic ‘chicken and egg’ conundrum: what type of molecule could have determined the sequence of the very molecule in which sequence is encoded? Researchers in the Cronin Group have reported an organic-inorganic compound whose structure closely resembles the naturally occurring Z-form of DNA which forms simply by mixing molybdate with GMP at low pH. It is hoped that the structure could open new avenues in the exploration of the transition between biologically inert matter and living systems.

Link to full paper

...
Prof. Leroy (Lee) Cronin

Prof Leroy (Lee) Cronin
Regius Chair of Chemistry
Advanced Research Centre (ARC)
Level 5, Digital Chemistry
University of Glasgow
11 Chapel Lane
Glasgow G11 6EW
Tel: +44 141 330 6650
Email: lee.cronin@glasgow.ac.uk

Latest Publications

...

476. An artificial intelligence enabled chemical synthesis robot for exploration and optimization of nanomaterials

...

475. An autonomous portable platform for universal chemical synthesis

...

474. Robotic synthesis of peptides containing metal-oxide-based amino acids

...

473. Selection of assembly complexity in a space of tetrapeptides

...

472. Digitization and validation of a chemical synthesis literature database in the ChemPU

...

471. Formalising the pathways of life to using assembly spaces

...

470. Engineering Highly Reduced Molybdenum Polyoxometalates via the Incorporation of d and f Block Metal Ions

...

469. Effective Storage of Electrons in Water by the Formation of Highly Reduced Polyoxometalate Clusters

468. A Probabilistic Chemical Programmable Computer

...

467. Digitizing Chemical Synthesis in 3D Printed Reactionware


Find us on

Copyright © 2005 - 2023 Prof Lee Cronin - The University of Glasgow
Joseph Black Building, University of Glasgow, Scotland, UK
Visitors: