The Cronin Group

Research in the Cronin Group is motivated by the fascination for complex chemical systems, and the desire to construct complex functional molecular architectures that are not based on biologically derived building blocks.


...
Joint US-UK Solution wins NIH Integrated Challenge Prize

The teams of Prof Walker from Arizona State University and Prof Cronin from Glasgow University have won a challenge prize for innovative solutions working towards innovation in pain, opioid use disorder and overdose.

The joint team combines expertise in exploring chemical space using statistical methods (ASU) with a programmable chemical robot for molecular discovery and synthesis (GU). Their project proposes a solution called ‘Integrated Discovery Chemputer Toward Addiction Free Opiates (ChemOPs)’.

The challenge solution proposes an integrated solution that leverages the Glasgow-based programmable chemical robot, ‘the Chemputer’ for the design and discovery of new candidate molecules for drug discovery, using network approaches to exploring chemical space devised by the ASU team. The integrated system will link a chemical database with the generation of chemical code that will operate the Chemputer to then make the drug candidates.

The prize announcement can be found at https://ncats.nih.gov/aspire/2018ChallengeWinners#c5

...
Prof. Leroy (Lee) Cronin

Prof Leroy (Lee) Cronin
Regius Chair of Chemistry
Advanced Research Centre (ARC)
Level 5, Digital Chemistry
University of Glasgow
11 Chapel Lane
Glasgow G11 6EW
Tel: +44 141 330 6650
Email: lee.cronin@glasgow.ac.uk

Latest Publications

...

476. An artificial intelligence enabled chemical synthesis robot for exploration and optimization of nanomaterials

...

475. An autonomous portable platform for universal chemical synthesis

...

474. Robotic synthesis of peptides containing metal-oxide-based amino acids

...

473. Selection of assembly complexity in a space of tetrapeptides

...

472. Digitization and validation of a chemical synthesis literature database in the ChemPU

...

471. Formalising the pathways of life to using assembly spaces

...

470. Engineering Highly Reduced Molybdenum Polyoxometalates via the Incorporation of d and f Block Metal Ions

...

469. Effective Storage of Electrons in Water by the Formation of Highly Reduced Polyoxometalate Clusters

468. A Probabilistic Chemical Programmable Computer

...

467. Digitizing Chemical Synthesis in 3D Printed Reactionware


Find us on

Copyright © 2005 - 2023 Prof Lee Cronin - The University of Glasgow
Joseph Black Building, University of Glasgow, Scotland, UK
Visitors: